- 根目录:
- drivers
- gpu
- drm
- ttm
- ttm_bo.c
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include "ttm/ttm_module.h"
#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <asm/atomic.h>
#define TTM_ASSERT_LOCKED(param)
#define TTM_DEBUG(fmt, arg...)
#define TTM_BO_HASH_ORDER 13
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
static void ttm_bo_global_kobj_release(struct kobject *kobj);
static struct attribute ttm_bo_count = {
.name = "bo_count",
.mode = S_IRUGO
};
static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
{
int i;
for (i = 0; i <= TTM_PL_PRIV5; i++)
if (flags & (1 << i)) {
*mem_type = i;
return 0;
}
return -EINVAL;
}
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
printk(KERN_ERR TTM_PFX " has_type: %d\n", man->has_type);
printk(KERN_ERR TTM_PFX " use_type: %d\n", man->use_type);
printk(KERN_ERR TTM_PFX " flags: 0x%08X\n", man->flags);
printk(KERN_ERR TTM_PFX " gpu_offset: 0x%08lX\n", man->gpu_offset);
printk(KERN_ERR TTM_PFX " size: %llu\n", man->size);
printk(KERN_ERR TTM_PFX " available_caching: 0x%08X\n",
man->available_caching);
printk(KERN_ERR TTM_PFX " default_caching: 0x%08X\n",
man->default_caching);
if (mem_type != TTM_PL_SYSTEM)
(*man->func->debug)(man, TTM_PFX);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
int i, ret, mem_type;
printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
bo, bo->mem.num_pages, bo->mem.size >> 10,
bo->mem.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
ret = ttm_mem_type_from_flags(placement->placement[i],
&mem_type);
if (ret)
return;
printk(KERN_ERR TTM_PFX " placement[%d]=0x%08X (%d)\n",
i, placement->placement[i], mem_type);
ttm_mem_type_debug(bo->bdev, mem_type);
}
}
static ssize_t ttm_bo_global_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
return snprintf(buffer, PAGE_SIZE, "%lu\n",
(unsigned long) atomic_read(&glob->bo_count));
}
static struct attribute *ttm_bo_global_attrs[] = {
&ttm_bo_count,
NULL
};
static const struct sysfs_ops ttm_bo_global_ops = {
.show = &ttm_bo_global_show
};
static struct kobj_type ttm_bo_glob_kobj_type = {
.release = &ttm_bo_global_kobj_release,
.sysfs_ops = &ttm_bo_global_ops,
.default_attrs = ttm_bo_global_attrs
};
static inline uint32_t ttm_bo_type_flags(unsigned type)
{
return 1 << (type);
}
static void ttm_bo_release_list(struct kref *list_kref)
{
struct ttm_buffer_object *bo =
container_of(list_kref, struct ttm_buffer_object, list_kref);
struct ttm_bo_device *bdev = bo->bdev;
BUG_ON(atomic_read(&bo->list_kref.refcount));
BUG_ON(atomic_read(&bo->kref.refcount));
BUG_ON(atomic_read(&bo->cpu_writers));
BUG_ON(bo->sync_obj != NULL);
BUG_ON(bo->mem.mm_node != NULL);
BUG_ON(!list_empty(&bo->lru));
BUG_ON(!list_empty(&bo->ddestroy));
if (bo->ttm)
ttm_tt_destroy(bo->ttm);
atomic_dec(&bo->glob->bo_count);
if (bo->destroy)
bo->destroy(bo);
else {
ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
kfree(bo);
}
}
int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
{
if (interruptible) {
return wait_event_interruptible(bo->event_queue,
atomic_read(&bo->reserved) == 0);
} else {
wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
return 0;
}
}
EXPORT_SYMBOL(ttm_bo_wait_unreserved);
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
BUG_ON(!atomic_read(&bo->reserved));
if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
BUG_ON(!list_empty(&bo->lru));
man = &bdev->man[bo->mem.mem_type];
list_add_tail(&bo->lru, &man->lru);
kref_get(&bo->list_kref);
if (bo->ttm != NULL) {
list_add_tail(&bo->swap, &bo->glob->swap_lru);
kref_get(&bo->list_kref);
}
}
}
int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
int put_count = 0;
if (!list_empty(&bo->swap)) {
list_del_init(&bo->swap);
++put_count;
}
if (!list_empty(&bo->lru)) {
list_del_init(&bo->lru);
++put_count;
}
/*
* TODO: Add a driver hook to delete from
* driver-specific LRU's here.
