/*++ Copyright-c Realtek Semiconductor Corp. All rights reserved. Module Name: r8192U_dm.c Abstract: HW dynamic mechanism. Major Change History: When Who What ---------- --------------- ------------------------------- 2008-05-14 amy create version 0 porting from windows code. --*/ #include "r8192E.h" #include "r8192E_dm.h" #include "r8192E_hw.h" #include "r819xE_phy.h" #include "r819xE_phyreg.h" #include "r8190_rtl8256.h" #define DRV_NAME "rtl819xE" // // Indicate different AP vendor for IOT issue. // static const u32 edca_setting_DL[HT_IOT_PEER_MAX] = { 0x5e4322, 0x5e4322, 0x5e4322, 0x604322, 0xa44f, 0x5e4322, 0x5e4322}; static const u32 edca_setting_UL[HT_IOT_PEER_MAX] = { 0x5e4322, 0xa44f, 0x5e4322, 0x604322, 0x5e4322, 0x5e4322, 0x5e4322}; #define RTK_UL_EDCA 0xa44f #define RTK_DL_EDCA 0x5e4322 dig_t dm_digtable; // For Dynamic Rx Path Selection by Signal Strength DRxPathSel DM_RxPathSelTable; void dm_gpio_change_rf_callback(struct work_struct *work); // DM --> Rate Adaptive static void dm_check_rate_adaptive(struct r8192_priv *priv); // DM --> Bandwidth switch static void dm_init_bandwidth_autoswitch(struct r8192_priv *priv); static void dm_bandwidth_autoswitch(struct r8192_priv *priv); // DM --> TX power control static void dm_check_txpower_tracking(struct r8192_priv *priv); // DM --> Dynamic Init Gain by RSSI static void dm_dig_init(struct r8192_priv *priv); static void dm_ctrl_initgain_byrssi(struct r8192_priv *priv); static void dm_ctrl_initgain_byrssi_highpwr(struct r8192_priv *priv); static void dm_ctrl_initgain_byrssi_by_driverrssi(struct r8192_priv *priv); static void dm_ctrl_initgain_byrssi_by_fwfalse_alarm(struct r8192_priv *priv); static void dm_initial_gain(struct r8192_priv *priv); static void dm_pd_th(struct r8192_priv *priv); static void dm_cs_ratio(struct r8192_priv *priv); static void dm_init_ctstoself(struct r8192_priv *priv); // DM --> EDCA turboe mode control static void dm_check_edca_turbo(struct r8192_priv *priv); static void dm_init_edca_turbo(struct r8192_priv *priv); // DM --> HW RF control static void dm_check_rfctrl_gpio(struct r8192_priv *priv); // DM --> Check current RX RF path state static void dm_check_rx_path_selection(struct r8192_priv *priv); static void dm_init_rxpath_selection(struct r8192_priv *priv); static void dm_rxpath_sel_byrssi(struct r8192_priv *priv); // DM --> Fsync for broadcom ap static void dm_init_fsync(struct r8192_priv *priv); static void dm_deInit_fsync(struct r8192_priv *priv); static void dm_check_txrateandretrycount(struct r8192_priv *priv); static void dm_check_fsync(struct r8192_priv *priv); /*---------------------Define of Tx Power Control For Near/Far Range --------*/ //Add by Jacken 2008/02/18 static void dm_init_dynamic_txpower(struct r8192_priv *priv); static void dm_dynamic_txpower(struct r8192_priv *priv); // DM --> For rate adaptive and DIG, we must send RSSI to firmware static void dm_send_rssi_tofw(struct r8192_priv *priv); static void dm_ctstoself(struct r8192_priv *priv); static void dm_fsync_timer_callback(unsigned long data); /* * Prepare SW resource for HW dynamic mechanism. * This function is only invoked at driver intialization once. */ void init_hal_dm(struct r8192_priv *priv) { // Undecorated Smoothed