/******************************************************************************* * Filename: target_core_file.c * * This file contains the Storage Engine <-> FILEIO transport specific functions * * Copyright (c) 2005 PyX Technologies, Inc. * Copyright (c) 2005-2006 SBE, Inc. All Rights Reserved. * Copyright (c) 2007-2010 Rising Tide Systems * Copyright (c) 2008-2010 Linux-iSCSI.org * * Nicholas A. Bellinger <nab@kernel.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include <linux/version.h> #include <linux/string.h> #include <linux/parser.h> #include <linux/timer.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <scsi/scsi.h> #include <scsi/scsi_host.h> #include <target/target_core_base.h> #include <target/target_core_device.h> #include <target/target_core_transport.h> #include "target_core_file.h" #if 1 #define DEBUG_FD_CACHE(x...) printk(x) #else #define DEBUG_FD_CACHE(x...) #endif #if 1 #define DEBUG_FD_FUA(x...) printk(x) #else #define DEBUG_FD_FUA(x...) #endif static struct se_subsystem_api fileio_template; /* fd_attach_hba(): (Part of se_subsystem_api_t template) * * */ static int fd_attach_hba(struct se_hba *hba, u32 host_id) { struct fd_host *fd_host; fd_host = kzalloc(sizeof(struct fd_host), GFP_KERNEL); if (!(fd_host)) { printk(KERN_ERR "Unable to allocate memory for struct fd_host\n"); return -1; } fd_host->fd_host_id = host_id; atomic_set(&hba->left_queue_depth, FD_HBA_QUEUE_DEPTH); atomic_set(&hba->max_queue_depth, FD_HBA_QUEUE_DEPTH); hba->hba_ptr = (void *) fd_host; printk(KERN_INFO "CORE_HBA[%d] - TCM FILEIO HBA Driver %s on Generic" " Target Core Stack %s\n", hba->hba_id, FD_VERSION, TARGET_CORE_MOD_VERSION); printk(KERN_INFO "CORE_HBA[%d] - Attached FILEIO HBA: %u to Generic" " Target Core with TCQ Depth: %d MaxSectors: %u\n", hba->hba_id, fd_host->fd_host_id, atomic_read(&hba->max_queue_depth), FD_MAX_SECTORS); return 0; } static void fd_detach_hba(struct se_hba *hba) { struct fd_host *fd_host = hba->hba_ptr; printk(KERN_INFO "CORE_HBA[%d] - Detached FILEIO HBA: %u from Generic" " Target Core\n", hba->hba_id, fd_host->fd_host_id); kfree(fd_host); hba->hba_ptr = NULL; } static void *fd_allocate_virtdevice(struct se_hba *hba, const char *name) { struct fd_dev *fd_dev; struct fd_host *fd_host = (struct fd_host *) hba->hba_ptr; fd_dev = kzalloc(sizeof(struct fd_dev), GFP_KERNEL); if (!(fd_dev)) { printk(KERN_ERR "Unable to allocate memory for struct fd_dev\n"); return NULL; } fd_dev->fd_host = fd_host; printk(KERN_INFO "FILEIO: Allocated fd_dev for %p\n", name); return fd_dev; } /* fd_create_virtdevice(): (Part of se_subsystem_api_t template) * * */ static struct se_device *fd_create_virtdevice( struct se_hba *hba, struct se_subsystem_dev *se_dev, void *p) { char *dev_p = NULL; struct se_device *dev; struct se_dev_limits dev_limits; struct queue_limits *limits; struct fd_dev *fd_dev = (struct fd_dev *) p; struct fd_host *fd_host = (struct fd_host *) hba->hba_ptr; mm_segment_t old_fs; struct file *file; struct inode *inode = NULL; int dev_flags = 0, flags, ret = -EINVAL; memset(&dev_limits, 0, sizeof(struct se_dev_limits)); old_fs = get_fs(); set_fs(get_ds()); dev_p = getname(fd_dev->fd_dev_name); set_fs(old_fs); if (IS_ERR(dev_p)) { printk(KERN_ERR "getname(%s) failed: %lu\n", fd_dev->fd_dev_name, IS_ERR(dev_p)); ret = PTR_ERR(dev_p); goto fail; } #if 0 if (di->no_create_file) flags = O_RDWR | O_LARGEFILE; else flags = O_RDWR | O_CREAT | O_LARGEFILE; #else flags = O_RDWR | O_CREAT | O_LARGEFILE; #endif /* flags |= O_DIRECT; */ /* * If fd_buffered_io=1 has not been set explicitly (the default), * use O_SYNC to force FILEIO writes to disk. */ if (!