*/
return put_count;
}
int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait, bool use_sequence, uint32_t sequence)
{
struct ttm_bo_global *glob = bo->glob;
int ret;
while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
/**
* Deadlock avoidance for multi-bo reserving.
*/
if (use_sequence && bo->seq_valid) {
/**
* We've already reserved this one.
*/
if (unlikely(sequence == bo->val_seq))
return -EDEADLK;
/**
* Already reserved by a thread that will not back
* off for us. We need to back off.
*/
if (unlikely(sequence - bo->val_seq < (1 << 31)))
return -EAGAIN;
}
if (no_wait)
return -EBUSY;
spin_unlock(&glob->lru_lock);
ret = ttm_bo_wait_unreserved(bo, interruptible);
spin_lock(&glob->lru_lock);
if (unlikely(ret))
return ret;
}
if (use_sequence) {
/**
* Wake up waiters that may need to recheck for deadlock,
* if we decreased the sequence number.
*/
if (unlikely((bo->val_seq - sequence < (1 << 31))
|| !bo->seq_valid))
wake_up_all(&bo->event_queue);
bo->val_seq = sequence;
bo->seq_valid = true;
} else {
bo->seq_valid = false;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_reserve);
static void ttm_bo_ref_bug(struct kref *list_kref)
{
BUG();
}
void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
bool never_free)
{
kref_sub(&bo->list_kref, count,
(never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
}
int ttm_bo_reserve(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait, bool use_sequence, uint32_t sequence)
{
struct ttm_bo_global *glob = bo->glob;
int put_count = 0;
int ret;
spin_lock(&glob->lru_lock);
ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
sequence);
if (likely(ret == 0))
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
return ret;
}
void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
{
ttm_bo_add_to_lru(bo);
atomic_set(&bo->reserved, 0);
wake_up_all(&bo->event_queue);
}
void ttm_bo_unreserve(struct ttm_buffer_object *bo)
{
struct ttm_bo_global *glob = bo->glob;
spin_lock(&glob->lru_lock);
ttm_bo_unreserve_locked(bo);
spin_unlock(&glob->lru_lock);
}
EXPORT_SYMBOL(ttm_bo_unreserve);
/*
* Call bo->mutex locked.
*/
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int ret = 0;
uint32_t page_flags = 0;
TTM_ASSERT_LOCKED(&bo->mutex);
bo->ttm = NULL;
if (bdev->need_dma32)
page_flags |= TTM_PAGE_FLAG_DMA32;
switch (bo->type) {
case ttm_bo_type_device:
if (zero_alloc)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
case ttm_bo_type_kernel:
bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags, glob->dummy_read_page);
if (unlikely(bo->ttm == NULL))
ret = -ENOMEM;
break;
case ttm_bo_type_user:
bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags | TTM_PAGE_FLAG_USER,
glob->dummy_read_page);
if (unlikely(bo->ttm == NULL)) {
ret = -ENOMEM;
break;
}
ret = ttm_tt_set_user(bo->ttm, current,
bo->buffer_start, bo->num_pages);
if (unlikely(ret != 0))
ttm_tt_destroy(bo->ttm);
break;
default:
printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
ret = -EINVAL;
break;
}
return ret;
}
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem,
bool evict, bool interruptible,
bool no_wait_reserve, bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
int ret = 0;
if (old_is_pci || new_is_pci ||
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
ret = ttm_mem_io_lock(old_man, true);
if (unlikely(ret != 0))
goto out_err;
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(old_man);
}
/*
* Create and bind a ttm if required.
*/
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
ret = ttm_bo_add_ttm(bo, false);
if (ret)
goto out_err;
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->ttm, mem);
if (ret)
goto out_err;
}
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
mem->mm_node = NULL;
goto moved;
}
}
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
else if (bdev->driver->move)
ret = bdev->driver->move(bo, evict, interruptible,
no_wait_reserve, no_wait_gpu, mem);
else
ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
if (ret)
goto out_err;
moved:
if (bo->evicted) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
if (ret)
printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
bo->evicted = false;
}
if (bo->mem.mm_node) {
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bdev->man[bo->mem.mem_type].gpu_offset;
bo->cur_placement = bo->mem.placement;
} else
bo->offset = 0;
return 0;
out_err:
new_man = &bdev->man[bo->mem.mem_type];
if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
return ret;
}
/**
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
ttm_bo_mem_put(bo, &bo->mem);
atomic_set(&bo->reserved, 0);
/*
* Make processes trying to reserve really pick it up.