Signal Strength, it can utilized to dynamic mechanism. priv->undecorated_smoothed_pwdb = -1; //Initial TX Power Control for near/far range , add by amy 2008/05/15, porting from windows code. dm_init_dynamic_txpower(priv); init_rate_adaptive(priv); //dm_initialize_txpower_tracking(dev); dm_dig_init(priv); dm_init_edca_turbo(priv); dm_init_bandwidth_autoswitch(priv); dm_init_fsync(priv); dm_init_rxpath_selection(priv); dm_init_ctstoself(priv); INIT_DELAYED_WORK(&priv->gpio_change_rf_wq, dm_gpio_change_rf_callback); } void deinit_hal_dm(struct r8192_priv *priv) { dm_deInit_fsync(priv); } void hal_dm_watchdog(struct r8192_priv *priv) { /*Add by amy 2008/05/15 ,porting from windows code.*/ dm_check_rate_adaptive(priv); dm_dynamic_txpower(priv); dm_check_txrateandretrycount(priv); dm_check_txpower_tracking(priv); dm_ctrl_initgain_byrssi(priv); dm_check_edca_turbo(priv); dm_bandwidth_autoswitch(priv); dm_check_rfctrl_gpio(priv); dm_check_rx_path_selection(priv); dm_check_fsync(priv); // Add by amy 2008-05-15 porting from windows code. dm_send_rssi_tofw(priv); dm_ctstoself(priv); } /* * Decide Rate Adaptive Set according to distance (signal strength) * 01/11/2008 MHC Modify input arguments and RATR table level. * 01/16/2008 MHC RF_Type is assigned in ReadAdapterInfo(). We must call * the function after making sure RF_Type. */ void init_rate_adaptive(struct r8192_priv *priv) { prate_adaptive pra = &priv->rate_adaptive; pra->ratr_state = DM_RATR_STA_MAX; pra->high2low_rssi_thresh_for_ra = RateAdaptiveTH_High; pra->low2high_rssi_thresh_for_ra20M = RateAdaptiveTH_Low_20M+5; pra->low2high_rssi_thresh_for_ra40M = RateAdaptiveTH_Low_40M+5; pra->high_rssi_thresh_for_ra = RateAdaptiveTH_High+5; pra->low_rssi_thresh_for_ra20M = RateAdaptiveTH_Low_20M; pra->low_rssi_thresh_for_ra40M = RateAdaptiveTH_Low_40M; if(priv->CustomerID == RT_CID_819x_Netcore) pra->ping_rssi_enable = 1; else pra->ping_rssi_enable = 0; pra->ping_rssi_thresh_for_ra = 15; if (priv->rf_type == RF_2T4R) { // 07/10/08 MH Modify for RA smooth scheme. /* 2008/01/11 MH Modify 2T RATR table for different RSSI. 080515 porting by amy from windows code.*/ pra->upper_rssi_threshold_ratr = 0x8f0f0000; pra->middle_rssi_threshold_ratr = 0x8f0ff000; pra->low_rssi_threshold_ratr = 0x8f0ff001; pra->low_rssi_threshold_ratr_40M = 0x8f0ff005; pra->low_rssi_threshold_ratr_20M = 0x8f0ff001; pra->ping_rssi_ratr = 0x0000000d;//cosa add for test } else if (priv->rf_type == RF_1T2R) { pra->upper_rssi_threshold_ratr = 0x000f0000; pra->middle_rssi_threshold_ratr = 0x000ff000; pra->low_rssi_threshold_ratr = 0x000ff001; pra->low_rssi_threshold_ratr_40M = 0x000ff005; pra->low_rssi_threshold_ratr_20M = 0x000ff001; pra->ping_rssi_ratr = 0x0000000d;//cosa add for test } } static void dm_check_rate_adaptive(struct r8192_priv *priv) { PRT_HIGH_THROUGHPUT pHTInfo = priv->ieee80211->pHTInfo; prate_adaptive pra = (prate_adaptive)&priv->rate_adaptive; u32 currentRATR, targetRATR = 0; u32 LowRSSIThreshForRA = 0, HighRSSIThreshForRA = 0; bool bshort_gi_enabled = false; static u8 ping_rssi_state=0; if(!priv->up) { RT_TRACE(COMP_RATE, "<---- dm_check_rate_adaptive(): driver is going to unload\n"); return; } if(pra->rate_adaptive_disabled)//this variable is set by ioctl. return; // TODO: Only 11n mode is implemented currently, if( !