#include "r8192E.h" #include "r8192E_hw.h" #include "r819xE_phyreg.h" #include "r8190_rtl8256.h" #include "r819xE_phy.h" #include "r8192E_dm.h" #ifdef ENABLE_DOT11D #include "ieee80211/dot11d.h" #endif static const u32 RF_CHANNEL_TABLE_ZEBRA[] = { 0, 0x085c, //2412 1 0x08dc, //2417 2 0x095c, //2422 3 0x09dc, //2427 4 0x0a5c, //2432 5 0x0adc, //2437 6 0x0b5c, //2442 7 0x0bdc, //2447 8 0x0c5c, //2452 9 0x0cdc, //2457 10 0x0d5c, //2462 11 0x0ddc, //2467 12 0x0e5c, //2472 13 0x0f72, //2484 }; static u32 Rtl8192PciEMACPHY_Array[] = { 0x03c,0xffff0000,0x00000f0f, 0x340,0xffffffff,0x161a1a1a, 0x344,0xffffffff,0x12121416, 0x348,0x0000ffff,0x00001818, 0x12c,0xffffffff,0x04000802, 0x318,0x00000fff,0x00000100, }; static u32 Rtl8192PciEMACPHY_Array_PG[] = { 0x03c,0xffff0000,0x00000f0f, 0xe00,0xffffffff,0x06090909, 0xe04,0xffffffff,0x00030306, 0xe08,0x0000ff00,0x00000000, 0xe10,0xffffffff,0x0a0c0d0f, 0xe14,0xffffffff,0x06070809, 0xe18,0xffffffff,0x0a0c0d0f, 0xe1c,0xffffffff,0x06070809, 0x12c,0xffffffff,0x04000802, 0x318,0x00000fff,0x00000800, }; static u32 Rtl8192PciEAGCTAB_Array[AGCTAB_ArrayLength] = { 0xc78,0x7d000001, 0xc78,0x7d010001, 0xc78,0x7d020001, 0xc78,0x7d030001, 0xc78,0x7d040001, 0xc78,0x7d050001, 0xc78,0x7c060001, 0xc78,0x7b070001, 0xc78,0x7a080001, 0xc78,0x79090001, 0xc78,0x780a0001, 0xc78,0x770b0001, 0xc78,0x760c0001, 0xc78,0x750d0001, 0xc78,0x740e0001, 0xc78,0x730f0001, 0xc78,0x72100001, 0xc78,0x71110001, 0xc78,0x70120001, 0xc78,0x6f130001, 0xc78,0x6e140001, 0xc78,0x6d150001, 0xc78,0x6c160001, 0xc78,0x6b170001, 0xc78,0x6a180001, 0xc78,0x69190001, 0xc78,0x681a0001, 0xc78,0x671b0001, 0xc78,0x661c0001, 0xc78,0x651d0001, 0xc78,0x641e0001, 0xc78,0x491f0001, 0xc78,0x48200001, 0xc78,0x47210001, 0xc78,0x46220001, 0xc78,0x45230001, 0xc78,0x44240001, 0xc78,0x43250001, 0xc78,0x28260001, 0xc78,0x27270001, 0xc78,0x26280001, 0xc78,0x25290001, 0xc78,0x242a0001, 0xc78,0x232b0001, 0xc78,0x222c0001, 0xc78,0x212d0001, 0xc78,0x202e0001, 0xc78,0x0a2f0001, 0xc78,0x08300001, 0xc78,0x06310001, 0xc78,0x05320001, 0xc78,0x04330001, 0xc78,0x03340001, 0xc78,0x02350001, 0xc78,0x01360001, 0xc78,0x00370001, 0xc78,0x00380001, 0xc78,0x00390001, 0xc78,0x003a0001, 0xc78,0x003b0001, 0xc78,0x003c0001, 0xc78,0x003d0001, 0xc78,0x003e0001, 0xc78,0x003f0001, 0xc78,0x7d400001, 0xc78,0x7d410001, 0xc78,0x7d420001, 0xc78,0x7d430001, 0xc78,0x7d440001, 0xc78,0x7d450001, 0xc78,0x7c460001, 0xc78,0x7b470001, 0xc78,0x7a480001, 0xc78,0x79490001, 0xc78,0x784a0001, 0xc78,0x774b0001, 0xc78,0x764c0001, 0xc78,0x754d0001, 0xc78,0x744e0001, 0xc78,0x734f0001, 0xc78,0x72500001, 0xc78,0x71510001, 0xc78,0x70520001, 0xc78,0x6f530001, 0xc78,0x6e540001, 0xc78,0x6d550001, 0xc78,0x6c560001, 0xc78,0x6b570001, 0xc78,0x6a580001, 0xc78,0x69590001, 0xc78,0x685a0001, 0xc78,0x675b0001, 0xc78,0x665c0001, 0xc78,0x655d0001, 0xc78,0x645e0001, 0xc78,0x495f0001, 0xc78,0x48600001, 0xc78,0x47610001, 0xc78,0x46620001, 0xc78,0x45630001, 0xc78,0x44640001, 0xc78,0x43650001, 0xc78,0x28660001, 0xc78,0x27670001, 0xc78,0x26680001, 0xc78,0x25690001, 0xc78,0x246a0001, 0xc78,0x236b0001, 0xc78,0x226c0001, 0xc78,0x216d0001, 0xc78,0x206e0001, 0xc78,0x0a6f0001, 0xc78,0x08700001, 0xc78,0x06710001, 0xc78,0x05720001, 0xc78,0x04730001, 0xc78,0x03740001, 0xc78,0x02750001, 0xc78,0x01760001, 0xc78,0x00770001, 0xc78,0x00780001, 0xc78,0x00790001, 0xc78,0x007a0001, 0xc78,0x007b0001, 0xc78,0x007c0001, 0xc78,0x007d0001, 0xc78,0x007e0001, 0xc78,0x007f0001, 0xc78,0x2e00001e, 0xc78,0x2e01001e, 0xc78,0x2e02001e, 0xc78,0x2e03001e, 0xc78,0x2e04001e, 0xc78,0x2e05001e, 0xc78,0x3006001e, 0xc78,0x3407001e, 0xc78,0x3908001e, 0xc78,0x3c09001e, 0xc78,0x3f0a001e, 0xc78,0x420b001e, 0xc78,0x440c001e, 0xc78,0x450d001e, 0xc78,0x460e001e, 0xc78,0x460f001e, 0xc78,0x4710001e, 0xc78,0x4811001e, 0xc78,0x4912001e, 0xc78,0x4a13001e, 0xc78,0x4b14001e, 0xc78,0x4b15001e, 0xc78,0x4c16001e, 0xc78,0x4d17001e, 0xc78,0x4e18001e, 0xc78,0x4f19001e, 0xc78,0x4f1a001e, 0xc78,0x501b001e, 0xc78,0x511c001e, 0xc78,0x521d001e, 0xc78,0x521e001e, 0xc78,0x531f001e, 0xc78,0x5320001e, 0xc78,0x5421001e, 0xc78,0x5522001e, 0xc78,0x5523001e, 0xc78,0x5624001e, 0xc78,0x5725001e, 0xc78,0x5726001e, 0xc78,0x5827001e, 0xc78,0x5828001e, 0xc78,0x5929001e, 0xc78,0x592a001e, 0xc78,0x5a2b001e, 0xc78,0x5b2c001e, 0xc78,0x5c2d001e, 0xc78,0x5c2e001e, 0xc78,0x5d2f001e, 0xc78,0x5e30001e, 0xc78,0x5f31001e, 0xc78,0x6032001e, 0xc78,0x6033001e, 0xc78,0x6134001e, 0xc78,0x6235001e, 0xc78,0x6336001e, 0xc78,0x6437001e, 0xc78,0x6438001e, 0xc78,0x6539001e, 0xc78,0x663a001e, 0xc78,0x673b001e, 0xc78,0x673c001e, 0xc78,0x683d001e, 0xc78,0x693e001e, 0xc78,0x6a3f001e, }; static u32 Rtl8192PciEPHY_REGArray[PHY_REGArrayLength] = { 0x0, }; static u32 Rtl8192PciEPHY_REG_1T2RArray[PHY_REG_1T2RArrayLength] = { 0x800,0x00000000, 0x804,0x00000001, 0x808,0x0000fc00, 0x80c,0x0000001c, 0x810,0x801010aa, 0x814,0x008514d0, 0x818,0x00000040, 0x81c,0x00000000, 0x820,0x00000004, 0x824,0x00690000, 0x828,0x00000004, 0x82c,0x00e90000, 0x830,0x00000004, 0x834,0x00690000, 0x838,0x00000004, 0x83c,0x00e90000, 0x840,0x00000000, 0x844,0x00000000, 0x848,0x00000000, 0x84c,0x00000000, 0x850,0x00000000, 0x854,0x00000000, 0x858,0x65a965a9, 0x85c,0x65a965a9, 0x860,0x001f0010, 0x864,0x007f0010, 0x868,0x001f0010, 0x86c,0x007f0010, 0x870,0x0f100f70, 0x874,0x0f100f70, 0x878,0x00000000, 0x87c,0x00000000, 0x880,0x6870e36c, 0x884,0xe3573600, 0x888,0x4260c340, 0x88c,0x0000ff00, 0x890,0x00000000, 0x894,0xfffffffe, 0x898,0x4c42382f, 0x89c,0x00656056, 0x8b0,0x00000000, 0x8e0,0x00000000, 0x8e4,0x00000000, 0x900,0x00000000, 0x904,0x00000023, 0x908,0x00000000, 0x90c,0x31121311, 0xa00,0x00d0c7d8, 0xa04,0x811f0008, 0xa08,0x80cd8300, 0xa0c,0x2e62740f, 0xa10,0x95009b78, 0xa14,0x11145008, 0xa18,0x00881117, 0xa1c,0x89140fa0, 0xa20,0x1a1b0000, 0xa24,0x090e1317, 0xa28,0x00000204, 0xa2c,0x00000000, 0xc00,0x00000040, 0xc04,0x00005433, 0xc08,0x000000e4, 0xc0c,0x6c6c6c6c, 0xc10,0x08800000, 0xc14,0x40000100, 0xc18,0x08000000, 0xc1c,0x40000100, 0xc20,0x08000000, 0xc24,0x40000100, 0xc28,0x08000000, 0xc2c,0x40000100, 0xc30,0x6de9ac44, 0xc34,0x465c52cd, 0xc38,0x497f5994, 0xc3c,0x0a969764, 0xc40,0x1f7c403f, 0xc44,0x000100b7, 0xc48,0xec020000, 0xc4c,0x00000300, 0xc50,0x69543420, 0xc54,0x433c0094, 0xc58,0x69543420, 0xc5c,0x433c0094, 0xc60,0x69543420, 0xc64,0x433c0094, 0xc68,0x69543420, 0xc6c,0x433c0094, 0xc70,0x2c7f000d, 0xc74,0x0186175b, 0xc78,0x0000001f, 0xc7c,0x00b91612, 0xc80,0x40000100, 0xc84,0x20000000, 0xc88,0x40000100, 0xc8c,0x20200000, 0xc90,0x40000100, 0xc94,0x00000000, 0xc98,0x40000100, 0xc9c,0x00000000, 0xca0,0x00492492, 0xca4,0x00000000, 0xca8,0x00000000, 0xcac,0x00000000, 0xcb0,0x00000000, 0xcb4,0x00000000, 0xcb8,0x00000000, 0xcbc,0x00492492, 0xcc0,0x00000000, 0xcc4,0x00000000, 0xcc8,0x00000000, 0xccc,0x00000000, 0xcd0,0x00000000, 0xcd4,0x00000000, 0xcd8,0x64b22427, 0xcdc,0x00766932, 0xce0,0x00222222, 0xd00,0x00000750, 0xd04,0x00000403, 0xd08,0x0000907f, 0xd0c,0x00000001, 0xd10,0xa0633333, 0xd14,0x33333c63, 0xd18,0x6a8f5b6b, 0xd1c,0x00000000, 0xd20,0x00000000, 0xd24,0x00000000, 0xd28,0x00000000, 0xd2c,0xcc979975, 0xd30,0x00000000, 0xd34,0x00000000, 0xd38,0x00000000, 0xd3c,0x00027293, 0xd40,0x00000000, 0xd44,0x00000000, 0xd48,0x00000000, 0xd4c,0x00000000, 0xd50,0x6437140a, 0xd54,0x024dbd02, 0xd58,0x00000000, 0xd5c,0x04032064, 0xe00,0x161a1a1a, 0xe04,0x12121416, 0xe08,0x00001800, 0xe0c,0x00000000, 0xe10,0x161a1a1a, 0xe14,0x12121416, 0xe18,0x161a1a1a, 0xe1c,0x12121416, }; static u32 Rtl8192PciERadioA_Array[RadioA_ArrayLength] = { 0x019,0x00000003, 0x000,0x000000bf, 0x001,0x00000ee0, 0x002,0x0000004c, 0x003,0x000007f1, 0x004,0x00000975, 0x005,0x00000c58, 0x006,0x00000ae6, 0x007,0x000000ca, 0x008,0x00000e1c, 0x009,0x000007f0, 0x00a,0x000009d0, 0x00b,0x000001ba, 0x00c,0x00000240, 0x00e,0x00000020, 0x00f,0x00000990, 0x012,0x00000806, 0x014,0x000005ab, 0x015,0x00000f80, 0x016,0x00000020, 0x017,0x00000597, 0x018,0x0000050a, 0x01a,0x00000f80, 0x01b,0x00000f5e, 0x01c,0x00000008, 0x01d,0x00000607, 0x01e,0x000006cc, 0x01f,0x00000000, 0x020,0x000001a5, 