*/
smp_mb__after_atomic_dec();
wake_up_all(&bo->event_queue);
}
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
struct ttm_bo_driver *driver;
void *sync_obj = NULL;
void *sync_obj_arg;
int put_count;
int ret;
spin_lock(&bdev->fence_lock);
(void) ttm_bo_wait(bo, false, false, true);
if (!bo->sync_obj) {
spin_lock(&glob->lru_lock);
/**
* Lock inversion between bo:reserve and bdev::fence_lock here,
* but that's OK, since we're only trylocking.
*/
ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
if (unlikely(ret == -EBUSY))
goto queue;
spin_unlock(&bdev->fence_lock);
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return;
} else {
spin_lock(&glob->lru_lock);
}
queue:
driver = bdev->driver;
if (bo->sync_obj)
sync_obj = driver->sync_obj_ref(bo->sync_obj);
sync_obj_arg = bo->sync_obj_arg;
kref_get(&bo->list_kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
spin_unlock(&glob->lru_lock);
spin_unlock(&bdev->fence_lock);
if (sync_obj) {
driver->sync_obj_flush(sync_obj, sync_obj_arg);
driver->sync_obj_unref(&sync_obj);
}
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
/**
* function ttm_bo_cleanup_refs
* If bo idle, remove from delayed- and lru lists, and unref.
* If not idle, do nothing.
*
* @interruptible Any sleeps should occur interruptibly.
* @no_wait_reserve Never wait for reserve. Return -EBUSY instead.
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
*/
static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int put_count;
int ret = 0;
retry:
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
spin_unlock(&bdev->fence_lock);
if (unlikely(ret != 0))
return ret;
spin_lock(&glob->lru_lock);
ret = ttm_bo_reserve_locked(bo, interruptible,
no_wait_reserve, false, 0);
if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
spin_unlock(&glob->lru_lock);
return ret;
}
/**
* We can re-check for sync object without taking
* the bo::lock since setting the sync object requires
* also bo::reserved. A busy object at this point may
* be caused by another thread recently starting an accelerated
* eviction.
*/
if (unlikely(bo->sync_obj)) {
atomic_set(&bo->reserved, 0);
wake_up_all(&bo->event_queue);
spin_unlock(&glob->lru_lock);
goto retry;
}
put_count = ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
++put_count;
spin_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return 0;
}
/**
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_buffer_object *entry = NULL;
int ret = 0;
spin_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
goto out_unlock;
entry = list_first_entry(&bdev->ddestroy,
struct ttm_buffer_object, ddestroy);
kref_get(&entry->list_kref);
for (;;) {
struct ttm_buffer_object *nentry = NULL;
if (entry->ddestroy.next != &bdev->ddestroy) {
nentry = list_first_entry(&entry->ddestroy,
struct ttm_buffer_object, ddestroy);
kref_get(&nentry->list_kref);
}
spin_unlock(&glob->lru_lock);
ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
!remove_all);
kref_put(&entry->list_kref, ttm_bo_release_list);
entry = nentry;
if (ret || !entry)
goto out;
spin_lock(&glob->lru_lock);
if (list_empty(&entry->ddestroy))
break;
}
out_unlock:
spin_unlock(&glob->lru_lock);
out:
if (entry)
kref_put(&entry->list_kref, ttm_bo_release_list);
return ret;
}
static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
struct ttm_bo_device *bdev =
container_of(work, struct ttm_bo_device, wq.work);
if (ttm_bo_delayed_delete(bdev, false)) {
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
if (likely(bo->vm_node != NULL)) {
rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
drm_mm_put_block(bo->vm_node);
bo->vm_node = NULL;
}
write_unlock(&bdev->vm_lock);
ttm_mem_io_lock(man, false);
ttm_mem_io_free_vm(bo);
ttm_mem_io_unlock(man);
ttm_bo_cleanup_refs_or_queue(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
write_lock(&bdev->vm_lock);
}
void ttm_bo_unref(struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo = *p_bo;
struct ttm_bo_device *bdev = bo->bdev;
*p_bo = NULL;
write_lock(&bdev->vm_lock);
kref_put(&bo->kref, ttm_bo_release);
write_unlock(&bdev->vm_lock);
}
EXPORT_SYMBOL(ttm_bo_unref);
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
if (resched)
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
bool no_wait_reserve, bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_reg evict_mem;
struct ttm_placement placement;
int ret = 0;
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
spin_unlock(&bdev->fence_lock);
if (unlikely(ret != 0)) {
if (ret != -ERESTARTSYS) {
printk(KERN_ERR TTM_PFX
"Failed to expire sync object before "
"buffer eviction.\n");
}
goto out;
}
BUG_ON(!atomic_read(&bo->reserved));
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.bus.io_reserved_vm = false;
evict_mem.bus.io_reserved_count = 0;
placement.fpfn = 0;
placement.lpfn = 0;
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->driver->evict_flags(bo, &placement);
