/* * ALSA PCM interface for the Stetch s6000 family * * Author: Daniel Gloeckner, <dg@emlix.com> * Copyright: (C) 2009 emlix GmbH <info@emlix.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <asm/dma.h> #include <variant/dmac.h> #include "s6000-pcm.h" #define S6_PCM_PREALLOCATE_SIZE (96 * 1024) #define S6_PCM_PREALLOCATE_MAX (2048 * 1024) static struct snd_pcm_hardware s6000_pcm_hardware = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_JOINT_DUPLEX), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_5512 | \ SNDRV_PCM_RATE_8000_192000), .rate_min = 0, .rate_max = 1562500, .channels_min = 2, .channels_max = 8, .buffer_bytes_max = 0x7ffffff0, .period_bytes_min = 16, .period_bytes_max = 0xfffff0, .periods_min = 2, .periods_max = 1024, /* no limit */ .fifo_size = 0, }; struct s6000_runtime_data { spinlock_t lock; int period; /* current DMA period */ }; static void s6000_pcm_enqueue_dma(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct s6000_runtime_data *prtd = runtime->private_data; struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; int channel; unsigned int period_size; unsigned int dma_offset; dma_addr_t dma_pos; dma_addr_t src, dst; par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); period_size = snd_pcm_lib_period_bytes(substream); dma_offset = prtd->period * period_size; dma_pos = runtime->dma_addr + dma_offset; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { src = dma_pos; dst = par->sif_out; channel = par->dma_out; } else { src = par->sif_in; dst = dma_pos; channel = par->dma_in; } if (!s6dmac_channel_enabled(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel))) return; if (s6dmac_fifo_full(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel))) { printk(KERN_ERR "s6000-pcm: fifo full\n"); return; } BUG_ON(period_size & 15); s6dmac_put_fifo(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel), src, dst, period_size); prtd->period++; if (unlikely(prtd->period >= runtime->periods)) prtd->period = 0; } static irqreturn_t s6000_pcm_irq(int irq, void *data) { struct snd_pcm *pcm = data; struct snd_soc_pcm_runtime *runtime = pcm->private_data; struct s6000_runtime_data *prtd; unsigned int has_xrun; int i, ret = IRQ_NONE; for (i = 0; i < 2; ++i) { struct snd_pcm_substream *substream = pcm->streams[i].substream; struct s6000_pcm_dma_params *params = snd_soc_dai_get_dma_data(runtime->cpu_dai, substream); u32 channel; unsigned int pending; if (substream == SNDRV_PCM_STREAM_PLAYBACK) channel = params->dma_out; else channel = params->dma_in; has_xrun = params->check_xrun(runtime->cpu_dai); if (!channel) continue; if (unlikely(has_xrun & (1 << i)) && substream->runtime && snd_pcm_running(substream)) { dev_dbg(pcm->dev, "xrun\n"); snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); ret = IRQ_HANDLED; } pending = s6dmac_int_sources(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel)); if (pending & 1) { ret = IRQ_HANDLED; if (likely(substream->runtime && snd_pcm_running(substream))) { snd_pcm_period_elapsed(substream); dev_dbg(pcm->dev, "period elapsed %x %x\n", s6dmac_cur_src(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel)), s6dmac_cur_dst(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel))); prtd = substream->runtime->private_data; spin_lock(&prtd->lock); s6000_pcm_enqueue_dma(substream); spin_unlock(&prtd->lock); } } if (unlikely(pending & ~7)) { if (pending & (1 << 3)) printk(KERN_WARNING "s6000-pcm: DMA %x Underflow\n", channel); if (pending & (1 << 4)) printk(KERN_WARNING "s6000-pcm: DMA %x Overflow\n", channel); if (pending & 0x1e0) printk(KERN_WARNING "s6000-pcm: DMA %x Master Error " "(mask %x)\n", channel, pending >> 5); } } return ret; } static int s6000_pcm_start(struct snd_pcm_substream *substream) { struct s6000_runtime_data *prtd = substream->runtime->private_data; struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; unsigned long flags; int srcinc; u32 