0x01f,0x00000001, 0x020,0x00000165, 0x01f,0x00000002, 0x020,0x000000c6, 0x01f,0x00000003, 0x020,0x00000086, 0x01f,0x00000004, 0x020,0x00000046, 0x01f,0x00000005, 0x020,0x000001e6, 0x01f,0x00000006, 0x020,0x000001a6, 0x01f,0x00000007, 0x020,0x00000166, 0x01f,0x00000008, 0x020,0x000000c7, 0x01f,0x00000009, 0x020,0x00000087, 0x01f,0x0000000a, 0x020,0x000000f7, 0x01f,0x0000000b, 0x020,0x000000d7, 0x01f,0x0000000c, 0x020,0x000000b7, 0x01f,0x0000000d, 0x020,0x00000097, 0x01f,0x0000000e, 0x020,0x00000077, 0x01f,0x0000000f, 0x020,0x00000057, 0x01f,0x00000010, 0x020,0x00000037, 0x01f,0x00000011, 0x020,0x000000fb, 0x01f,0x00000012, 0x020,0x000000db, 0x01f,0x00000013, 0x020,0x000000bb, 0x01f,0x00000014, 0x020,0x000000ff, 0x01f,0x00000015, 0x020,0x000000e3, 0x01f,0x00000016, 0x020,0x000000c3, 0x01f,0x00000017, 0x020,0x000000a3, 0x01f,0x00000018, 0x020,0x00000083, 0x01f,0x00000019, 0x020,0x00000063, 0x01f,0x0000001a, 0x020,0x00000043, 0x01f,0x0000001b, 0x020,0x00000023, 0x01f,0x0000001c, 0x020,0x00000003, 0x01f,0x0000001d, 0x020,0x000001e3, 0x01f,0x0000001e, 0x020,0x000001c3, 0x01f,0x0000001f, 0x020,0x000001a3, 0x01f,0x00000020, 0x020,0x00000183, 0x01f,0x00000021, 0x020,0x00000163, 0x01f,0x00000022, 0x020,0x00000143, 0x01f,0x00000023, 0x020,0x00000123, 0x01f,0x00000024, 0x020,0x00000103, 0x023,0x00000203, 0x024,0x00000100, 0x00b,0x000001ba, 0x02c,0x000003d7, 0x02d,0x00000ff0, 0x000,0x00000037, 0x004,0x00000160, 0x007,0x00000080, 0x002,0x0000088d, 0x0fe,0x00000000, 0x0fe,0x00000000, 0x016,0x00000200, 0x016,0x00000380, 0x016,0x00000020, 0x016,0x000001a0, 0x000,0x000000bf, 0x00d,0x0000001f, 0x00d,0x00000c9f, 0x002,0x0000004d, 0x000,0x00000cbf, 0x004,0x00000975, 0x007,0x00000700, }; static u32 Rtl8192PciERadioB_Array[RadioB_ArrayLength] = { 0x019,0x00000003, 0x000,0x000000bf, 0x001,0x000006e0, 0x002,0x0000004c, 0x003,0x000007f1, 0x004,0x00000975, 0x005,0x00000c58, 0x006,0x00000ae6, 0x007,0x000000ca, 0x008,0x00000e1c, 0x000,0x000000b7, 0x00a,0x00000850, 0x000,0x000000bf, 0x00b,0x000001ba, 0x00c,0x00000240, 0x00e,0x00000020, 0x015,0x00000f80, 0x016,0x00000020, 0x017,0x00000597, 0x018,0x0000050a, 0x01a,0x00000e00, 0x01b,0x00000f5e, 0x01d,0x00000607, 0x01e,0x000006cc, 0x00b,0x000001ba, 0x023,0x00000203, 0x024,0x00000100, 0x000,0x00000037, 0x004,0x00000160, 0x016,0x00000200, 0x016,0x00000380, 0x016,0x00000020, 0x016,0x000001a0, 0x00d,0x00000ccc, 0x000,0x000000bf, 0x002,0x0000004d, 0x000,0x00000cbf, 0x004,0x00000975, 0x007,0x00000700, }; static u32 Rtl8192PciERadioC_Array[RadioC_ArrayLength] = { 0x0, }; static u32 Rtl8192PciERadioD_Array[RadioD_ArrayLength] = { 0x0, }; /*************************Define local function prototype**********************/ static u32 phy_FwRFSerialRead(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 Offset); static void phy_FwRFSerialWrite(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 Offset, u32 Data); /*************************Define local function prototype**********************/ /****************************************************************************** *function: This function read BB parameters from Header file we gen, * and do register read/write * input: u32 dwBitMask //taget bit pos in the addr to be modified * output: none * return: u32 return the shift bit bit position of the mask * ****************************************************************************/ static u32 rtl8192_CalculateBitShift(u32 dwBitMask) { u32 i; for (i=0; i<=31; i++) { if (((dwBitMask>>i)&0x1) == 1) break; } return i; } /****************************************************************************** *function: This function check different RF type to execute legal judgement. If RF Path is illegal, we will return false. * input: none * output: none * return: 0(illegal, false), 1(legal,true) * ***************************************************************************/ u8 rtl8192_phy_CheckIsLegalRFPath(struct r8192_priv *priv, u32 eRFPath) { u8 ret = 1; if (priv->rf_type == RF_2T4R) ret = 0; else if (priv->rf_type == RF_1T2R) { if (eRFPath == RF90_PATH_A || eRFPath == RF90_PATH_B) ret = 1; else if (eRFPath == RF90_PATH_C || eRFPath == RF90_PATH_D) ret = 0; } return ret; } /****************************************************************************** *function: This function set specific bits to BB register * input: net_device dev * u32 dwRegAddr //target addr to be modified * u32 dwBitMask //taget bit pos in the addr to be modified * u32 dwData //value to be write * output: none * return: none * notice: * ****************************************************************************/ void rtl8192_setBBreg(struct r8192_priv *priv, u32 dwRegAddr, u32 dwBitMask, u32 dwData) { u32 OriginalValue, BitShift, NewValue; if(dwBitMask!= bMaskDWord) {//if not "double word" write OriginalValue = read_nic_dword(priv, dwRegAddr); BitShift = rtl8192_CalculateBitShift(dwBitMask); NewValue = (((OriginalValue) & (~dwBitMask)) | (dwData << BitShift)); write_nic_dword(priv, dwRegAddr, NewValue); }else write_nic_dword(priv, dwRegAddr, dwData); } /****************************************************************************** *function: This function reads specific bits from BB register * input: net_device dev * u32 dwRegAddr //target addr to be readback * u32 dwBitMask //taget bit pos in the addr to be readback * output: none * return: u32 Data //the readback register value * notice: * ****************************************************************************/ u32 rtl8192_QueryBBReg(struct r8192_priv *priv, u32 dwRegAddr, u32 dwBitMask) { u32 OriginalValue, BitShift; OriginalValue = read_nic_dword(priv, dwRegAddr); BitShift = rtl8192_CalculateBitShift(dwBitMask); return (OriginalValue & dwBitMask) >> BitShift; } /****************************************************************************** *function: This function read register from RF chip * input: net_device dev * RF90_RADIO_PATH_E eRFPath //radio path of A/B/C/D * u32 Offset //target address to be read * output: none * return: u32 readback value * notice: There are three types of serial operations:(1) Software serial write.(2)Hardware LSSI-Low Speed Serial Interface.(3)Hardware HSSI-High speed serial write. Driver here need to implement (1) and (2)---need more spec for this information. * ****************************************************************************/ static u32 rtl8192_phy_RFSerialRead(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 Offset) { u32 ret = 0; u32 NewOffset = 0; BB_REGISTER_DEFINITION_T* pPhyReg = &priv->PHYRegDef[eRFPath]; //rtl8192_setBBreg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData, 0); //make sure RF register offset is correct Offset &= 0x3f; //switch page for 8256 RF IC //analog to digital off, for protection rtl8192_setBBreg(priv, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8] if (Offset >= 31) { priv->RfReg0Value[eRFPath] |= 0x140; //Switch to Reg_Mode2 for Reg 31-45 rtl8192_setBBreg(priv, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16) ); //modify offset NewOffset = Offset -30; } else if (Offset >= 16) { priv->RfReg0Value[eRFPath] |= 0x100; priv->RfReg0Value[eRFPath] &= (~0x40); //Switch to Reg_Mode 1 for Reg16-30 rtl8192_setBBreg(priv, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16) ); NewOffset = Offset - 15; } else NewOffset = Offset; //put desired read addr to LSSI control Register rtl8192_setBBreg(priv, pPhyReg->rfHSSIPara2, bLSSIReadAddress, NewOffset); //Issue a posedge trigger // rtl8192_setBBreg(priv, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0); rtl8192_setBBreg(priv, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1); // TODO: we should not delay such a long time. Ask help from SD3 msleep(1); ret = rtl8192_QueryBBReg(priv, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); // Switch back to Reg_Mode0; priv->RfReg0Value[eRFPath] &= 0xebf; rtl8192_setBBreg( priv, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); //analog to digital on rtl8192_setBBreg(priv, rFPGA0_AnalogParameter4, 