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
no_wait_reserve, no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS) {
printk(KERN_ERR TTM_PFX
"Failed to find memory space for "
"buffer 0x%p eviction.\n", bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
no_wait_reserve, no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS)
printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
ttm_bo_mem_put(bo, &evict_mem);
goto out;
}
bo->evicted = true;
out:
return ret;
}
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
uint32_t mem_type,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_buffer_object *bo;
int ret, put_count = 0;
retry:
spin_lock(&glob->lru_lock);
if (list_empty(&man->lru)) {
spin_unlock(&glob->lru_lock);
return -EBUSY;
}
bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
spin_unlock(&glob->lru_lock);
ret = ttm_bo_cleanup_refs(bo, interruptible,
no_wait_reserve, no_wait_gpu);
kref_put(&bo->list_kref, ttm_bo_release_list);
if (likely(ret == 0 || ret == -ERESTARTSYS))
return ret;
goto retry;
}
ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
if (unlikely(ret == -EBUSY)) {
spin_unlock(&glob->lru_lock);
if (likely(!no_wait_gpu))
ret = ttm_bo_wait_unreserved(bo, interruptible);
kref_put(&bo->list_kref, ttm_bo_release_list);
/**
* We *need* to retry after releasing the lru lock.
*/
if (unlikely(ret != 0))
return ret;
goto retry;
}
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
BUG_ON(ret != 0);
ttm_bo_list_ref_sub(bo, put_count, true);
ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
ttm_bo_unreserve(bo);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
if (mem->mm_node)
(*man->func->put_node)(man, mem);
}
EXPORT_SYMBOL(ttm_bo_mem_put);
/**
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
uint32_t mem_type,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible,
bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
int ret;
do {
ret = (*man->func->get_node)(man, bo, placement, mem);
if (unlikely(ret != 0))
return ret;
if (mem->mm_node)
break;
ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
no_wait_reserve, no_wait_gpu);
if (unlikely(ret != 0))
return ret;
} while (1);
if (mem->mm_node == NULL)
return -ENOMEM;
mem->mem_type = mem_type;
return 0;
}
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
bool disallow_fixed,
uint32_t mem_type,
uint32_t proposed_placement,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
return false;
if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
return false;
if ((proposed_placement & man->available_caching) == 0)
return false;
cur_flags |= (proposed_placement & man->available_caching);
*masked_placement = cur_flags;
return true;
}
/**
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
uint32_t mem_type = TTM_PL_SYSTEM;
uint32_t cur_flags = 0;
bool type_found = false;
bool type_ok = false;
bool has_erestartsys = false;
int i, ret;
mem->mm_node = NULL;
for (i = 0; i < placement->num_placement; ++i) {
ret = ttm_mem_type_from_flags(placement->placement[i],
&mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
type_ok = ttm_bo_mt_compatible(man,
bo->type == ttm_bo_type_user,
mem_type,
placement->placement[i],
&cur_flags);
if (!type_ok)
continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, placement->placement[i],
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM)
break;
if (man->has_type && man->use_type) {
type_found = true;
ret = (*man->func->get_node)(man, bo, placement, mem);
if (unlikely(ret))
return ret;
}
if (mem->mm_node)
break;
}
if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
return 0;
}
if (!type_found)
return -EINVAL;
for (i = 0; i < placement->num_busy_placement; ++i) {
ret = ttm_mem_type_from_flags(placement->busy_placement[i],
&mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type)
continue;
if (!ttm_bo_mt_compatible(man,
bo->type == ttm_bo_type_user,
mem_type,
placement->busy_placement[i],
&cur_flags))
continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, placement->busy_placement[i],
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
mem->mm_node = NULL;
return 0;
}
ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
interruptible, no_wait_reserve, no_wait_gpu);
if (ret == 0 && mem->mm_node) {
mem->placement = cur_flags;
return 0;
}
if (ret == -ERESTARTSYS)
has_erestartsys = true;
}
ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
{
if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
return -EBUSY;
return wait_event_interruptible(bo->event_queue,
atomic_read(&bo->cpu_writers) == 0);
}
EXPORT_SYMBOL(ttm_bo_wait_cpu);
int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
int ret = 0;
struct ttm_mem_reg mem;
struct ttm_bo_device *bdev = bo->bdev;
BUG_ON(!atomic_read(&bo->reserved));
/*
* FIXME: It's possible to pipeline buffer moves.