(fd_dev->fbd_flags & FDBD_USE_BUFFERED_IO)) flags |= O_SYNC; file = filp_open(dev_p, flags, 0600); if (IS_ERR(file)) { printk(KERN_ERR "filp_open(%s) failed\n", dev_p); ret = PTR_ERR(file); goto fail; } if (!file || !file->f_dentry) { printk(KERN_ERR "filp_open(%s) failed\n", dev_p); goto fail; } fd_dev->fd_file = file; /* * If using a block backend with this struct file, we extract * fd_dev->fd_[block,dev]_size from struct block_device. * * Otherwise, we use the passed fd_size= from configfs */ inode = file->f_mapping->host; if (S_ISBLK(inode->i_mode)) { struct request_queue *q; /* * Setup the local scope queue_limits from struct request_queue->limits * to pass into transport_add_device_to_core_hba() as struct se_dev_limits. */ q = bdev_get_queue(inode->i_bdev); limits = &dev_limits.limits; limits->logical_block_size = bdev_logical_block_size(inode->i_bdev); limits->max_hw_sectors = queue_max_hw_sectors(q); limits->max_sectors = queue_max_sectors(q); /* * Determine the number of bytes from i_size_read() minus * one (1) logical sector from underlying struct block_device */ fd_dev->fd_block_size = bdev_logical_block_size(inode->i_bdev); fd_dev->fd_dev_size = (i_size_read(file->f_mapping->host) - fd_dev->fd_block_size); printk(KERN_INFO "FILEIO: Using size: %llu bytes from struct" " block_device blocks: %llu logical_block_size: %d\n", fd_dev->fd_dev_size, div_u64(fd_dev->fd_dev_size, fd_dev->fd_block_size), fd_dev->fd_block_size); } else { if (!(fd_dev->fbd_flags & FBDF_HAS_SIZE)) { printk(KERN_ERR "FILEIO: Missing fd_dev_size=" " parameter, and no backing struct" " block_device\n"); goto fail; } limits = &dev_limits.limits; limits->logical_block_size = FD_BLOCKSIZE; limits->max_hw_sectors = FD_MAX_SECTORS; limits->max_sectors = FD_MAX_SECTORS; fd_dev->fd_block_size = FD_BLOCKSIZE; } dev_limits.hw_queue_depth = FD_MAX_DEVICE_QUEUE_DEPTH; dev_limits.queue_depth = FD_DEVICE_QUEUE_DEPTH; dev = transport_add_device_to_core_hba(hba, &fileio_template, se_dev, dev_flags, (void *)fd_dev, &dev_limits, "FILEIO", FD_VERSION); if (!(dev)) goto fail; fd_dev->fd_dev_id = fd_host->fd_host_dev_id_count++; fd_dev->fd_queue_depth = dev->queue_depth; printk(KERN_INFO "CORE_FILE[%u] - Added TCM FILEIO Device ID: %u at %s," " %llu total bytes\n", fd_host->fd_host_id, fd_dev->fd_dev_id, fd_dev->fd_dev_name, fd_dev->fd_dev_size); putname(dev_p); return dev; fail: if (fd_dev->fd_file) { filp_close(fd_dev->fd_file, NULL); fd_dev->fd_file = NULL; } putname(dev_p); return ERR_PTR(ret); } /* fd_free_device(): (Part of se_subsystem_api_t template) * * */ static void fd_free_device(void *p) { struct fd_dev *fd_dev = (struct fd_dev *) p; if (fd_dev->fd_file) { filp_close(fd_dev->fd_file, NULL); fd_dev->fd_file = NULL; } kfree(fd_dev); } static inline struct fd_request *FILE_REQ(struct se_task *task) { return container_of(task, struct fd_request, fd_task); } static struct se_task * fd_alloc_task(struct se_cmd *cmd) { struct fd_request *fd_req; fd_req = kzalloc(sizeof(struct fd_request), GFP_KERNEL); if (!