0x300, 0x3);// 0x88c[9:8] return ret; } /****************************************************************************** *function: This function write data to RF register * input: net_device dev * RF90_RADIO_PATH_E eRFPath //radio path of A/B/C/D * u32 Offset //target address to be written * u32 Data //The new register data to be written * output: none * return: none * notice: For RF8256 only. =========================================================== *Reg Mode RegCTL[1] RegCTL[0] Note * (Reg00[12]) (Reg00[10]) *=========================================================== *Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf) *------------------------------------------------------------------ *Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf) *------------------------------------------------------------------ * Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf) *------------------------------------------------------------------ * ****************************************************************************/ static void rtl8192_phy_RFSerialWrite(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 Offset, u32 Data) { u32 DataAndAddr = 0, NewOffset = 0; BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[eRFPath]; Offset &= 0x3f; //analog to digital off, for protection rtl8192_setBBreg(priv, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8] if (Offset >= 31) { priv->RfReg0Value[eRFPath] |= 0x140; rtl8192_setBBreg(priv, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); NewOffset = Offset - 30; } else if (Offset >= 16) { priv->RfReg0Value[eRFPath] |= 0x100; priv->RfReg0Value[eRFPath] &= (~0x40); rtl8192_setBBreg(priv, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16)); NewOffset = Offset - 15; } else NewOffset = Offset; // Put write addr in [5:0] and write data in [31:16] DataAndAddr = (Data<<16) | (NewOffset&0x3f); // Write Operation rtl8192_setBBreg(priv, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); if(Offset==0x0) priv->RfReg0Value[eRFPath] = Data; // Switch back to Reg_Mode0; if(Offset != 0) { priv->RfReg0Value[eRFPath] &= 0xebf; rtl8192_setBBreg( priv, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16)); } //analog to digital on rtl8192_setBBreg(priv, rFPGA0_AnalogParameter4, 0x300, 0x3);// 0x88c[9:8] } /****************************************************************************** *function: This function set specific bits to RF register * input: RF90_RADIO_PATH_E eRFPath //radio path of A/B/C/D * u32 RegAddr //target addr to be modified * u32 BitMask //taget bit pos in the addr to be modified * u32 Data //value to be write * output: none * return: none * notice: * ****************************************************************************/ void rtl8192_phy_SetRFReg(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 RegAddr, u32 BitMask, u32 Data) { u32 Original_Value, BitShift, New_Value; // u8 time = 0; if (!rtl8192_phy_CheckIsLegalRFPath(priv, eRFPath)) return; if (priv->eRFPowerState != eRfOn && !priv->being_init_adapter) return; //down(&priv->rf_sem); RT_TRACE(COMP_PHY, "FW RF CTRL is not ready now\n"); if (priv->Rf_Mode == RF_OP_By_FW) { if (BitMask != bMask12Bits) // RF data is 12 bits only { Original_Value = phy_FwRFSerialRead(priv, eRFPath, RegAddr); BitShift = rtl8192_CalculateBitShift(BitMask); New_Value = (((Original_Value) & (~BitMask)) | (Data<< BitShift)); phy_FwRFSerialWrite(priv, eRFPath, RegAddr, New_Value); }else phy_FwRFSerialWrite(priv, eRFPath, RegAddr, Data); udelay(200); } else { if (BitMask != bMask12Bits) // RF data is 12 bits only { Original_Value = rtl8192_phy_RFSerialRead(priv, eRFPath, RegAddr); BitShift = rtl8192_CalculateBitShift(BitMask); New_Value = (((Original_Value) & (~BitMask)) | (Data<< BitShift)); rtl8192_phy_RFSerialWrite(priv, eRFPath, RegAddr, New_Value); }else rtl8192_phy_RFSerialWrite(priv, eRFPath, RegAddr, Data); } //up(&priv->rf_sem); } /****************************************************************************** *function: This function reads specific bits from RF register * input: net_device dev * u32 RegAddr //target addr to be readback * u32 BitMask //taget bit pos in the addr to be readback * output: none * return: u32 Data //the readback register value * notice: * ****************************************************************************/ u32 rtl8192_phy_QueryRFReg(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 RegAddr, u32 BitMask) { u32 Original_Value, Readback_Value, BitShift; if (!rtl8192_phy_CheckIsLegalRFPath(priv, eRFPath)) return 0; if (priv->eRFPowerState != eRfOn && !priv->being_init_adapter) return 0; down(&priv->rf_sem); if (priv->Rf_Mode == RF_OP_By_FW) { Original_Value = phy_FwRFSerialRead(priv, eRFPath, RegAddr); udelay(200); } else { Original_Value = rtl8192_phy_RFSerialRead(priv, eRFPath, RegAddr); } BitShift = rtl8192_CalculateBitShift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; up(&priv->rf_sem); // udelay(200); return Readback_Value; } /****************************************************************************** *function: We support firmware to execute RF-R/W. * input: dev * output: none * return: none * notice: * ***************************************************************************/ static u32 phy_FwRFSerialRead(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 Offset) { u32 Data = 0; u8 time = 0; //DbgPrint("FW RF CTRL\n\r"); /* 2007/11/02 MH Firmware RF Write control. By Francis' suggestion, we can not execute the scheme in the initial step. Otherwise, RF-R/W will waste much time. This is only for site survey. */ // 1. Read operation need not insert data. bit 0-11 //Data &= bMask12Bits; // 2. Write RF register address. Bit 12-19 Data |= ((Offset&0xFF)<<12); // 3. Write RF path. bit 20-21 Data |= ((eRFPath&0x3)<<20); // 4. Set RF read indicator. bit 22=0 //Data |= 0x00000; // 5. Trigger Fw to operate the command. bit 31 Data |= 0x80000000; // 6. We can not execute read operation if bit 31 is 1. while (read_nic_dword(priv, QPNR)&0x80000000) { // If FW can not finish RF-R/W for more than ?? times. We must reset FW. if (time++ < 100) { //DbgPrint("FW not finish RF-R Time=%d\n\r", time); udelay(10); } else break; } // 7. Execute read operation. write_nic_dword(priv, QPNR, Data); // 8. Check if firmawre send back RF content. while (read_nic_dword(priv, QPNR)&0x80000000) { // If FW can not finish RF-R/W for more than ?? times. We must reset FW. if (time++ < 100) { //DbgPrint("FW not finish RF-W Time=%d\n\r", time); udelay(10); } else return 0; } return read_nic_dword(priv, RF_DATA); } /****************************************************************************** *function: We support firmware to execute RF-R/W. * input: dev * output: none * return: none * notice: * ***************************************************************************/ static void phy_FwRFSerialWrite(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath, u32 Offset, u32 Data) { u8 time = 0; //DbgPrint("N FW RF CTRL RF-%d OF%02x DATA=%03x\n\r", eRFPath, Offset, Data); /* 2007/11/02 MH Firmware RF Write control. By Francis' suggestion, we can not execute the scheme in the initial step. Otherwise, RF-R/W will waste much time. This is only for site survey. */ // 1. Set driver write bit and 12 bit data. bit 0-11 //Data &= bMask12Bits; // Done by uper layer. // 2. Write RF register address. bit 12-19 Data |= ((Offset&0xFF)<<12); // 3. Write RF path. bit 20-21 Data |= ((eRFPath&0x3)<<20); // 4. Set RF write indicator. bit 22=1 Data |= 0x400000; // 5. Trigger Fw to operate the command. bit 31=1 Data |= 0x80000000; // 6. Write operation. We can not write if bit 31 is 1. while (read_nic_dword(priv, QPNR)&0x80000000) { // If FW can not finish RF-R/W for more than ?? times. We must reset FW. if (time++ < 100) { //DbgPrint("FW not finish RF-W Time=%d\n\r", time); udelay(10); } else break; } // 7. No matter check bit. We always force the write. Because FW will // not accept the