* Have the driver move function wait for idle when necessary,
* instead of doing it here.
*/
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
spin_unlock(&bdev->fence_lock);
if (ret)
return ret;
mem.num_pages = bo->num_pages;
mem.size = mem.num_pages << PAGE_SHIFT;
mem.page_alignment = bo->mem.page_alignment;
mem.bus.io_reserved_vm = false;
mem.bus.io_reserved_count = 0;
/*
* Determine where to move the buffer.
*/
ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
if (ret)
goto out_unlock;
ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
out_unlock:
if (ret && mem.mm_node)
ttm_bo_mem_put(bo, &mem);
return ret;
}
static int ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_mem_reg *mem)
{
int i;
if (mem->mm_node && placement->lpfn != 0 &&
(mem->start < placement->fpfn ||
mem->start + mem->num_pages > placement->lpfn))
return -1;
for (i = 0; i < placement->num_placement; i++) {
if ((placement->placement[i] & mem->placement &
TTM_PL_MASK_CACHING) &&
(placement->placement[i] & mem->placement &
TTM_PL_MASK_MEM))
return i;
}
return -1;
}
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible, bool no_wait_reserve,
bool no_wait_gpu)
{
int ret;
BUG_ON(!atomic_read(&bo->reserved));
/* Check that range is valid */
if (placement->lpfn || placement->fpfn)
if (placement->fpfn > placement->lpfn ||
(placement->lpfn - placement->fpfn) < bo->num_pages)
return -EINVAL;
/*
* Check whether we need to move buffer.
*/
ret = ttm_bo_mem_compat(placement, &bo->mem);
if (ret < 0) {
ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
if (ret)
return ret;
} else {
/*
* Use the access and other non-mapping-related flag bits from
* the compatible memory placement flags to the active flags
*/
ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
~TTM_PL_MASK_MEMTYPE);
}
/*
* We might need to add a TTM.
*/
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
ret = ttm_bo_add_ttm(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
int ttm_bo_check_placement(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
BUG_ON((placement->fpfn || placement->lpfn) &&
(bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
return 0;
}
int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
unsigned long buffer_start,
bool interruptible,
struct file *persistent_swap_storage,
size_t acc_size,
void (*destroy) (struct ttm_buffer_object *))
{
int ret = 0;
unsigned long num_pages;
size += buffer_start & ~PAGE_MASK;
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
if (destroy)
(*destroy)(bo);
else
kfree(bo);
return -EINVAL;
}
bo->destroy = destroy;
kref_init(&bo->kref);
kref_init(&bo->list_kref);
atomic_set(&bo->cpu_writers, 0);
atomic_set(&bo->reserved, 1);
init_waitqueue_head(&bo->event_queue);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
INIT_LIST_HEAD(&bo->swap);
INIT_LIST_HEAD(&bo->io_reserve_lru);
bo->bdev = bdev;
bo->glob = bdev->glob;
bo->type = type;
bo->num_pages = num_pages;
bo->mem.size = num_pages << PAGE_SHIFT;
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->mem.num_pages = bo->num_pages;
bo->mem.mm_node = NULL;
bo->mem.page_alignment = page_alignment;
bo->mem.bus.io_reserved_vm = false;
bo->mem.bus.io_reserved_count = 0;
bo->buffer_start = buffer_start & PAGE_MASK;
bo->priv_flags = 0;
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
bo->seq_valid = false;
bo->persistent_swap_storage = persistent_swap_storage;
bo->acc_size = acc_size;
atomic_inc(&bo->glob->bo_count);
ret = ttm_bo_check_placement(bo, placement);
if (unlikely(ret != 0))
goto out_err;
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device) {
ret = ttm_bo_setup_vm(bo);
if (ret)
goto out_err;
}
ret = ttm_bo_validate(bo, placement, interruptible, false, false);
if (ret)
goto out_err;
ttm_bo_unreserve(bo);
return 0;
out_err:
ttm_bo_unreserve(bo);
ttm_bo_unref(&bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_init);
static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
unsigned long num_pages)
{
size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
PAGE_MASK;
return glob->ttm_bo_size + 2 * page_array_size;
}
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
unsigned long buffer_start,
bool interruptible,
struct file *persistent_swap_storage,
struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
int ret;
size_t acc_size =
ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (unlikely(ret != 0))
return ret;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (unlikely(bo == NULL)) {
ttm_mem_global_free(mem_glob, acc_size);
return -ENOMEM;
}
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
buffer_start, interruptible,
persistent_swap_storage, acc_size, NULL);
if (likely(ret == 0))
*p_bo = bo;
return ret;
}
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
unsigned mem_type, bool allow_errors)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_bo_global *glob = bdev->glob;
int ret;
/*
* Can't use standard list traversal since we're unlocking.