(priv->ieee80211->mode == WIRELESS_MODE_N_24G || priv->ieee80211->mode == WIRELESS_MODE_N_5G)) return; if( priv->ieee80211->state == IEEE80211_LINKED ) { // RT_TRACE(COMP_RATE, "dm_CheckRateAdaptive(): \t"); // // Check whether Short GI is enabled // bshort_gi_enabled = (pHTInfo->bCurTxBW40MHz && pHTInfo->bCurShortGI40MHz) || (!pHTInfo->bCurTxBW40MHz && pHTInfo->bCurShortGI20MHz); pra->upper_rssi_threshold_ratr = (pra->upper_rssi_threshold_ratr & (~BIT31)) | ((bshort_gi_enabled)? BIT31:0) ; pra->middle_rssi_threshold_ratr = (pra->middle_rssi_threshold_ratr & (~BIT31)) | ((bshort_gi_enabled)? BIT31:0) ; if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { pra->low_rssi_threshold_ratr = (pra->low_rssi_threshold_ratr_40M & (~BIT31)) | ((bshort_gi_enabled)? BIT31:0) ; } else { pra->low_rssi_threshold_ratr = (pra->low_rssi_threshold_ratr_20M & (~BIT31)) | ((bshort_gi_enabled)? BIT31:0) ; } //cosa add for test pra->ping_rssi_ratr = (pra->ping_rssi_ratr & (~BIT31)) | ((bshort_gi_enabled)? BIT31:0) ; /* 2007/10/08 MH We support RA smooth scheme now. When it is the first time to link with AP. We will not change upper/lower threshold. If STA stay in high or low level, we must change two different threshold to prevent jumping frequently. */ if (pra->ratr_state == DM_RATR_STA_HIGH) { HighRSSIThreshForRA = pra->high2low_rssi_thresh_for_ra; LowRSSIThreshForRA = (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20)? (pra->low_rssi_thresh_for_ra40M):(pra->low_rssi_thresh_for_ra20M); } else if (pra->ratr_state == DM_RATR_STA_LOW) { HighRSSIThreshForRA = pra->high_rssi_thresh_for_ra; LowRSSIThreshForRA = (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20)? (pra->low2high_rssi_thresh_for_ra40M):(pra->low2high_rssi_thresh_for_ra20M); } else { HighRSSIThreshForRA = pra->high_rssi_thresh_for_ra; LowRSSIThreshForRA = (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20)? (pra->low_rssi_thresh_for_ra40M):(pra->low_rssi_thresh_for_ra20M); } if(priv->undecorated_smoothed_pwdb >= (long)HighRSSIThreshForRA) { pra->ratr_state = DM_RATR_STA_HIGH; targetRATR = pra->upper_rssi_threshold_ratr; }else if(priv->undecorated_smoothed_pwdb >= (long)LowRSSIThreshForRA) { pra->ratr_state = DM_RATR_STA_MIDDLE; targetRATR = pra->middle_rssi_threshold_ratr; }else { pra->ratr_state = DM_RATR_STA_LOW; targetRATR = pra->low_rssi_threshold_ratr; } //cosa add for test if(pra->ping_rssi_enable) { //pHalData->UndecoratedSmoothedPWDB = 19; if(priv->undecorated_smoothed_pwdb < (long)(pra->ping_rssi_thresh_for_ra+5)) { if( (priv->undecorated_smoothed_pwdb < (long)pra->ping_rssi_thresh_for_ra) || ping_rssi_state ) { pra->ratr_state = DM_RATR_STA_LOW; targetRATR = pra->ping_rssi_ratr; ping_rssi_state = 1; } } else { ping_rssi_state = 0; } } // For RTL819X, if pairwisekey = wep/tkip, we support only MCS0~7. if(priv->ieee80211->GetHalfNmodeSupportByAPsHandler(priv->ieee80211)) targetRATR &= 0xf00fffff; // // Check whether updating of RATR0 is required // currentRATR = read_nic_dword(priv, RATR0); if( targetRATR != currentRATR ) { u32 ratr_value; ratr_value = targetRATR; RT_TRACE(COMP_RATE,"currentRATR = %x, targetRATR = %x\n", currentRATR, targetRATR); if(priv->rf_type == RF_1T2R) { ratr_value &= ~(RATE_ALL_OFDM_2SS); } write_nic_dword(priv, RATR0, ratr_value); write_nic_byte(priv, UFWP, 1); pra->last_ratr = targetRATR; } } else { pra->ratr_state = DM_RATR_STA_MAX; } } static void dm_init_bandwidth_autoswitch(struct r8192_priv *priv) { priv->ieee80211->bandwidth_auto_switch.threshold_20Mhzto40Mhz = BW_AUTO_SWITCH_LOW_HIGH; priv->ieee80211->bandwidth_auto_switch.threshold_40Mhzto20Mhz = BW_AUTO_SWITCH_HIGH_LOW; priv->ieee80211->bandwidth_auto_switch.bforced_tx20Mhz = false; priv->ieee80211->bandwidth_auto_switch.bautoswitch_enable = false; } static void dm_bandwidth_autoswitch(struct r8192_priv *priv) { if(priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20 ||!priv->ieee80211->bandwidth_auto_switch.bautoswitch_enable){ return; }else{ if(priv->ieee80211->bandwidth_auto_switch.bforced_tx20Mhz == false){//If send packets in 40 Mhz in 20/40 if(priv->undecorated_smoothed_pwdb <= priv->ieee80211->bandwidth_auto_switch.threshold_40Mhzto20Mhz) priv->ieee80211->bandwidth_auto_switch.bforced_tx20Mhz = true; }else{//in force send packets in 20 Mhz in 20/40 if(priv->undecorated_smoothed_pwdb >= priv->ieee80211->bandwidth_auto_switch.threshold_20Mhzto40Mhz) priv->ieee80211->bandwidth_auto_switch.bforced_tx20Mhz = false; } } } //OFDM default at 0db, index=6. static const u32 OFDMSwingTable[OFDM_Table_Length] = { 0x7f8001fe, // 0, +6db 0x71c001c7, // 1, +5db 0x65400195, // 2, +4db 0x5a400169, // 3, +3db 0x50800142, // 4, +2db 0x47c0011f, // 5, +1db 0x40000100, // 6, +0db ===> default, upper for higher temperature, lower for low temperature 0x390000e4, // 7, -1db 0x32c000cb, // 8, -2db 0x2d4000b5, // 9, -3db 0x288000a2, // 10, -4db 0x24000090, // 11, -5db 0x20000080, // 12, -6db 0x1c800072, // 13, -7db 0x19800066, // 14, -8db 0x26c0005b, // 15, -9db 0x24400051, // 16, -10db 0x12000048, // 17, -11db 0x10000040 // 18, -12db }; static const u8 CCKSwingTable_Ch1_Ch13[CCK_Table_length][8] = { {0x36, 0x35, 0x2e, 0x25, 0x1c, 0x12, 0x09, 0x04}, // 0, +0db ===> CCK40M default {0x30, 0x2f, 0x29, 0x21, 0x19, 0x10, 0x08, 0x03}, // 1, -1db {0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03}, // 2, -2db {0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03}, // 3, -3db {0x22, 0x21, 0x1d, 0x18, 0x11, 0x0b, 0x06, 0x02}, // 4, -4db {0x1f, 0x1e, 0x1a, 0x15, 0x10, 0x0a, 0x05, 0x02}, // 5, -5db {0x1b, 0x1a, 0x17, 0x13, 0x0e, 0x09, 0x04, 0x02}, // 6, -6db ===> CCK20M default {0x18, 0x17, 0x15, 0x11, 0x0c, 0x08, 0x04, 0x02}, // 7, -7db {0x16, 0x15, 0x12, 0x0f, 0x0b, 0x07, 0x04, 0x01}, // 8, -8db {0x13, 0x13, 0x10, 0x0d, 0x0a, 0x06, 0x03, 0x01}, // 9, -9db {0x11, 0x11, 0x0f, 0x0c, 0x09, 0x06, 0x03, 0x01}, // 10, -10db {0x0f, 0x0f, 0x0d, 0x0b, 0x08, 0x05, 0x03, 0x01} // 11, -11db }; static const u8 CCKSwingTable_Ch14[CCK_Table_length][8] = { {0x36, 0x35, 0x2e, 0x1b, 0x00, 0x00, 0x00, 0x00}, // 0, +0db ===> CCK40M default {0x30, 0x2f, 0x29, 0x18, 0x00, 0x00, 0x00, 0x00}, // 1, -1db {0x2b, 0x2a, 0x25, 0x15, 0x00, 0x00, 0x00, 0x00}, // 2, -2db {0x26, 0x25, 0x21, 0x13, 0x00, 0x00, 0x00, 0x00}, // 3, -3db {0x22, 0x21, 0x1d, 0x11, 0x00, 0x00, 0x00, 0x00}, // 4, -4db {0x1f, 0x1e, 0x1a, 0x0f, 0x00, 0x00, 0x00, 0x00}, // 5, -5db {0x1b, 0x1a, 0x17, 0x0e, 