command. write_nic_dword(priv, QPNR, Data); /* 2007/11/02 MH Acoording to test, we must delay 20us to wait firmware to finish RF write operation. */ /* 2008/01/17 MH We support delay in firmware side now. */ //delay_us(20); } /****************************************************************************** *function: This function read BB parameters from Header file we gen, * and do register read/write * input: dev * output: none * return: none * notice: BB parameters may change all the time, so please make * sure it has been synced with the newest. * ***************************************************************************/ void rtl8192_phy_configmac(struct r8192_priv *priv) { u32 dwArrayLen = 0, i = 0; u32* pdwArray = NULL; #ifdef TO_DO_LIST if(Adapter->bInHctTest) { RT_TRACE(COMP_PHY, "Rtl819XMACPHY_ArrayDTM\n"); dwArrayLen = MACPHY_ArrayLengthDTM; pdwArray = Rtl819XMACPHY_ArrayDTM; } else if(priv->bTXPowerDataReadFromEEPORM) #endif if(priv->bTXPowerDataReadFromEEPORM) { RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n"); dwArrayLen = MACPHY_Array_PGLength; pdwArray = Rtl819XMACPHY_Array_PG; } else { RT_TRACE(COMP_PHY,"Read rtl819XMACPHY_Array\n"); dwArrayLen = MACPHY_ArrayLength; pdwArray = Rtl819XMACPHY_Array; } for(i = 0; i<dwArrayLen; i=i+3){ RT_TRACE(COMP_DBG, "The Rtl8190MACPHY_Array[0] is %x Rtl8190MACPHY_Array[1] is %x Rtl8190MACPHY_Array[2] is %x\n", pdwArray[i], pdwArray[i+1], pdwArray[i+2]); if(pdwArray[i] == 0x318) { pdwArray[i+2] = 0x00000800; //DbgPrint("ptrArray[i], ptrArray[i+1], ptrArray[i+2] = %x, %x, %x\n", // ptrArray[i], ptrArray[i+1], ptrArray[i+2]); } rtl8192_setBBreg(priv, pdwArray[i], pdwArray[i+1], pdwArray[i+2]); } } /****************************************************************************** *function: This function do dirty work * input: dev * output: none * return: none * notice: BB parameters may change all the time, so please make * sure it has been synced with the newest. * ***************************************************************************/ void rtl8192_phyConfigBB(struct r8192_priv *priv, u8 ConfigType) { int i; //u8 ArrayLength; u32* Rtl819XPHY_REGArray_Table = NULL; u32* Rtl819XAGCTAB_Array_Table = NULL; u16 AGCTAB_ArrayLen, PHY_REGArrayLen = 0; #ifdef TO_DO_LIST u32 *rtl8192PhyRegArrayTable = NULL, *rtl8192AgcTabArrayTable = NULL; if(Adapter->bInHctTest) { AGCTAB_ArrayLen = AGCTAB_ArrayLengthDTM; Rtl819XAGCTAB_Array_Table = Rtl819XAGCTAB_ArrayDTM; if(priv->RF_Type == RF_2T4R) { PHY_REGArrayLen = PHY_REGArrayLengthDTM; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REGArrayDTM; } else if (priv->RF_Type == RF_1T2R) { PHY_REGArrayLen = PHY_REG_1T2RArrayLengthDTM; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REG_1T2RArrayDTM; } } else #endif { AGCTAB_ArrayLen = AGCTAB_ArrayLength; Rtl819XAGCTAB_Array_Table = Rtl819XAGCTAB_Array; if(priv->rf_type == RF_2T4R) { PHY_REGArrayLen = PHY_REGArrayLength; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REGArray; } else if (priv->rf_type == RF_1T2R) { PHY_REGArrayLen = PHY_REG_1T2RArrayLength; Rtl819XPHY_REGArray_Table = Rtl819XPHY_REG_1T2RArray; } } if (ConfigType == BaseBand_Config_PHY_REG) { for (i=0; i<PHY_REGArrayLen; i+=2) { rtl8192_setBBreg(priv, Rtl819XPHY_REGArray_Table[i], bMaskDWord, Rtl819XPHY_REGArray_Table[i+1]); RT_TRACE(COMP_DBG, "i: %x, The Rtl819xUsbPHY_REGArray[0] is %x Rtl819xUsbPHY_REGArray[1] is %x\n",i, Rtl819XPHY_REGArray_Table[i], Rtl819XPHY_REGArray_Table[i+1]); } } else if (ConfigType == BaseBand_Config_AGC_TAB) { for (i=0; i<AGCTAB_ArrayLen; i+=2) { rtl8192_setBBreg(priv, Rtl819XAGCTAB_Array_Table[i], bMaskDWord, Rtl819XAGCTAB_Array_Table[i+1]); RT_TRACE(COMP_DBG, "i:%x, The rtl819XAGCTAB_Array[0] is %x rtl819XAGCTAB_Array[1] is %x\n",i, Rtl819XAGCTAB_Array_Table[i], Rtl819XAGCTAB_Array_Table[i+1]); } } } /****************************************************************************** *function: This function initialize Register definition offset for Radio Path * A/B/C/D * input: net_device dev * output: none * return: none * notice: Initialization value here is constant and it should never be changed * ***************************************************************************/ static void rtl8192_InitBBRFRegDef(struct r8192_priv *priv) { // RF Interface Sowrtware Control priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870 priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 LSBs if read 32-bit from 0x874 priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) // RF Interface Readback Value priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; // 16 LSBs if read 32-bit from 0x8E0 priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 LSBs if read 32-bit from 0x8E4 priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) // RF Interface Output (and Enable) priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860 priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864 priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE;// 16 LSBs if read 32-bit from 0x868 priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE;// 16 LSBs if read 32-bit from 0x86C // RF Interface (Output and) Enable priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE;// 16 MSBs if read 32-bit from 0x86A (16-bit for 0x86A) priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE;// 16 MSBs if read 32-bit from 0x86C (16-bit for 0x86E) //Addr of LSSI. Wirte RF register by driver priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter; priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter; // RF parameter priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; //BB Band Select priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter; priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter; // Tx AGC Gain Stage (same for all path. Should we remove this?) priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage // Tranceiver A~D HSSI Parameter-1 priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; //wire control parameter1 priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; //wire control parameter1 priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1; //wire control parameter1 priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1; //wire control parameter1 // Tranceiver A~D HSSI Parameter-2 priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2 priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2 priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2; //wire control parameter2 priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2; //wire control parameter1 // RF switch Control priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; //TR/Ant switch control priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl; priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl; // AGC control 1 priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1; priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1; priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1; priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1; // AGC control 2 priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2; priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2; priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2; priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2; // RX AFE control 1 priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance; // RX AFE control 1 priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE; priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE; priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE; priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE; // Tx AFE control 1 priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance; // Tx AFE control 2 priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE; priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE; priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE; priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE; // Tranceiver