*/
spin_lock(&glob->lru_lock);
while (!list_empty(&man->lru)) {
spin_unlock(&glob->lru_lock);
ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
if (ret) {
if (allow_errors) {
return ret;
} else {
printk(KERN_ERR TTM_PFX
"Cleanup eviction failed\n");
}
}
spin_lock(&glob->lru_lock);
}
spin_unlock(&glob->lru_lock);
return 0;
}
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man;
int ret = -EINVAL;
if (mem_type >= TTM_NUM_MEM_TYPES) {
printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
return ret;
}
man = &bdev->man[mem_type];
if (!man->has_type) {
printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
"memory manager type %u\n", mem_type);
return ret;
}
man->use_type = false;
man->has_type = false;
ret = 0;
if (mem_type > 0) {
ttm_bo_force_list_clean(bdev, mem_type, false);
ret = (*man->func->takedown)(man);
}
return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
printk(KERN_ERR TTM_PFX
"Illegal memory manager memory type %u.\n",
mem_type);
return -EINVAL;
}
if (!man->has_type) {
printk(KERN_ERR TTM_PFX
"Memory type %u has not been initialized.\n",
mem_type);
return 0;
}
return ttm_bo_force_list_clean(bdev, mem_type, true);
}
EXPORT_SYMBOL(ttm_bo_evict_mm);
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size)
{
int ret = -EINVAL;
struct ttm_mem_type_manager *man;
BUG_ON(type >= TTM_NUM_MEM_TYPES);
man = &bdev->man[type];
BUG_ON(man->has_type);
man->io_reserve_fastpath = true;
man->use_io_reserve_lru = false;
mutex_init(&man->io_reserve_mutex);
INIT_LIST_HEAD(&man->io_reserve_lru);
ret = bdev->driver->init_mem_type(bdev, type, man);
if (ret)
return ret;
man->bdev = bdev;
ret = 0;
if (type != TTM_PL_SYSTEM) {
ret = (*man->func->init)(man, p_size);
if (ret)
return ret;
}
man->has_type = true;
man->use_type = true;
man->size = p_size;
INIT_LIST_HEAD(&man->lru);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
struct ttm_bo_global *glob =
container_of(kobj, struct ttm_bo_global, kobj);
ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
__free_page(glob->dummy_read_page);
kfree(glob);
}
void ttm_bo_global_release(struct drm_global_reference *ref)
{
struct ttm_bo_global *glob = ref->object;
kobject_del(&glob->kobj);
kobject_put(&glob->kobj);
}
EXPORT_SYMBOL(ttm_bo_global_release);
int ttm_bo_global_init(struct drm_global_reference *ref)
{
struct ttm_bo_global_ref *bo_ref =
container_of(ref, struct ttm_bo_global_ref, ref);
struct ttm_bo_global *glob = ref->object;
int ret;
mutex_init(&glob->device_list_mutex);
spin_lock_init(&glob->lru_lock);
glob->mem_glob = bo_ref->mem_glob;
glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
if (unlikely(glob->dummy_read_page == NULL)) {
ret = -ENOMEM;
goto out_no_drp;
}
INIT_LIST_HEAD(&glob->swap_lru);
INIT_LIST_HEAD(&glob->device_list);
ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
if (unlikely(ret != 0)) {
printk(KERN_ERR TTM_PFX
"Could not register buffer object swapout.\n");
goto out_no_shrink;
}
glob->ttm_bo_extra_size =
ttm_round_pot(sizeof(struct ttm_tt)) +
ttm_round_pot(sizeof(struct ttm_backend));
glob->ttm_bo_size = glob->ttm_bo_extra_size +
ttm_round_pot(sizeof(struct ttm_buffer_object));
atomic_set(&glob->bo_count, 0);
ret = kobject_init_and_add(
&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
if (unlikely(ret != 0))
kobject_put(&glob->kobj);
return ret;
out_no_shrink:
__free_page(glob->dummy_read_page);
out_no_drp:
kfree(glob);
return ret;
}
EXPORT_SYMBOL(ttm_bo_global_init);
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
int ret = 0;
unsigned i = TTM_NUM_MEM_TYPES;
struct ttm_mem_type_manager *man;
