/* * f_sourcesink.c - USB peripheral source/sink configuration driver * * Copyright (C) 2003-2008 David Brownell * Copyright (C) 2008 by Nokia Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* #define VERBOSE_DEBUG */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/device.h> #include "g_zero.h" #include "gadget_chips.h" /* * SOURCE/SINK FUNCTION ... a primary testing vehicle for USB peripheral * controller drivers. * * This just sinks bulk packets OUT to the peripheral and sources them IN * to the host, optionally with specific data patterns for integrity tests. * As such it supports basic functionality and load tests. * * In terms of control messaging, this supports all the standard requests * plus two that support control-OUT tests. If the optional "autoresume" * mode is enabled, it provides good functional coverage for the "USBCV" * test harness from USB-IF. * * Note that because this doesn't queue more than one request at a time, * some other function must be used to test queueing logic. The network * link (g_ether) is the best overall option for that, since its TX and RX * queues are relatively independent, will receive a range of packet sizes, * and can often be made to run out completely. Those issues are important * when stress testing peripheral controller drivers. * * * This is currently packaged as a configuration driver, which can't be * combined with other functions to make composite devices. However, it * can be combined with other independent configurations. */ struct f_sourcesink { struct usb_function function; struct usb_ep *in_ep; struct usb_ep *out_ep; }; static inline struct f_sourcesink *func_to_ss(struct usb_function *f) { return container_of(f, struct f_sourcesink, function); } static unsigned pattern; module_param(pattern, uint, 0); MODULE_PARM_DESC(pattern, "0 = all zeroes, 1 = mod63 "); /*-------------------------------------------------------------------------*/ static struct usb_interface_descriptor source_sink_intf = { .bLength = sizeof source_sink_intf, .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, /* .iInterface = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor fs_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor fs_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *fs_source_sink_descs[] = { (struct usb_descriptor_header *) &source_sink_intf, (struct usb_descriptor_header *) &fs_sink_desc, (struct usb_descriptor_header *) &fs_source_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor hs_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor hs_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *hs_source_sink_descs[] = { (struct usb_descriptor_header *) &source_sink_intf, (struct usb_descriptor_header *) &hs_source_desc, (struct usb_descriptor_header *) &hs_sink_desc, NULL, }; /* function-specific strings: */ static struct usb_string strings_sourcesink[] = { [0].s = "source and sink data", { } /* end of list */ }; static struct usb_gadget_strings stringtab_sourcesink = { .language = 0x0409, /* en-us */ .strings = strings_sourcesink, }; static struct usb_gadget_strings *sourcesink_strings[] = { &stringtab_sourcesink, NULL, }; /*-------------------------------------------------------------------------*/ static int __init sourcesink_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_sourcesink *ss = func_to_ss(f); int id; /* allocate interface ID(s) */ id = usb_interface_id(c, f); if (id < 0) return id; source_sink_intf.bInterfaceNumber = id; /* allocate endpoints */ ss->in_ep = usb_ep_autoconfig(cdev->gadget, &fs_source_desc); if (!ss->in_ep) { autoconf_fail: ERROR(cdev, "%s: can't autoconfigure on %s\n", f->name, cdev->gadget->name); return -ENODEV; } ss->in_ep->driver_data = cdev; /* claim */ ss->out_ep = usb_ep_autoconfig(cdev->gadget, &fs_sink_desc); if (!ss->out_ep) goto autoconf_fail; ss->out_ep->driver_data = cdev; /* claim */ /* support high speed hardware */ if (gadget_is_dualspeed(c->cdev->gadget)) { hs_source_desc.bEndpointAddress = fs_source_desc.bEndpointAddress; hs_sink_desc.bEndpointAddress = fs_sink_desc.bEndpointAddress; f->hs_descriptors = hs_source_sink_descs; } DBG(cdev, "%s speed %s: IN/%s, OUT/%s\n", gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full", f->name, ss->in_ep->name, ss->out_ep->name); return 0; } static void sourcesink_unbind(struct usb_configuration *c, struct usb_function *f) { kfree(func_to_ss(f)); } /* optionally require specific source/sink data patterns */ static int check_read_data(struct f_sourcesink *ss, struct usb_request *req) { unsigned i; u8 *buf = req->buf; struct usb_composite_dev *cdev = ss->function.config->cdev; for (i = 0; i < req->actual; i++, buf++) { switch (pattern) { /* all-zeroes has no synchronization issues */ case 0: if (*buf == 0) continue; break; /* "mod63" stays in sync with short-terminated transfers, * OR otherwise when host and gadget agree on how large * each usb transfer request should be. Resync is done * with set_interface or set_config. (We *WANT* it to * get quickly out of sync if controllers or their drivers * stutter for any reason, including buffer duplcation...) */ case 1: if (*buf == (u8)(i % 63)) continue; break; } ERROR(cdev, "bad OUT byte, buf[%d] = %d\n", i, *buf); usb_ep_set_halt(ss->out_ep); return -EINVAL; } return 0; } static void reinit_write_data(struct usb_ep *ep, struct usb_request *req) { unsigned i; u8 *buf = req->buf; switch (pattern) { case 0: memset(req->buf, 0, req->length); break; case 1: for (i = 0; i < req->length; i++) *buf++ = (u8) (i % 63); break; } } static void source_sink_complete(struct usb_ep *ep, struct usb_request *req) { struct f_sourcesink *ss = ep->driver_data; struct usb_composite_dev *cdev = ss->function.config->cdev; int status = req->status; switch (status) { case 0: /* normal completion? */ if (ep == ss->out_ep) { check_read_data(ss, req); memset(req->buf, 0x55, req->length); } else reinit_write_data(ep, req); break; /* this endpoint is normally active while we're configured */ case -ECONNABORTED: /* hardware forced ep reset */ case -ECONNRESET: /* request dequeued */ case -ESHUTDOWN: /* disconnect from host */ VDBG(cdev, "%s gone (%d), %d/%d\n", ep->name, status, req->actual, req->length); if (ep == ss->out_ep) check_read_data(ss, req); free_ep_req(ep, req); return; case -EOVERFLOW: /* buffer overrun on read means that * we didn't provide a big enough * buffer. */ default: #if 1 DBG(cdev, "%s complete --> %d, %d/%d\n", ep->name, status, req->actual, req->length); #endif case -EREMOTEIO: /* short read */ break; } status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status) { ERROR(cdev, "kill %s: resubmit %d bytes --> %d\n", ep->name, req->length, status); usb_ep_set_halt(ep); /* FIXME recover later ... somehow */ } } static int source_sink_start_ep(struct f_sourcesink *ss, bool is_in) { struct usb_ep *ep; struct usb_request *req; int status; ep = is_in ? ss->in_ep : ss->out_ep; req = alloc_ep_req(ep); if (!req) return -ENOMEM; req->complete = source_sink_complete; if (is_in) reinit_write_data(ep, req); else memset(req->buf, 0x55, req->length); status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status) { struct usb_composite_dev *cdev; cdev = ss->function.config->cdev; ERROR(cdev, "start %s %s --> %d\n", is_in ? "IN" : "OUT", ep->name, status); free_ep_req(ep, req); } return status; } static void disable_source_sink(struct f_sourcesink *ss) { struct usb_composite_dev *cdev; cdev = ss->function.config->cdev; disable_endpoints(cdev, ss->in_ep, ss->out_ep); VDBG(cdev, "%s disabled\n", ss->function.name); } static int enable_source_sink(struct usb_composite_dev *cdev, struct f_sourcesink *ss) { int result = 0; const struct usb_endpoint_descriptor *src, *sink; struct usb_ep *ep; src = ep_choose(cdev->gadget, &hs_source_desc, &fs_source_desc); sink = ep_choose(cdev->gadget, &hs_sink_desc, &fs_sink_desc); /* one endpoint writes (sources) zeroes IN (to the host) */ ep = ss->in_ep; result = usb_ep_enable(ep, src); if (result < 