LSSI Readback priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; } /****************************************************************************** *function: This function is to write register and then readback to make sure whether BB and RF is OK * input: net_device dev * HW90_BLOCK_E CheckBlock * RF90_RADIO_PATH_E eRFPath //only used when checkblock is HW90_BLOCK_RF * output: none * return: return whether BB and RF is ok(0:OK; 1:Fail) * notice: This function may be removed in the ASIC * ***************************************************************************/ RT_STATUS rtl8192_phy_checkBBAndRF(struct r8192_priv *priv, HW90_BLOCK_E CheckBlock, RF90_RADIO_PATH_E eRFPath) { // BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[eRFPath]; RT_STATUS ret = RT_STATUS_SUCCESS; u32 i, CheckTimes = 4, dwRegRead = 0; u32 WriteAddr[4]; u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f}; // Initialize register address offset to be checked WriteAddr[HW90_BLOCK_MAC] = 0x100; WriteAddr[HW90_BLOCK_PHY0] = 0x900; WriteAddr[HW90_BLOCK_PHY1] = 0x800; WriteAddr[HW90_BLOCK_RF] = 0x3; RT_TRACE(COMP_PHY, "=======>%s(), CheckBlock:%d\n", __FUNCTION__, CheckBlock); for(i=0 ; i < CheckTimes ; i++) { // // Write Data to register and readback // switch(CheckBlock) { case HW90_BLOCK_MAC: RT_TRACE(COMP_ERR, "PHY_CheckBBRFOK(): Never Write 0x100 here!\n"); break; case HW90_BLOCK_PHY0: case HW90_BLOCK_PHY1: write_nic_dword(priv, WriteAddr[CheckBlock], WriteData[i]); dwRegRead = read_nic_dword(priv, WriteAddr[CheckBlock]); break; case HW90_BLOCK_RF: WriteData[i] &= 0xfff; rtl8192_phy_SetRFReg(priv, eRFPath, WriteAddr[HW90_BLOCK_RF], bMask12Bits, WriteData[i]); // TODO: we should not delay for such a long time. Ask SD3 mdelay(10); dwRegRead = rtl8192_phy_QueryRFReg(priv, eRFPath, WriteAddr[HW90_BLOCK_RF], bMaskDWord); mdelay(10); break; default: ret = RT_STATUS_FAILURE; break; } // // Check whether readback data is correct // if(dwRegRead != WriteData[i]) { RT_TRACE(COMP_ERR, "====>error=====dwRegRead: %x, WriteData: %x\n", dwRegRead, WriteData[i]); ret = RT_STATUS_FAILURE; break; } } return ret; } /****************************************************************************** *function: This function initialize BB&RF * input: net_device dev * output: none * return: none * notice: Initialization value may change all the time, so please make * sure it has been synced with the newest. * ***************************************************************************/ static RT_STATUS rtl8192_BB_Config_ParaFile(struct r8192_priv *priv) { RT_STATUS rtStatus = RT_STATUS_SUCCESS; u8 bRegValue = 0, eCheckItem = 0; u32 dwRegValue = 0; /************************************** //<1>Initialize BaseBand **************************************/ /*--set BB Global Reset--*/ bRegValue = read_nic_byte(priv, BB_GLOBAL_RESET); write_nic_byte(priv, BB_GLOBAL_RESET,(bRegValue|BB_GLOBAL_RESET_BIT)); /*---set BB reset Active---*/ dwRegValue = read_nic_dword(priv, CPU_GEN); write_nic_dword(priv, CPU_GEN, (dwRegValue&(~CPU_GEN_BB_RST))); /*----Ckeck FPGAPHY0 and PHY1 board is OK----*/ // TODO: this function should be removed on ASIC , Emily 2007.2.2 for(eCheckItem=(HW90_BLOCK_E)HW90_BLOCK_PHY0; eCheckItem<=HW90_BLOCK_PHY1; eCheckItem++) { rtStatus = rtl8192_phy_checkBBAndRF(priv, (HW90_BLOCK_E)eCheckItem, (RF90_RADIO_PATH_E)0); //don't care RF path if(rtStatus != RT_STATUS_SUCCESS) { RT_TRACE((COMP_ERR | COMP_PHY), "PHY_RF8256_Config():Check PHY%d Fail!!\n", eCheckItem-1); return rtStatus; } } /*---- Set CCK and OFDM Block "OFF"----*/ rtl8192_setBBreg(priv, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0); /*----BB Register Initilazation----*/ //==m==>Set PHY REG From Header<==m== rtl8192_phyConfigBB(priv, BaseBand_Config_PHY_REG); /*----Set BB reset de-Active----*/ dwRegValue = read_nic_dword(priv, CPU_GEN); write_nic_dword(priv, CPU_GEN, (dwRegValue|CPU_GEN_BB_RST)); /*----BB AGC table Initialization----*/ //==m==>Set PHY REG From Header<==m== rtl8192_phyConfigBB(priv, BaseBand_Config_AGC_TAB); if (priv->card_8192_version > VERSION_8190_BD) { if(priv->rf_type == RF_2T4R) { // Antenna gain offset from B/C/D to A dwRegValue = ( priv->AntennaTxPwDiff[2]<<8 | priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]); } else dwRegValue = 0x0; //Antenna gain offset doesn't make sense in RF 1T2R. rtl8192_setBBreg(priv, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), dwRegValue); //XSTALLCap dwRegValue = priv->CrystalCap; rtl8192_setBBreg(priv, rFPGA0_AnalogParameter1, bXtalCap92x, dwRegValue); } // Check if the CCK HighPower is turned ON. // This is used to calculate PWDB. // priv->bCckHighPower = (u8)(rtl8192_QueryBBReg(dev, rFPGA0_XA_HSSIParameter2, 0x200)); return rtStatus; } /****************************************************************************** *function: This function initialize BB&RF * input: net_device dev * output: none * return: none * notice: Initialization value may change all the time, so please make * sure it has been synced with the newest. * ***************************************************************************/ RT_STATUS rtl8192_BBConfig(struct r8192_priv *priv) { rtl8192_InitBBRFRegDef(priv); //config BB&RF. As hardCode based initialization has not been well //implemented, so use file first.FIXME:should implement it for hardcode? return rtl8192_BB_Config_ParaFile(priv); } /****************************************************************************** *function: This function obtains the initialization value of Tx power Level offset * input: net_device dev * output: none * return: none * ***************************************************************************/ void rtl8192_phy_getTxPower(struct r8192_priv *priv) { priv->MCSTxPowerLevelOriginalOffset[0] = read_nic_dword(priv, rTxAGC_Rate18_06); priv->MCSTxPowerLevelOriginalOffset[1] = read_nic_dword(priv, rTxAGC_Rate54_24); priv->MCSTxPowerLevelOriginalOffset[2] = read_nic_dword(priv, rTxAGC_Mcs03_Mcs00); priv->MCSTxPowerLevelOriginalOffset[3] = read_nic_dword(priv, rTxAGC_Mcs07_Mcs04); priv->MCSTxPowerLevelOriginalOffset[4] = read_nic_dword(priv, rTxAGC_Mcs11_Mcs08); priv->MCSTxPowerLevelOriginalOffset[5] = read_nic_dword(priv, rTxAGC_Mcs15_Mcs12); // read rx initial gain priv->DefaultInitialGain[0] = read_nic_byte(priv, rOFDM0_XAAGCCore1); priv->DefaultInitialGain[1] = read_nic_byte(priv, rOFDM0_XBAGCCore1); priv->DefaultInitialGain[2] = read_nic_byte(priv, rOFDM0_XCAGCCore1); priv->DefaultInitialGain[3] = read_nic_byte(priv, rOFDM0_XDAGCCore1); RT_TRACE(COMP_INIT, "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n", priv->DefaultInitialGain[0], priv->DefaultInitialGain[1], priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]); // read framesync priv->framesync = read_nic_byte(priv, rOFDM0_RxDetector3); priv->framesyncC34 = read_nic_dword(priv, rOFDM0_RxDetector2); RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x\n", rOFDM0_RxDetector3, priv->framesync); // read SIFS (save the value read fome MACPHY_REG.txt) priv->SifsTime = read_nic_word(priv, SIFS); } /****************************************************************************** *function: This function obtains the initialization value of Tx power Level offset * input: net_device dev * output: none * return: none * ***************************************************************************/ void rtl8192_phy_setTxPower(struct r8192_priv *priv, u8 channel) { u8 powerlevel = 0,powerlevelOFDM24G = 0; char ant_pwr_diff; u32 u4RegValue; if(priv->epromtype == EPROM_93c46) { powerlevel = priv->TxPowerLevelCCK[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; } else if(priv->epromtype == EPROM_93c56) { if(priv->rf_type == RF_1T2R) { powerlevel = priv->TxPowerLevelCCK_C[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_C[channel-1]; } else if(priv->rf_type == RF_2T4R) { // Mainly we use RF-A Tx Power to write the Tx Power registers, but the RF-C Tx // Power must be calculated by the antenna diff. // So we have to rewrite Antenna gain offset register here. powerlevel = priv->TxPowerLevelCCK_A[channel-1]; powerlevelOFDM24G = priv->TxPowerLevelOFDM24G_A[channel-1]; ant_pwr_diff = priv->TxPowerLevelOFDM24G_C[channel-1] -priv->TxPowerLevelOFDM24G_A[channel-1]; ant_pwr_diff &= 0xf; priv->AntennaTxPwDiff[2] = 0;// RF-D, don't care priv->AntennaTxPwDiff[1] = (u8)(ant_pwr_diff);// RF-C priv->AntennaTxPwDiff[0] = 0;// RF-B, don't care // Antenna gain offset from B/C/D to A u4RegValue = ( priv->AntennaTxPwDiff[2]<<8 | priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]); rtl8192_setBBreg(priv, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC|bXDTxAGC), u4RegValue); } } #ifdef TODO // // CCX 2 S31, AP control of client transmit power: // 1. We shall not exceed Cell Power Limit as possible as we can. // 2. Tolerance is +/- 5dB. // 3. 