struct ttm_bo_global *glob = bdev->glob;
while (i--) {
man = &bdev->man[i];
if (man->has_type) {
man->use_type = false;
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
ret = -EBUSY;
printk(KERN_ERR TTM_PFX
"DRM memory manager type %d "
"is not clean.\n", i);
}
man->has_type = false;
}
}
mutex_lock(&glob->device_list_mutex);
list_del(&bdev->device_list);
mutex_unlock(&glob->device_list_mutex);
cancel_delayed_work_sync(&bdev->wq);
while (ttm_bo_delayed_delete(bdev, true))
;
spin_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
TTM_DEBUG("Delayed destroy list was clean\n");
if (list_empty(&bdev->man[0].lru))
TTM_DEBUG("Swap list was clean\n");
spin_unlock(&glob->lru_lock);
BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
write_lock(&bdev->vm_lock);
drm_mm_takedown(&bdev->addr_space_mm);
write_unlock(&bdev->vm_lock);
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);
int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_bo_global *glob,
struct ttm_bo_driver *driver,
uint64_t file_page_offset,
bool need_dma32)
{
int ret = -EINVAL;
rwlock_init(&bdev->vm_lock);
bdev->driver = driver;
memset(bdev->man, 0, sizeof(bdev->man));
/*
* Initialize the system memory buffer type.
* Other types need to be driver / IOCTL initialized.
*/
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
if (unlikely(ret != 0))
goto out_no_sys;
bdev->addr_space_rb = RB_ROOT;
ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
if (unlikely(ret != 0))
goto out_no_addr_mm;
INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
bdev->nice_mode = true;
INIT_LIST_HEAD(&bdev->ddestroy);
bdev->dev_mapping = NULL;
bdev->glob = glob;
bdev->need_dma32 = need_dma32;
bdev->val_seq = 0;
spin_lock_init(&bdev->fence_lock);
mutex_lock(&glob->device_list_mutex);
list_add_tail(&bdev->device_list, &glob->device_list);
mutex_unlock(&glob->device_list_mutex);
return 0;
out_no_addr_mm:
ttm_bo_clean_mm(bdev, 0);
out_no_sys:
return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);
/*
* buffer object vm functions.
*/
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (mem->mem_type == TTM_PL_SYSTEM)
return false;
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
return false;
if (mem->placement & TTM_PL_FLAG_CACHED)
return false;
}
return true;
}
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
loff_t offset = (loff_t) bo->addr_space_offset;
loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
if (!bdev->dev_mapping)
return;
unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
ttm_mem_io_free_vm(bo);
}
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
ttm_mem_io_lock(man, false);
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(man);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct rb_node **cur = &bdev->addr_space_rb.rb_node;
struct rb_node *parent = NULL;
struct ttm_buffer_object *cur_bo;
unsigned long offset = bo->vm_node->start;
unsigned long cur_offset;
while (*cur) {
parent = *cur;
cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
cur_offset = cur_bo->vm_node->start;
if (offset < cur_offset)
cur = &parent->rb_left;
else if (offset > cur_offset)
cur = &parent->rb_right;
else
BUG();
}
rb_link_node(&bo->vm_rb, parent, cur);
rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
}
/**
* ttm_bo_setup_vm:
*
* @bo: the buffer to allocate address space for
*
* Allocate address space in the drm device so that applications
* can mmap the buffer and access the contents. This only
* applies to ttm_bo_type_device objects as others are not
* placed in the drm device address space.