0) return result; ep->driver_data = ss; result = source_sink_start_ep(ss, true); if (result < 0) { fail: ep = ss->in_ep; usb_ep_disable(ep); ep->driver_data = NULL; return result; } /* one endpoint reads (sinks) anything OUT (from the host) */ ep = ss->out_ep; result = usb_ep_enable(ep, sink); if (result < 0) goto fail; ep->driver_data = ss; result = source_sink_start_ep(ss, false); if (result < 0) { usb_ep_disable(ep); ep->driver_data = NULL; goto fail; } DBG(cdev, "%s enabled\n", ss->function.name); return result; } static int sourcesink_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_sourcesink *ss = func_to_ss(f); struct usb_composite_dev *cdev = f->config->cdev; /* we know alt is zero */ if (ss->in_ep->driver_data) disable_source_sink(ss); return enable_source_sink(cdev, ss); } static void sourcesink_disable(struct usb_function *f) { struct f_sourcesink *ss = func_to_ss(f); disable_source_sink(ss); } /*-------------------------------------------------------------------------*/ static int __init sourcesink_bind_config(struct usb_configuration *c) { struct f_sourcesink *ss; int status; ss = kzalloc(sizeof *ss, GFP_KERNEL); if (!ss) return -ENOMEM; ss->function.name = "source/sink"; ss->function.descriptors = fs_source_sink_descs; ss->function.bind = sourcesink_bind; ss->function.unbind = sourcesink_unbind; ss->function.set_alt = sourcesink_set_alt; ss->function.disable = sourcesink_disable; status = usb_add_function(c, &ss->function); if (status) kfree(ss); return status; } static int sourcesink_setup(struct usb_configuration *c, const struct usb_ctrlrequest *ctrl) { struct usb_request *req = c->cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything except * the two control test requests. */ switch (ctrl->bRequest) { /* * These are the same vendor-specific requests supported by * Intel's USB 2.0 compliance test devices. We exceed that * device spec by allowing multiple-packet requests. * * NOTE: the Control-OUT data stays in req->buf ... better * would be copying it into a scratch buffer, so that other * requests may safely intervene. */ case 0x5b: /* control WRITE test -- fill the buffer */ if (ctrl->bRequestType != (USB_DIR_OUT|USB_TYPE_VENDOR)) goto unknown; if (w_value || w_index) break; /* just read that many bytes into the buffer */ if (w_length > req->length) break; value = w_length; break; case 0x5c: /* control READ test -- return the buffer */ if (ctrl->bRequestType != (USB_DIR_IN|USB_TYPE_VENDOR)) goto unknown; if (w_value || w_index) break; /* expect those bytes are still in the buffer; send back */ if (w_length > req->length) break; value = w_length; break; default: unknown: VDBG(c->cdev, "unknown control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { VDBG(c->cdev, "source/sink req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(c->cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(c->cdev, "source/sinkc response, err %d\n", value); } /* device either stalls (value < 0) or reports success */ return value; } static struct usb_configuration sourcesink_driver = { .label = "source/sink", .strings = sourcesink_strings, .setup = sourcesink_setup, .bConfigurationValue = 3, .bmAttributes = USB_CONFIG_ATT_SELFPOWER, /* .iConfiguration = DYNAMIC */ }; /** * sourcesink_add - add a source/sink testing configuration to a device * @cdev: the device to support the configuration */ int __init sourcesink_add(struct usb_composite_dev *cdev, bool autoresume) { int id; /* allocate string ID(s) */ id = usb_string_id(cdev); if (id < 0) return id; strings_sourcesink[0].id = id; source_sink_intf.iInterface = id; sourcesink_driver.iConfiguration = id; /* support autoresume for remote wakeup testing */ if (autoresume) sourcesink_driver.bmAttributes |= USB_CONFIG_ATT_WAKEUP; /* support OTG systems */ if (gadget_is_otg(cdev->gadget)) { sourcesink_driver.descriptors = otg_desc; sourcesink_driver.bmAttributes |= USB_CONFIG_ATT_WAKEUP; } return usb_add_config(cdev, &sourcesink_driver, sourcesink_bind_config); }