802.11h Power Contraint takes higher precedence over CCX Cell Power Limit. // // TODO: // 1. 802.11h power contraint // // 071011, by rcnjko. // if( pMgntInfo->OpMode == RT_OP_MODE_INFRASTRUCTURE && pMgntInfo->bWithCcxCellPwr && channel == pMgntInfo->dot11CurrentChannelNumber) { u8 CckCellPwrIdx = DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, pMgntInfo->CcxCellPwr); u8 LegacyOfdmCellPwrIdx = DbmToTxPwrIdx(Adapter, WIRELESS_MODE_G, pMgntInfo->CcxCellPwr); u8 OfdmCellPwrIdx = DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, pMgntInfo->CcxCellPwr); RT_TRACE(COMP_TXAGC, DBG_LOUD, ("CCX Cell Limit: %d dbm => CCK Tx power index : %d, Legacy OFDM Tx power index : %d, OFDM Tx power index: %d\n", pMgntInfo->CcxCellPwr, CckCellPwrIdx, LegacyOfdmCellPwrIdx, OfdmCellPwrIdx)); RT_TRACE(COMP_TXAGC, DBG_LOUD, ("EEPROM channel(%d) => CCK Tx power index: %d, Legacy OFDM Tx power index : %d, OFDM Tx power index: %d\n", channel, powerlevel, powerlevelOFDM24G + pHalData->LegacyHTTxPowerDiff, powerlevelOFDM24G)); // CCK if(powerlevel > CckCellPwrIdx) powerlevel = CckCellPwrIdx; // Legacy OFDM, HT OFDM if(powerlevelOFDM24G + pHalData->LegacyHTTxPowerDiff > OfdmCellPwrIdx) { if((OfdmCellPwrIdx - pHalData->LegacyHTTxPowerDiff) > 0) { powerlevelOFDM24G = OfdmCellPwrIdx - pHalData->LegacyHTTxPowerDiff; } else { LegacyOfdmCellPwrIdx = 0; } } RT_TRACE(COMP_TXAGC, DBG_LOUD, ("Altered CCK Tx power index : %d, Legacy OFDM Tx power index: %d, OFDM Tx power index: %d\n", powerlevel, powerlevelOFDM24G + pHalData->LegacyHTTxPowerDiff, powerlevelOFDM24G)); } pHalData->CurrentCckTxPwrIdx = powerlevel; pHalData->CurrentOfdm24GTxPwrIdx = powerlevelOFDM24G; #endif PHY_SetRF8256CCKTxPower(priv, powerlevel); //need further implement PHY_SetRF8256OFDMTxPower(priv, powerlevelOFDM24G); } /****************************************************************************** *function: This function check Rf chip to do RF config * input: net_device dev * output: none * return: only 8256 is supported * ***************************************************************************/ RT_STATUS rtl8192_phy_RFConfig(struct r8192_priv *priv) { return PHY_RF8256_Config(priv); } /****************************************************************************** *function: This function update Initial gain * input: net_device dev * output: none * return: As Windows has not implemented this, wait for complement * ***************************************************************************/ void rtl8192_phy_updateInitGain(struct r8192_priv *priv) { } /****************************************************************************** *function: This function read RF parameters from general head file, and do RF 3-wire * input: net_device dev * output: none * return: return code show if RF configuration is successful(0:pass, 1:fail) * Note: Delay may be required for RF configuration * ***************************************************************************/ u8 rtl8192_phy_ConfigRFWithHeaderFile(struct r8192_priv *priv, RF90_RADIO_PATH_E eRFPath) { int i; //u32* pRFArray; u8 ret = 0; switch(eRFPath){ case RF90_PATH_A: for(i = 0;i<RadioA_ArrayLength; i=i+2){ if(Rtl819XRadioA_Array[i] == 0xfe){ msleep(100); continue; } rtl8192_phy_SetRFReg(priv, eRFPath, Rtl819XRadioA_Array[i], bMask12Bits, Rtl819XRadioA_Array[i+1]); //msleep(1); } break; case RF90_PATH_B: for(i = 0;i<RadioB_ArrayLength; i=i+2){ if(Rtl819XRadioB_Array[i] == 0xfe){ msleep(100); continue; } rtl8192_phy_SetRFReg(priv, eRFPath, Rtl819XRadioB_Array[i], bMask12Bits, Rtl819XRadioB_Array[i+1]); //msleep(1); } break; case RF90_PATH_C: for(i = 0;i<RadioC_ArrayLength; i=i+2){ if(Rtl819XRadioC_Array[i] == 0xfe){ msleep(100); continue; } rtl8192_phy_SetRFReg(priv, eRFPath, Rtl819XRadioC_Array[i], bMask12Bits, Rtl819XRadioC_Array[i+1]); //msleep(1); } break; case RF90_PATH_D: for(i = 0;i<RadioD_ArrayLength; i=i+2){ if(Rtl819XRadioD_Array[i] == 0xfe){ msleep(100); continue; } rtl8192_phy_SetRFReg(priv, eRFPath, Rtl819XRadioD_Array[i], bMask12Bits, Rtl819XRadioD_Array[i+1]); //msleep(1); } break; default: break; } return ret; } /****************************************************************************** *function: This function set Tx Power of the channel * input: struct net_device *dev * u8 channel * output: none * return: none * Note: * ***************************************************************************/ static void rtl8192_SetTxPowerLevel(struct r8192_priv *priv, u8 channel) { u8 powerlevel = priv->TxPowerLevelCCK[channel-1]; u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; PHY_SetRF8256CCKTxPower(priv, powerlevel); PHY_SetRF8256OFDMTxPower(priv, powerlevelOFDM24G); } /**************************************************************************************** *function: This function set command table variable(struct SwChnlCmd). * input: SwChnlCmd* CmdTable //table to be set. * u32 CmdTableIdx //variable index in table to be set * u32 CmdTableSz //table size. * SwChnlCmdID CmdID //command ID to set. * u32 Para1 * u32 Para2 * u32 msDelay * output: * return: true if finished, false otherwise * Note: * ************************************************************************************/ static u8 rtl8192_phy_SetSwChnlCmdArray( SwChnlCmd* CmdTable, u32 CmdTableIdx, u32 CmdTableSz, SwChnlCmdID CmdID, u32 Para1, u32 Para2, u32 msDelay ) { SwChnlCmd* pCmd; if(CmdTable == NULL) { RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): CmdTable cannot be NULL.\n"); return false; } if(CmdTableIdx >= CmdTableSz) { RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): Access invalid index, please check size of the table, CmdTableIdx:%d, CmdTableSz:%d\n", CmdTableIdx, CmdTableSz); return false; } pCmd = CmdTable + CmdTableIdx; pCmd->CmdID = CmdID; pCmd->Para1 = Para1; pCmd->Para2 = Para2; pCmd->msDelay = msDelay; return true; } /****************************************************************************** *function: This function set channel step by step * input: struct net_device *dev * u8 channel * u8* stage //3 stages * u8* step // * u32* delay //whether need to delay * output: store new stage, step and delay for next step(combine with function above) * return: true if finished, false otherwise * Note: Wait for simpler function to replace it //wb * ***************************************************************************/ static u8 rtl8192_phy_SwChnlStepByStep(struct r8192_priv *priv, u8 channel, u8* stage, u8* step, u32* delay) { // PCHANNEL_ACCESS_SETTING pChnlAccessSetting; SwChnlCmd PreCommonCmd[MAX_PRECMD_CNT]; u32 PreCommonCmdCnt; SwChnlCmd PostCommonCmd[MAX_POSTCMD_CNT]; u32 PostCommonCmdCnt; SwChnlCmd RfDependCmd[MAX_RFDEPENDCMD_CNT]; u32 RfDependCmdCnt; SwChnlCmd *CurrentCmd = NULL; //RF90_RADIO_PATH_E eRFPath; u8 eRFPath; // u32 RfRetVal; // u8 RetryCnt; RT_TRACE(COMP_TRACE, "====>%s()====stage:%d, step:%d, channel:%d\n", __FUNCTION__, *stage, *step, channel); // RT_ASSERT(IsLegalChannel(Adapter, channel), ("illegal channel: %d\n", channel)); #ifdef ENABLE_DOT11D if (!IsLegalChannel(priv->ieee80211, channel)) { RT_TRACE(COMP_ERR, "=============>set to illegal channel:%d\n", channel); return true; //return true to tell upper caller function this channel setting is finished! Or it will in while loop. } #endif //for(eRFPath = RF90_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++) //for(eRFPath = 0; eRFPath <RF90_PATH_MAX; eRFPath++) { //if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath)) // return false; // <1> Fill up pre common command. PreCommonCmdCnt = 0; rtl8192_phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_SetTxPowerLevel, 0, 0, 0); rtl8192_phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT, CmdID_End, 0, 0, 0); // <2> Fill up post common command. PostCommonCmdCnt = 0; rtl8192_phy_SetSwChnlCmdArray(PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT, CmdID_End, 0, 0, 0); // <3> Fill up RF dependent command. RfDependCmdCnt = 0; // TEST!! This is not the table for 8256!! if (!