(fd_req)) { printk(KERN_ERR "Unable to allocate struct fd_request\n"); return NULL; } fd_req->fd_dev = SE_DEV(cmd)->dev_ptr; return &fd_req->fd_task; } static int fd_do_readv(struct se_task *task) { struct fd_request *req = FILE_REQ(task); struct file *fd = req->fd_dev->fd_file; struct scatterlist *sg = task->task_sg; struct iovec *iov; mm_segment_t old_fs; loff_t pos = (task->task_lba * DEV_ATTRIB(task->se_dev)->block_size); int ret = 0, i; iov = kzalloc(sizeof(struct iovec) * task->task_sg_num, GFP_KERNEL); if (!(iov)) { printk(KERN_ERR "Unable to allocate fd_do_readv iov[]\n"); return -1; } for (i = 0; i < task->task_sg_num; i++) { iov[i].iov_len = sg[i].length; iov[i].iov_base = sg_virt(&sg[i]); } old_fs = get_fs(); set_fs(get_ds()); ret = vfs_readv(fd, &iov[0], task->task_sg_num, &pos); set_fs(old_fs); kfree(iov); /* * Return zeros and GOOD status even if the READ did not return * the expected virt_size for struct file w/o a backing struct * block_device. */ if (S_ISBLK(fd->f_dentry->d_inode->i_mode)) { if (ret < 0 || ret != task->task_size) { printk(KERN_ERR "vfs_readv() returned %d," " expecting %d for S_ISBLK\n", ret, (int)task->task_size); return -1; } } else { if (ret < 0) { printk(KERN_ERR "vfs_readv() returned %d for non" " S_ISBLK\n", ret); return -1; } } return 1; } static int fd_do_writev(struct se_task *task) { struct fd_request *req = FILE_REQ(task); struct file *fd = req->fd_dev->fd_file; struct scatterlist *sg = task->task_sg; struct iovec *iov; mm_segment_t old_fs; loff_t pos = (task->task_lba * DEV_ATTRIB(task->se_dev)->block_size); int ret, i = 0; iov = kzalloc(sizeof(struct iovec) * task->task_sg_num, GFP_KERNEL); if (!(iov)) { printk(KERN_ERR "Unable to allocate fd_do_writev iov[]\n"); return -1; } for (i = 0; i < task->task_sg_num; i++) { iov[i].iov_len = sg[i].length; iov[i].iov_base = sg_virt(&sg[i]); } old_fs = get_fs(); set_fs(get_ds()); ret = vfs_writev(fd, &iov[0], task->task_sg_num, &pos); set_fs(old_fs); kfree(iov); if (ret < 0 || ret != task->task_size) { printk(KERN_ERR "vfs_writev() returned %d\n", ret); return -1; } return 1; } static void fd_emulate_sync_cache(struct se_task *task) { struct se_cmd *cmd = TASK_CMD(task); struct se_device *dev = cmd->se_dev; struct fd_dev *fd_dev = dev->dev_ptr; int immed = (cmd->t_task->t_task_cdb[1] & 0x2); loff_t start, end; int ret; /* * If the Immediate bit is set, queue up the GOOD response * for this SYNCHRONIZE_CACHE op */ if (immed) transport_complete_sync_cache(cmd, 1); /* * Determine if we will be flushing the entire device. */ if (cmd->t_task->t_task_lba == 0 && cmd->data_length == 0) { start = 0; end = LLONG_MAX; } else { start = cmd->t_task->t_task_lba * DEV_ATTRIB(dev)->block_size; if (cmd->data_length) end = start + cmd->data_length; else end = LLONG_MAX; } ret = vfs_fsync_range(fd_dev->fd_file, start, end, 1); if (ret != 0) printk(KERN_ERR "FILEIO: vfs_fsync_range() failed: %d\n", ret); if (!immed) transport_complete_sync_cache(cmd, ret == 0); } /* * Tell TCM Core