*/
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
int ret;
retry_pre_get:
ret = drm_mm_pre_get(&bdev->addr_space_mm);
if (unlikely(ret != 0))
return ret;
write_lock(&bdev->vm_lock);
bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
bo->mem.num_pages, 0, 0);
if (unlikely(bo->vm_node == NULL)) {
ret = -ENOMEM;
goto out_unlock;
}
bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
bo->mem.num_pages, 0);
if (unlikely(bo->vm_node == NULL)) {
write_unlock(&bdev->vm_lock);
goto retry_pre_get;
}
ttm_bo_vm_insert_rb(bo);
write_unlock(&bdev->vm_lock);
bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
return 0;
out_unlock:
write_unlock(&bdev->vm_lock);
return ret;
}
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool lazy, bool interruptible, bool no_wait)
{
struct ttm_bo_driver *driver = bo->bdev->driver;
struct ttm_bo_device *bdev = bo->bdev;
void *sync_obj;
void *sync_obj_arg;
int ret = 0;
if (likely(bo->sync_obj == NULL))
return 0;
while (bo->sync_obj) {
if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
void *tmp_obj = bo->sync_obj;
bo->sync_obj = NULL;
clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
spin_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&tmp_obj);
spin_lock(&bdev->fence_lock);
continue;
}
if (no_wait)
return -EBUSY;
sync_obj = driver->sync_obj_ref(bo->sync_obj);
sync_obj_arg = bo->sync_obj_arg;
spin_unlock(&bdev->fence_lock);
ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
lazy, interruptible);
if (unlikely(ret != 0)) {
driver->sync_obj_unref(&sync_obj);
spin_lock(&bdev->fence_lock);
return ret;
}
spin_lock(&bdev->fence_lock);
if (likely(bo->sync_obj == sync_obj &&
bo->sync_obj_arg == sync_obj_arg)) {
void *tmp_obj = bo->sync_obj;
bo->sync_obj = NULL;
clear_bit(TTM_BO_PRIV_FLAG_MOVING,
&bo->priv_flags);
spin_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&sync_obj);
driver->sync_obj_unref(&tmp_obj);
spin_lock(&bdev->fence_lock);
} else {
spin_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&sync_obj);
spin_lock(&bdev->fence_lock);
}
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
struct ttm_bo_device *bdev = bo->bdev;
int ret = 0;
/*
* Using ttm_bo_reserve makes sure the lru lists are updated.
*/
ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
if (unlikely(ret != 0))
return ret;
spin_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, true, no_wait);
spin_unlock(&bdev->fence_lock);
if (likely(ret == 0))
atomic_inc(&bo->cpu_writers);
ttm_bo_unreserve(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
if (atomic_dec_and_test(&bo->cpu_writers))
wake_up_all(&bo->event_queue);
}
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
/**
* A buffer object shrink method that tries to swap out the first
* buffer object on the bo_global::swap_lru list.
*/
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
{
struct ttm_bo_global *glob =
container_of(shrink, struct ttm_bo_global, shrink);
struct ttm_buffer_object *bo;
int ret = -EBUSY;
int put_count;
uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
spin_lock(&glob->lru_lock);
while (ret == -EBUSY) {
if (unlikely(list_empty(&glob->swap_lru))) {
spin_unlock(&glob->lru_lock);
return -EBUSY;
}
bo = list_first_entry(&glob->swap_lru,
struct ttm_buffer_object, swap);
kref_get(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
spin_unlock(&glob->lru_lock);
(void) ttm_bo_cleanup_refs(bo, false, false, false);
kref_put(&bo->list_kref, ttm_bo_release_list);
continue;
}
/**
* Reserve buffer. Since we unlock while sleeping, we need
* to re-check that nobody removed us from the swap-list while
* we slept.
*/
ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
if (unlikely(ret == -EBUSY)) {
spin_unlock(&glob->lru_lock);
ttm_bo_wait_unreserved(bo, false);
kref_put(&bo->list_kref, ttm_bo_release_list);
spin_lock(&glob->lru_lock);
}
}
BUG_ON(ret != 0);
put_count = ttm_bo_del_from_lru(bo);
spin_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
/**
* Wait for GPU, then move to system cached.
*/
spin_lock(&bo->bdev->fence_lock);
ret = ttm_bo_wait(bo, false, false, false);
spin_unlock(&bo->bdev->fence_lock);
if (unlikely(ret != 0))
goto out;
if ((bo->mem.placement & swap_placement) != swap_placement) {
struct ttm_mem_reg evict_mem;
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
evict_mem.mem_type = TTM_PL_SYSTEM;
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
false, false, false);
if (unlikely(ret != 0))
goto out;
}
ttm_bo_unmap_virtual(bo);
/**
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->driver->swap_notify)
bo->bdev->driver->swap_notify(bo);
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
out:
/**
*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
atomic_set(&bo->reserved, 0);
wake_up_all(&bo->event_queue);
kref_put(&bo->list_kref, ttm_bo_release_list);
return ret;
}
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
;
}
EXPORT_SYMBOL(ttm_bo_swapout_all);