(channel >= 1 && channel <= 14)) { RT_TRACE(COMP_ERR, "illegal channel for Zebra 8256: %d\n", channel); return false; } rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_RF_WriteReg, rZebra1_Channel, channel, 10); rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT, CmdID_End, 0, 0, 0); do{ switch(*stage) { case 0: CurrentCmd=&PreCommonCmd[*step]; break; case 1: CurrentCmd=&RfDependCmd[*step]; break; case 2: CurrentCmd=&PostCommonCmd[*step]; break; } if(CurrentCmd->CmdID==CmdID_End) { if((*stage)==2) { return true; } else { (*stage)++; (*step)=0; continue; } } switch(CurrentCmd->CmdID) { case CmdID_SetTxPowerLevel: if(priv->card_8192_version > (u8)VERSION_8190_BD) //xiong: consider it later! rtl8192_SetTxPowerLevel(priv, channel); break; case CmdID_WritePortUlong: write_nic_dword(priv, CurrentCmd->Para1, CurrentCmd->Para2); break; case CmdID_WritePortUshort: write_nic_word(priv, CurrentCmd->Para1, (u16)CurrentCmd->Para2); break; case CmdID_WritePortUchar: write_nic_byte(priv, CurrentCmd->Para1, (u8)CurrentCmd->Para2); break; case CmdID_RF_WriteReg: for(eRFPath = 0; eRFPath <priv->NumTotalRFPath; eRFPath++) rtl8192_phy_SetRFReg(priv, (RF90_RADIO_PATH_E)eRFPath, CurrentCmd->Para1, bMask12Bits, CurrentCmd->Para2<<7); break; default: break; } break; }while(true); }/*for(Number of RF paths)*/ (*delay)=CurrentCmd->msDelay; (*step)++; return false; } /****************************************************************************** *function: This function does acturally set channel work * input: struct net_device *dev * u8 channel * output: none * return: noin * Note: We should not call this function directly * ***************************************************************************/ static void rtl8192_phy_FinishSwChnlNow(struct r8192_priv *priv, u8 channel) { u32 delay = 0; while (!rtl8192_phy_SwChnlStepByStep(priv, channel, &priv->SwChnlStage, &priv->SwChnlStep, &delay)) { if(delay>0) msleep(delay);//or mdelay? need further consideration if(!priv->up) break; } } /****************************************************************************** *function: Callback routine of the work item for switch channel. * input: * * output: none * return: noin * ***************************************************************************/ void rtl8192_SwChnl_WorkItem(struct r8192_priv *priv) { RT_TRACE(COMP_TRACE, "==> SwChnlCallback819xUsbWorkItem()\n"); RT_TRACE(COMP_TRACE, "=====>--%s(), set chan:%d, priv:%p\n", __FUNCTION__, priv->chan, priv); rtl8192_phy_FinishSwChnlNow(priv, priv->chan); RT_TRACE(COMP_TRACE, "<== SwChnlCallback819xUsbWorkItem()\n"); } /****************************************************************************** *function: This function scheduled actural workitem to set channel * input: net_device dev * u8 channel //channel to set * output: none * return: return code show if workitem is scheduled(1:pass, 0:fail) * Note: Delay may be required for RF configuration * ***************************************************************************/ u8 rtl8192_phy_SwChnl(struct ieee80211_device *ieee80211, u8 channel) { struct r8192_priv *priv = ieee80211_priv(ieee80211->dev); RT_TRACE(COMP_PHY, "=====>%s()\n", __FUNCTION__); if(!priv->up) return false; if(priv->SwChnlInProgress) return false; // if(pHalData->SetBWModeInProgress) // return; //-------------------------------------------- switch(priv->ieee80211->mode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: if (channel<=14){ RT_TRACE(COMP_ERR, "WIRELESS_MODE_A but channel<=14\n"); return false; } break; case WIRELESS_MODE_B: if (channel>14){ RT_TRACE(COMP_ERR, "WIRELESS_MODE_B but channel>14\n"); return false; } break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: if (channel>14){ RT_TRACE(COMP_ERR, "WIRELESS_MODE_G but channel>14\n"); return false; } break; } //-------------------------------------------- priv->SwChnlInProgress = true; if(channel == 0) channel = 1; priv->chan=channel; priv->SwChnlStage=0; priv->SwChnlStep=0; if (priv->up) rtl8192_SwChnl_WorkItem(priv); priv->SwChnlInProgress = false; return true; } static void CCK_Tx_Power_Track_BW_Switch_TSSI(struct r8192_priv *priv) { switch(priv->CurrentChannelBW) { /* 20 MHz channel*/ case HT_CHANNEL_WIDTH_20: //added by vivi, cck,tx power track, 20080703 priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_20Mdefault + priv->CCKPresentAttentuation_difference; if(priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if(priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; RT_TRACE(COMP_POWER_TRACKING, "20M, priv->CCKPresentAttentuation = %d\n", priv->CCKPresentAttentuation); if(priv->ieee80211->current_network.channel== 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = TRUE; dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } else if(priv->ieee80211->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = FALSE; dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } else dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); break; /* 40 MHz channel*/ case HT_CHANNEL_WIDTH_20_40: //added by vivi, cck,tx power track, 20080703 priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_40Mdefault + priv->CCKPresentAttentuation_difference; RT_TRACE(COMP_POWER_TRACKING, "40M, priv->CCKPresentAttentuation = %d\n", priv->CCKPresentAttentuation); if(priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if(priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; if(priv->ieee80211->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = TRUE; dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } else if(priv->ieee80211->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = FALSE; dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } else dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); break; } } static void CCK_Tx_Power_Track_BW_Switch_ThermalMeter(struct r8192_priv *priv) { if(priv->ieee80211->current_network.channel == 14 && !priv->bcck_in_ch14) priv->bcck_in_ch14 = TRUE; else if(priv->ieee80211->current_network.channel != 14 && priv->bcck_in_ch14) priv->bcck_in_ch14 = FALSE; //write to default index and tx power track will be done in dm. switch(priv->CurrentChannelBW) { /* 20 MHz channel*/ case HT_CHANNEL_WIDTH_20: if(priv->Record_CCK_20Mindex == 0) priv->Record_CCK_20Mindex = 6; //set default value. priv->CCK_index = priv->Record_CCK_20Mindex;//6; RT_TRACE(COMP_POWER_TRACKING, "20MHz, CCK_Tx_Power_Track_BW_Switch_ThermalMeter(),CCK_index = %d\n", priv->CCK_index); break; /* 40 MHz channel*/ case HT_CHANNEL_WIDTH_20_40: priv->CCK_index = priv->Record_CCK_40Mindex;//0; RT_TRACE(COMP_POWER_TRACKING, "40MHz, CCK_Tx_Power_Track_BW_Switch_ThermalMeter(), CCK_index = %d\n", priv->CCK_index); break; } dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } static void CCK_Tx_Power_Track_BW_Switch(struct r8192_priv *priv) { //if(pHalData->bDcut == TRUE) if(priv->IC_Cut >= IC_VersionCut_D) CCK_Tx_Power_Track_BW_Switch_TSSI(priv); else CCK_Tx_Power_Track_BW_Switch_ThermalMeter(priv); } // /****************************************************************************** *function: Callback routine of the work item for set bandwidth mode. * input: struct net_device *dev * HT_CHANNEL_WIDTH Bandwidth //20M or 40M * HT_EXTCHNL_OFFSET Offset //Upper, Lower, or Don't care * output: none * return: none * Note: I doubt whether SetBWModeInProgress flag is necessary as we can * test whether current work in the queue or not.