that we are capable of WriteCache emulation for * an underlying struct se_device. */ static int fd_emulated_write_cache(struct se_device *dev) { return 1; } static int fd_emulated_dpo(struct se_device *dev) { return 0; } /* * Tell TCM Core that we will be emulating Forced Unit Access (FUA) for WRITEs * for TYPE_DISK. */ static int fd_emulated_fua_write(struct se_device *dev) { return 1; } static int fd_emulated_fua_read(struct se_device *dev) { return 0; } /* * WRITE Force Unit Access (FUA) emulation on a per struct se_task * LBA range basis.. */ static void fd_emulate_write_fua(struct se_cmd *cmd, struct se_task *task) { struct se_device *dev = cmd->se_dev; struct fd_dev *fd_dev = dev->dev_ptr; loff_t start = task->task_lba * DEV_ATTRIB(dev)->block_size; loff_t end = start + task->task_size; int ret; DEBUG_FD_CACHE("FILEIO: FUA WRITE LBA: %llu, bytes: %u\n", task->task_lba, task->task_size); ret = vfs_fsync_range(fd_dev->fd_file, start, end, 1); if (ret != 0) printk(KERN_ERR "FILEIO: vfs_fsync_range() failed: %d\n", ret); } static int fd_do_task(struct se_task *task) { struct se_cmd *cmd = task->task_se_cmd; struct se_device *dev = cmd->se_dev; int ret = 0; /* * Call vectorized fileio functions to map struct scatterlist * physical memory addresses to struct iovec virtual memory. */ if (task->task_data_direction == DMA_FROM_DEVICE) { ret = fd_do_readv(task); } else { ret = fd_do_writev(task); if (ret > 0 && DEV_ATTRIB(dev)->emulate_write_cache > 0 && DEV_ATTRIB(dev)->emulate_fua_write > 0 && T_TASK(cmd)->t_tasks_fua) { /* * We might need to be a bit smarter here * and return some sense data to let the initiator * know the FUA WRITE cache sync failed..? */ fd_emulate_write_fua(cmd, task); } } if (ret < 0) return ret; if (ret) { task->task_scsi_status = GOOD; transport_complete_task(task, 1); } return PYX_TRANSPORT_SENT_TO_TRANSPORT; } /* fd_free_task(): (Part of se_subsystem_api_t template) * * */ static void fd_free_task(struct se_task *task) { struct fd_request *req = FILE_REQ(task); kfree(req); } enum { Opt_fd_dev_name, Opt_fd_dev_size, Opt_fd_buffered_io, Opt_err }; static match_table_t tokens = { {Opt_fd_dev_name, "fd_dev_name=%s"}, {Opt_fd_dev_size, "fd_dev_size=%s"}, {Opt_fd_buffered_io, "fd_buffered_io=%d"}, {Opt_err, NULL} }; static ssize_t fd_set_configfs_dev_params( struct se_hba *hba, struct se_subsystem_dev *se_dev, const char *page, ssize_t count) { struct fd_dev *fd_dev = se_dev->se_dev_su_ptr; char *orig, *ptr, *arg_p, *opts; substring_t args[MAX_OPT_ARGS]; int ret = 0, arg, token; opts = kstrdup(page, GFP_KERNEL); if (!opts) return -ENOMEM; orig = opts; while ((ptr = strsep(&opts, ",")) != NULL) { if (!*ptr) continue; token = match_token(ptr, tokens, args); switch (token) { case Opt_fd_dev_name: arg_p = match_strdup(&args[0]); if (!arg_p) { ret = -ENOMEM; break; } snprintf(fd_dev->fd_dev_name, FD_MAX_DEV_NAME, "%s", arg_p); kfree(arg_p); printk(KERN_INFO "FILEIO: Referencing Path: %s\n", fd_dev->fd_dev_name); fd_dev->fbd_flags |= FBDF_HAS_PATH; break; case Opt_fd_dev_size: arg_p = match_strdup(&args[0]); if (!arg_p) { ret = -ENOMEM; break; } ret = strict_strtoull(arg_p, 0, &fd_dev->fd_dev_size); kfree(arg_p); if (ret < 0) { printk(KERN_ERR "strict_strtoull() failed for" " fd_dev_size=\n"); goto out; } printk(KERN_INFO "FILEIO: Referencing Size: %llu" " bytes\n", fd_dev->fd_dev_size); fd_dev->fbd_flags |= FBDF_HAS_SIZE; break; case Opt_fd_buffered_io: match_int(args, &arg); if (arg != 1) { printk(KERN_ERR "bogus fd_buffered_io=%d value\n", arg); ret = -EINVAL; goto out; } printk(KERN_INFO "FILEIO: Using buffered I/O" " operations for struct fd_dev\n"); fd_dev->fbd_flags |= FDBD_USE_BUFFERED_IO; break; default: break; } } out: kfree(orig); return (!ret) ? count : ret; } static ssize_t fd_check_configfs_dev_params(struct se_hba *hba, struct se_subsystem_dev *se_dev) { struct fd_dev *fd_dev = (struct fd_dev *) se_dev->se_dev_su_ptr; if (!(fd_dev->fbd_flags & FBDF_HAS_PATH)) { printk(KERN_ERR "Missing fd_dev_name=\n"); return -1; } return 0; } static ssize_t fd_show_configfs_dev_params( struct se_hba *hba, struct se_subsystem_dev *se_dev, char *b) { struct fd_dev *fd_dev = se_dev->se_dev_su_ptr; ssize_t bl = 0; bl = sprintf(b + bl, "TCM FILEIO ID: %u", fd_dev->fd_dev_id); bl += sprintf(b + bl, " File: %s Size: %llu Mode: %s\n", fd_dev->fd_dev_name, fd_dev->fd_dev_size, (fd_dev->fbd_flags & FDBD_USE_BUFFERED_IO) ? "Buffered" : "Synchronous"); return bl; } /* fd_get_cdb(): (Part of se_subsystem_api_t template) * * */ static unsigned char *fd_get_cdb(struct se_task *task) { struct fd_request *req = FILE_REQ(task); return req->fd_scsi_cdb; } /* fd_get_device_rev(): (Part of se_subsystem_api_t template) * * */ static u32 fd_get_device_rev(struct se_device *dev) { return SCSI_SPC_2; /* Returns SPC-3 in Initiator Data */ } /* fd_get_device_type(): (Part of se_subsystem_api_t template) * * */ static u32 fd_get_device_type(struct se_device *dev) { return TYPE_DISK; } static sector_t fd_get_blocks(struct se_device *dev) { struct fd_dev *fd_dev = dev->dev_ptr; unsigned long long blocks_long = div_u64(fd_dev->fd_dev_size, DEV_ATTRIB(dev)->block_size); return blocks_long; } static struct se_subsystem_api fileio_template = { .name = "fileio", .owner = THIS_MODULE, .transport_type = TRANSPORT_PLUGIN_VHBA_PDEV, .attach_hba = fd_attach_hba, .detach_hba = fd_detach_hba, .allocate_virtdevice = fd_allocate_virtdevice, .create_virtdevice = fd_create_virtdevice, .free_device = fd_free_device, .dpo_emulated = fd_emulated_dpo, .fua_write_emulated = fd_emulated_fua_write, .fua_read_emulated = fd_emulated_fua_read, .write_cache_emulated = fd_emulated_write_cache, .alloc_task = fd_alloc_task, .do_task = fd_do_task, .do_sync_cache = fd_emulate_sync_cache, .free_task = fd_free_task, .check_configfs_dev_params = fd_check_configfs_dev_params, .set_configfs_dev_params = fd_set_configfs_dev_params, .show_configfs_dev_params = fd_show_configfs_dev_params, .get_cdb = fd_get_cdb, .get_device_rev = fd_get_device_rev, .get_device_type = fd_get_device_type, .get_blocks = fd_get_blocks, }; static int __init fileio_module_init(void) { return transport_subsystem_register(&fileio_template); } static void fileio_module_exit(void) { transport_subsystem_release(&fileio_template); } MODULE_DESCRIPTION("TCM FILEIO subsystem plugin"); MODULE_AUTHOR("nab@Linux-iSCSI.org"); MODULE_LICENSE("GPL"); module_init(fileio_module_init); module_exit(fileio_module_exit);