dma; par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); spin_lock_irqsave(&prtd->lock, flags); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { srcinc = 1; dma = par->dma_out; } else { srcinc = 0; dma = par->dma_in; } s6dmac_enable_chan(DMA_MASK_DMAC(dma), DMA_INDEX_CHNL(dma), 1 /* priority 1 (0 is max) */, 0 /* peripheral requests w/o xfer length mode */, srcinc /* source address increment */, srcinc^1 /* destination address increment */, 0 /* chunksize 0 (skip impossible on this dma) */, 0 /* source skip after chunk (impossible) */, 0 /* destination skip after chunk (impossible) */, 4 /* 16 byte burst size */, -1 /* don't conserve bandwidth */, 0 /* low watermark irq descriptor threshold */, 0 /* disable hardware timestamps */, 1 /* enable channel */); s6000_pcm_enqueue_dma(substream); s6000_pcm_enqueue_dma(substream); spin_unlock_irqrestore(&prtd->lock, flags); return 0; } static int s6000_pcm_stop(struct snd_pcm_substream *substream) { struct s6000_runtime_data *prtd = substream->runtime->private_data; struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; unsigned long flags; u32 channel; par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) channel = par->dma_out; else channel = par->dma_in; s6dmac_set_terminal_count(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel), 0); spin_lock_irqsave(&prtd->lock, flags); s6dmac_disable_chan(DMA_MASK_DMAC(channel), DMA_INDEX_CHNL(channel)); spin_unlock_irqrestore(&prtd->lock, flags); return 0; } static int s6000_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; int ret; par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); ret = par->trigger(substream, cmd, 0); if (ret < 0) return ret; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ret = s6000_pcm_start(substream); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ret = s6000_pcm_stop(substream); break; default: ret = -EINVAL; } if (ret < 0) return ret; return par->trigger(substream, cmd, 1); } static int s6000_pcm_prepare(struct snd_pcm_substream *substream) { struct s6000_runtime_data *prtd = substream->runtime->private_data; prtd->period = 0; return 0; } static snd_pcm_uframes_t s6000_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; struct snd_pcm_runtime *runtime = substream->runtime; struct s6000_runtime_data *prtd = runtime->private_data; unsigned long flags; unsigned int offset; dma_addr_t count; par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); spin_lock_irqsave(&prtd->lock, flags); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) count = s6dmac_cur_src(DMA_MASK_DMAC(par->dma_out), DMA_INDEX_CHNL(par->dma_out)); else count = s6dmac_cur_dst(DMA_MASK_DMAC(par->dma_in), DMA_INDEX_CHNL(par->dma_in)); count -= runtime->dma_addr; spin_unlock_irqrestore(&prtd->lock, flags); offset = bytes_to_frames(runtime, count); if (unlikely(offset >= runtime->buffer_size)) offset = 0; return offset; } static int s6000_pcm_open(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; struct snd_pcm_runtime *runtime = substream->runtime; struct s6000_runtime_data *prtd; int ret; par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); snd_soc_set_runtime_hwparams(substream, &s6000_pcm_hardware); ret = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 16); if (ret < 0) return ret; ret = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 16); if (ret < 0) return ret; ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (ret < 0) return ret; if (par->same_rate) { int rate; spin_lock(&par->lock); /* needed? */ rate = par->rate; spin_unlock(&par->lock); if (rate != -1) { ret = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_RATE, rate, rate); if (ret < 0) return ret; } } prtd = kzalloc(sizeof(struct s6000_runtime_data), GFP_KERNEL); if (prtd == NULL) return -ENOMEM; spin_lock_init(&prtd->lock); runtime->private_data = prtd; return 0; } static int s6000_pcm_close(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct s6000_runtime_data *prtd = runtime->private_data; kfree(prtd); return 0; } static int s6000_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par; int ret; ret = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); if (ret < 0) { printk(KERN_WARNING "s6000-pcm: allocation of memory failed\n"); return ret; } par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); if (par->same_rate) { spin_lock(&par->lock); if (par->rate == -1 || !