//do I? * ***************************************************************************/ void rtl8192_SetBWModeWorkItem(struct r8192_priv *priv) { u8 regBwOpMode; RT_TRACE(COMP_SWBW, "==>rtl8192_SetBWModeWorkItem() Switch to %s bandwidth\n", priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz") if(!priv->up) { priv->SetBWModeInProgress= false; return; } //<1>Set MAC register regBwOpMode = read_nic_byte(priv, BW_OPMODE); switch(priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; // 2007/02/07 Mark by Emily because we have not verify whether this register works write_nic_byte(priv, BW_OPMODE, regBwOpMode); break; case HT_CHANNEL_WIDTH_20_40: regBwOpMode &= ~BW_OPMODE_20MHZ; // 2007/02/07 Mark by Emily because we have not verify whether this register works write_nic_byte(priv, BW_OPMODE, regBwOpMode); break; default: RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n",priv->CurrentChannelBW); break; } //<2>Set PHY related register switch(priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: // Add by Vivi 20071119 rtl8192_setBBreg(priv, rFPGA0_RFMOD, bRFMOD, 0x0); rtl8192_setBBreg(priv, rFPGA1_RFMOD, bRFMOD, 0x0); // rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1); // Correct the tx power for CCK rate in 20M. Suggest by YN, 20071207 // write_nic_dword(dev, rCCK0_TxFilter1, 0x1a1b0000); // write_nic_dword(dev, rCCK0_TxFilter2, 0x090e1317); // write_nic_dword(dev, rCCK0_DebugPort, 0x00000204); if(!priv->btxpower_tracking) { write_nic_dword(priv, rCCK0_TxFilter1, 0x1a1b0000); write_nic_dword(priv, rCCK0_TxFilter2, 0x090e1317); write_nic_dword(priv, rCCK0_DebugPort, 0x00000204); } else CCK_Tx_Power_Track_BW_Switch(priv); rtl8192_setBBreg(priv, rFPGA0_AnalogParameter1, 0x00100000, 1); break; case HT_CHANNEL_WIDTH_20_40: // Add by Vivi 20071119 rtl8192_setBBreg(priv, rFPGA0_RFMOD, bRFMOD, 0x1); rtl8192_setBBreg(priv, rFPGA1_RFMOD, bRFMOD, 0x1); //rtl8192_setBBreg(dev, rCCK0_System, bCCKSideBand, (priv->nCur40MhzPrimeSC>>1)); //rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0); //rtl8192_setBBreg(dev, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC); // Correct the tx power for CCK rate in 40M. Suggest by YN, 20071207 //write_nic_dword(dev, rCCK0_TxFilter1, 0x35360000); //write_nic_dword(dev, rCCK0_TxFilter2, 0x121c252e); //write_nic_dword(dev, rCCK0_DebugPort, 0x00000409); if(!priv->btxpower_tracking) { write_nic_dword(priv, rCCK0_TxFilter1, 0x35360000); write_nic_dword(priv, rCCK0_TxFilter2, 0x121c252e); write_nic_dword(priv, rCCK0_DebugPort, 0x00000409); } else CCK_Tx_Power_Track_BW_Switch(priv); // Set Control channel to upper or lower. These settings are required only for 40MHz rtl8192_setBBreg(priv, rCCK0_System, bCCKSideBand, (priv->nCur40MhzPrimeSC>>1)); rtl8192_setBBreg(priv, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC); rtl8192_setBBreg(priv, rFPGA0_AnalogParameter1, 0x00100000, 0); break; default: RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n" ,priv->CurrentChannelBW); break; } //Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 //<3>Set RF related register PHY_SetRF8256Bandwidth(priv, priv->CurrentChannelBW); atomic_dec(&(priv->ieee80211->atm_swbw)); priv->SetBWModeInProgress= false; RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb()\n"); } /****************************************************************************** *function: This function schedules bandwidth switch work. * input: struct net_device *dev * HT_CHANNEL_WIDTH Bandwidth //20M or 40M * HT_EXTCHNL_OFFSET Offset //Upper, Lower, or Don't care * output: none * return: none * Note: I doubt whether SetBWModeInProgress flag is necessary as we can * test whether current work in the queue or not.//do I? * ***************************************************************************/ void rtl8192_SetBWMode(struct ieee80211_device *ieee, HT_CHANNEL_WIDTH Bandwidth, HT_EXTCHNL_OFFSET Offset) { struct r8192_priv *priv = ieee80211_priv(ieee->dev); if(priv->SetBWModeInProgress) return; atomic_inc(&(priv->ieee80211->atm_swbw)); priv->SetBWModeInProgress= true; priv->CurrentChannelBW = Bandwidth; if(Offset==HT_EXTCHNL_OFFSET_LOWER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if(Offset==HT_EXTCHNL_OFFSET_UPPER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; //queue_work(priv->priv_wq, &(priv->SetBWModeWorkItem)); // schedule_work(&(priv->SetBWModeWorkItem)); rtl8192_SetBWModeWorkItem(priv); } void InitialGain819xPci(struct ieee80211_device *ieee, u8 Operation) { #define SCAN_RX_INITIAL_GAIN 0x17 #define POWER_DETECTION_TH 0x08 struct r8192_priv *priv = ieee80211_priv(ieee->dev); u32 BitMask; u8 initial_gain; if(priv->up) { switch(Operation) { case IG_Backup: RT_TRACE(COMP_SCAN, "IG_Backup, backup the initial gain.\n"); initial_gain = SCAN_RX_INITIAL_GAIN;//pHalData->DefaultInitialGain[0];// BitMask = bMaskByte0; if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x8); // FW DIG OFF priv->initgain_backup.xaagccore1 = (u8)rtl8192_QueryBBReg(priv, rOFDM0_XAAGCCore1, BitMask); priv->initgain_backup.xbagccore1 = (u8)rtl8192_QueryBBReg(priv, rOFDM0_XBAGCCore1, BitMask); priv->initgain_backup.xcagccore1 = (u8)rtl8192_QueryBBReg(priv, rOFDM0_XCAGCCore1, BitMask); priv->initgain_backup.xdagccore1 = (u8)rtl8192_QueryBBReg(priv, rOFDM0_XDAGCCore1, BitMask); BitMask = bMaskByte2; priv->initgain_backup.cca = (u8)rtl8192_QueryBBReg(priv, rCCK0_CCA, BitMask); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc50 is %x\n",priv->initgain_backup.xaagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc58 is %x\n",priv->initgain_backup.xbagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc60 is %x\n",priv->initgain_backup.xcagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc68 is %x\n",priv->initgain_backup.xdagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xa0a is %x\n",priv->initgain_backup.cca); RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x \n", initial_gain); write_nic_byte(priv, rOFDM0_XAAGCCore1, initial_gain); write_nic_byte(priv, rOFDM0_XBAGCCore1, initial_gain); write_nic_byte(priv, rOFDM0_XCAGCCore1, initial_gain); write_nic_byte(priv, rOFDM0_XDAGCCore1, initial_gain); RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x \n", POWER_DETECTION_TH); write_nic_byte(priv, 0xa0a, POWER_DETECTION_TH); break; case IG_Restore: RT_TRACE(COMP_SCAN, "IG_Restore, restore the initial gain.\n"); BitMask = 0x7f; //Bit0~ Bit6 if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x8); // FW DIG OFF rtl8192_setBBreg(priv, rOFDM0_XAAGCCore1, BitMask, (u32)priv->initgain_backup.xaagccore1); rtl8192_setBBreg(priv, rOFDM0_XBAGCCore1, BitMask, (u32)priv->initgain_backup.xbagccore1); rtl8192_setBBreg(priv, rOFDM0_XCAGCCore1, BitMask, (u32)priv->initgain_backup.xcagccore1); rtl8192_setBBreg(priv, rOFDM0_XDAGCCore1, BitMask, (u32)priv->initgain_backup.xdagccore1); BitMask = bMaskByte2; rtl8192_setBBreg(priv, rCCK0_CCA, BitMask, (u32)priv->initgain_backup.cca); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc50 is %x\n",priv->initgain_backup.xaagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc58 is %x\n",priv->initgain_backup.xbagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc60 is %x\n",priv->initgain_backup.xcagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc68 is %x\n",priv->initgain_backup.xdagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xa0a is %x\n",priv->initgain_backup.cca); rtl8192_phy_setTxPower(priv, priv->ieee80211->current_network.channel); if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x1); // FW DIG ON break; default: RT_TRACE(COMP_SCAN, "Unknown IG Operation.\n"); break; } } }