(par->in_use & ~(1 << substream->stream))) { par->rate = params_rate(hw_params); par->in_use |= 1 << substream->stream; } else if (params_rate(hw_params) != par->rate) { snd_pcm_lib_free_pages(substream); par->in_use &= ~(1 << substream->stream); ret = -EBUSY; } spin_unlock(&par->lock); } return ret; } static int s6000_pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *soc_runtime = substream->private_data; struct s6000_pcm_dma_params *par = snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream); spin_lock(&par->lock); par->in_use &= ~(1 << substream->stream); if (!par->in_use) par->rate = -1; spin_unlock(&par->lock); return snd_pcm_lib_free_pages(substream); } static struct snd_pcm_ops s6000_pcm_ops = { .open = s6000_pcm_open, .close = s6000_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = s6000_pcm_hw_params, .hw_free = s6000_pcm_hw_free, .trigger = s6000_pcm_trigger, .prepare = s6000_pcm_prepare, .pointer = s6000_pcm_pointer, }; static void s6000_pcm_free(struct snd_pcm *pcm) { struct snd_soc_pcm_runtime *runtime = pcm->private_data; struct s6000_pcm_dma_params *params = snd_soc_dai_get_dma_data(runtime->cpu_dai, pcm->streams[0].substream); free_irq(params->irq, pcm); snd_pcm_lib_preallocate_free_for_all(pcm); } static u64 s6000_pcm_dmamask = DMA_BIT_MASK(32); static int s6000_pcm_new(struct snd_card *card, struct snd_soc_dai *dai, struct snd_pcm *pcm) { struct snd_soc_pcm_runtime *runtime = pcm->private_data; struct s6000_pcm_dma_params *params; int res; params = snd_soc_dai_get_dma_data(runtime->cpu_dai, pcm->streams[0].substream); if (!card->dev->dma_mask) card->dev->dma_mask = &s6000_pcm_dmamask; if (!card->dev->coherent_dma_mask) card->dev->coherent_dma_mask = DMA_BIT_MASK(32); if (params->dma_in) { s6dmac_disable_chan(DMA_MASK_DMAC(params->dma_in), DMA_INDEX_CHNL(params->dma_in)); s6dmac_int_sources(DMA_MASK_DMAC(params->dma_in), DMA_INDEX_CHNL(params->dma_in)); } if (params->dma_out) { s6dmac_disable_chan(DMA_MASK_DMAC(params->dma_out), DMA_INDEX_CHNL(params->dma_out)); s6dmac_int_sources(DMA_MASK_DMAC(params->dma_out), DMA_INDEX_CHNL(params->dma_out)); } res = request_irq(params->irq, s6000_pcm_irq, IRQF_SHARED, "s6000-audio", pcm); if (res) { printk(KERN_ERR "s6000-pcm couldn't get IRQ\n"); return res; } res = snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, card->dev, S6_PCM_PREALLOCATE_SIZE, S6_PCM_PREALLOCATE_MAX); if (res) printk(KERN_WARNING "s6000-pcm: preallocation failed\n"); spin_lock_init(¶ms->lock); params->in_use = 0; params->rate = -1; return 0; } static struct snd_soc_platform_driver s6000_soc_platform = { .ops = &s6000_pcm_ops, .pcm_new = s6000_pcm_new, .pcm_free = s6000_pcm_free, }; static int __devinit s6000_soc_platform_probe(struct platform_device *pdev) { return snd_soc_register_platform(&pdev->dev, &s6000_soc_platform); } static int __devexit s6000_soc_platform_remove(struct platform_device *pdev) { snd_soc_unregister_platform(&pdev->dev); return 0; } static struct platform_driver s6000_pcm_driver = { .driver = { .name = "s6000-pcm-audio", .owner = THIS_MODULE, }, .probe = s6000_soc_platform_probe, .remove = __devexit_p(s6000_soc_platform_remove), }; static int __init snd_s6000_pcm_init(void) { return platform_driver_register(&s6000_pcm_driver); } module_init(snd_s6000_pcm_init); static void __exit snd_s6000_pcm_exit(void) { platform_driver_unregister(&s6000_pcm_driver); } module_exit(snd_s6000_pcm_exit); MODULE_AUTHOR("Daniel Gloeckner"); MODULE_DESCRIPTION("Stretch s6000 family PCM DMA module"); MODULE_LICENSE("GPL");