0x00, 0x00, 0x00, 0x00}, // 6, -6db ===> CCK20M default {0x18, 0x17, 0x15, 0x0c, 0x00, 0x00, 0x00, 0x00}, // 7, -7db {0x16, 0x15, 0x12, 0x0b, 0x00, 0x00, 0x00, 0x00}, // 8, -8db {0x13, 0x13, 0x10, 0x0a, 0x00, 0x00, 0x00, 0x00}, // 9, -9db {0x11, 0x11, 0x0f, 0x09, 0x00, 0x00, 0x00, 0x00}, // 10, -10db {0x0f, 0x0f, 0x0d, 0x08, 0x00, 0x00, 0x00, 0x00} // 11, -11db }; #define Pw_Track_Flag 0x11d #define Tssi_Mea_Value 0x13c #define Tssi_Report_Value1 0x134 #define Tssi_Report_Value2 0x13e #define FW_Busy_Flag 0x13f static void dm_TXPowerTrackingCallback_TSSI(struct r8192_priv *priv) { bool bHighpowerstate, viviflag = FALSE; DCMD_TXCMD_T tx_cmd; u8 powerlevelOFDM24G; int i =0, j = 0, k = 0; u8 RF_Type, tmp_report[5]={0, 0, 0, 0, 0}; u32 Value; u8 Pwr_Flag; u16 Avg_TSSI_Meas, TSSI_13dBm, Avg_TSSI_Meas_from_driver=0; // bool rtStatus = true; u32 delta=0; RT_TRACE(COMP_POWER_TRACKING,"%s()\n",__FUNCTION__); // write_nic_byte(priv, 0x1ba, 0); write_nic_byte(priv, Pw_Track_Flag, 0); write_nic_byte(priv, FW_Busy_Flag, 0); priv->ieee80211->bdynamic_txpower_enable = false; bHighpowerstate = priv->bDynamicTxHighPower; powerlevelOFDM24G = (u8)(priv->Pwr_Track>>24); RF_Type = priv->rf_type; Value = (RF_Type<<8) | powerlevelOFDM24G; RT_TRACE(COMP_POWER_TRACKING, "powerlevelOFDM24G = %x\n", powerlevelOFDM24G); for(j = 0; j<=30; j++) { //fill tx_cmd tx_cmd.Op = TXCMD_SET_TX_PWR_TRACKING; tx_cmd.Length = 4; tx_cmd.Value = Value; cmpk_message_handle_tx(priv, (u8*)&tx_cmd, DESC_PACKET_TYPE_INIT, sizeof(DCMD_TXCMD_T)); mdelay(1); for(i = 0;i <= 30; i++) { Pwr_Flag = read_nic_byte(priv, Pw_Track_Flag); if (Pwr_Flag == 0) { mdelay(1); continue; } Avg_TSSI_Meas = read_nic_word(priv, Tssi_Mea_Value); if(Avg_TSSI_Meas == 0) { write_nic_byte(priv, Pw_Track_Flag, 0); write_nic_byte(priv, FW_Busy_Flag, 0); return; } for(k = 0;k < 5; k++) { if(k !=4) tmp_report[k] = read_nic_byte(priv, Tssi_Report_Value1+k); else tmp_report[k] = read_nic_byte(priv, Tssi_Report_Value2); RT_TRACE(COMP_POWER_TRACKING, "TSSI_report_value = %d\n", tmp_report[k]); } //check if the report value is right for(k = 0;k < 5; k++) { if(tmp_report[k] <= 20) { viviflag =TRUE; break; } } if(viviflag ==TRUE) { write_nic_byte(priv, Pw_Track_Flag, 0); viviflag = FALSE; RT_TRACE(COMP_POWER_TRACKING, "we filted this data\n"); for(k = 0;k < 5; k++) tmp_report[k] = 0; break; } for(k = 0;k < 5; k++) { Avg_TSSI_Meas_from_driver += tmp_report[k]; } Avg_TSSI_Meas_from_driver = Avg_TSSI_Meas_from_driver*100/5; RT_TRACE(COMP_POWER_TRACKING, "Avg_TSSI_Meas_from_driver = %d\n", Avg_TSSI_Meas_from_driver); TSSI_13dBm = priv->TSSI_13dBm; RT_TRACE(COMP_POWER_TRACKING, "TSSI_13dBm = %d\n", TSSI_13dBm); //if(abs(Avg_TSSI_Meas_from_driver - TSSI_13dBm) <= E_FOR_TX_POWER_TRACK) // For MacOS-compatible if(Avg_TSSI_Meas_from_driver > TSSI_13dBm) delta = Avg_TSSI_Meas_from_driver - TSSI_13dBm; else delta = TSSI_13dBm - Avg_TSSI_Meas_from_driver; if(delta <= E_FOR_TX_POWER_TRACK) { priv->ieee80211->bdynamic_txpower_enable = TRUE; write_nic_byte(priv, Pw_Track_Flag, 0); write_nic_byte(priv, FW_Busy_Flag, 0); RT_TRACE(COMP_POWER_TRACKING, "tx power track is done\n"); RT_TRACE(COMP_POWER_TRACKING, "priv->rfa_txpowertrackingindex = %d\n", priv->rfa_txpowertrackingindex); RT_TRACE(COMP_POWER_TRACKING, "priv->rfa_txpowertrackingindex_real = %d\n", priv->rfa_txpowertrackingindex_real); RT_TRACE(COMP_POWER_TRACKING, "priv->CCKPresentAttentuation_difference = %d\n", priv->CCKPresentAttentuation_difference); RT_TRACE(COMP_POWER_TRACKING, "priv->CCKPresentAttentuation = %d\n", priv->CCKPresentAttentuation); return; } else { if(Avg_TSSI_Meas_from_driver < TSSI_13dBm - E_FOR_TX_POWER_TRACK) { if (RF_Type == RF_2T4R) { if((priv->rfa_txpowertrackingindex > 0) &&(priv->rfc_txpowertrackingindex > 0)) { priv->rfa_txpowertrackingindex--; if(priv->rfa_txpowertrackingindex_real > 4) { priv->rfa_txpowertrackingindex_real--; rtl8192_setBBreg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, priv->txbbgain_table[priv->rfa_txpowertrackingindex_real].txbbgain_value); } priv->rfc_txpowertrackingindex--; if(priv->rfc_txpowertrackingindex_real > 4) { priv->rfc_txpowertrackingindex_real--; rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[priv->rfc_txpowertrackingindex_real].txbbgain_value); } } else { rtl8192_setBBreg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, priv->txbbgain_table[4].txbbgain_value); rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[4].txbbgain_value); } } else { if(priv->rfc_txpowertrackingindex > 0) { priv->rfc_txpowertrackingindex--; if(priv->rfc_txpowertrackingindex_real > 4) { priv->rfc_txpowertrackingindex_real--; rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[priv->rfc_txpowertrackingindex_real].txbbgain_value); } } else rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[4].txbbgain_value); } } else { if (RF_Type == RF_2T4R) { if((priv->rfa_txpowertrackingindex < TxBBGainTableLength - 1) &&(priv->rfc_txpowertrackingindex < TxBBGainTableLength - 1)) { priv->rfa_txpowertrackingindex++; priv->rfa_txpowertrackingindex_real++; rtl8192_setBBreg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, priv->txbbgain_table[priv->rfa_txpowertrackingindex_real].txbbgain_value); priv->rfc_txpowertrackingindex++; priv->rfc_txpowertrackingindex_real++; rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[priv->rfc_txpowertrackingindex_real].txbbgain_value); } else { rtl8192_setBBreg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, priv->txbbgain_table[TxBBGainTableLength - 1].txbbgain_value); rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[TxBBGainTableLength - 1].txbbgain_value); } } else { if(priv->rfc_txpowertrackingindex < (TxBBGainTableLength - 1)) { priv->rfc_txpowertrackingindex++; priv->rfc_txpowertrackingindex_real++; rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[priv->rfc_txpowertrackingindex_real].txbbgain_value); } else rtl8192_setBBreg(priv, rOFDM0_XCTxIQImbalance, bMaskDWord, priv->txbbgain_table[TxBBGainTableLength - 1].txbbgain_value); } } if (RF_Type == RF_2T4R) priv->CCKPresentAttentuation_difference = priv->rfa_txpowertrackingindex - priv->rfa_txpowertracking_default; else priv->CCKPresentAttentuation_difference = priv->rfc_txpowertrackingindex - priv->rfc_txpowertracking_default; if(priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20) priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_20Mdefault + priv->CCKPresentAttentuation_difference; else priv->CCKPresentAttentuation = priv->CCKPresentAttentuation_40Mdefault + priv->CCKPresentAttentuation_difference; if(priv->CCKPresentAttentuation > (CCKTxBBGainTableLength-1)) priv->CCKPresentAttentuation = CCKTxBBGainTableLength-1; if(priv->CCKPresentAttentuation < 0) priv->CCKPresentAttentuation = 0; if(1) { if(priv->ieee80211->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = TRUE; dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } else if(priv->ieee80211->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = FALSE; dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } else dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } RT_TRACE(COMP_POWER_TRACKING, "priv->rfa_txpowertrackingindex = %d\n", priv->rfa_txpowertrackingindex); RT_TRACE(COMP_POWER_TRACKING, "priv->rfa_txpowertrackingindex_real = %d\n", priv->rfa_txpowertrackingindex_real); RT_TRACE(COMP_POWER_TRACKING, "priv->CCKPresentAttentuation_difference = %d\n", priv->CCKPresentAttentuation_difference); RT_TRACE(COMP_POWER_TRACKING, "priv->CCKPresentAttentuation = %d\n", priv->CCKPresentAttentuation); if (priv->CCKPresentAttentuation_difference <= -12||priv->CCKPresentAttentuation_difference >= 24) { priv->ieee80211->bdynamic_txpower_enable = TRUE; write_nic_byte(priv, Pw_Track_Flag, 0); write_nic_byte(priv, FW_Busy_Flag, 0); RT_TRACE(COMP_POWER_TRACKING, "tx power track--->limited\n"); return; } } write_nic_byte(priv, Pw_Track_Flag, 0); Avg_TSSI_Meas_from_driver = 0; for(k = 0;k < 5; k++) tmp_report[k] = 0; break; } write_nic_byte(priv, FW_Busy_Flag, 0); } priv->ieee80211->bdynamic_txpower_enable = TRUE; write_nic_byte(priv, Pw_Track_Flag, 0); } static void dm_TXPowerTrackingCallback_ThermalMeter(struct r8192_priv *priv) { #define ThermalMeterVal 9 u32 tmpRegA, TempCCk; u8 tmpOFDMindex, tmpCCKindex, tmpCCK20Mindex, tmpCCK40Mindex, tmpval; int i =0, CCKSwingNeedUpdate=0; if(!priv->btxpower_trackingInit) { //Query OFDM default setting tmpRegA = rtl8192_QueryBBReg(priv, rOFDM0_XATxIQImbalance, bMaskDWord); for(i=0; i<OFDM_Table_Length; i++) //find the index { if(tmpRegA == OFDMSwingTable[i]) { priv->OFDM_index= (u8)i; RT_TRACE(COMP_POWER_TRACKING, "Initial reg0x%x = 0x%x, OFDM_index=0x%x\n", rOFDM0_XATxIQImbalance, tmpRegA, priv->OFDM_index); } } //Query CCK default setting From 0xa22 TempCCk = rtl8192_QueryBBReg(priv, rCCK0_TxFilter1, bMaskByte2); for(i=0 ; i<CCK_Table_length ; i++) { if(TempCCk == (u32)CCKSwingTable_Ch1_Ch13[i][0]) { priv->CCK_index =(u8) i; RT_TRACE(COMP_POWER_TRACKING, "Initial reg0x%x = 0x%x, CCK_index=0x%x\n", rCCK0_TxFilter1, TempCCk, priv->CCK_index); break; } } priv->btxpower_trackingInit = TRUE; //pHalData->TXPowercount = 0; return; } // read and filter out unreasonable value tmpRegA = rtl8192_phy_QueryRFReg(priv, RF90_PATH_A, 0x12, 0x078); // 0x12: RF Reg[10:7] RT_TRACE(COMP_POWER_TRACKING, "Readback ThermalMeterA = %d\n", tmpRegA); if(tmpRegA < 3 || tmpRegA > 13) return; if(tmpRegA >= 12) // if over 12, TP will be bad when high temperature tmpRegA = 12; RT_TRACE(COMP_POWER_TRACKING, "Valid ThermalMeterA = %d\n", tmpRegA); priv->ThermalMeter[0] = ThermalMeterVal; //We use fixed value by Bryant's suggestion priv->ThermalMeter[1] = ThermalMeterVal; //We use fixed value by Bryant's suggestion //Get current RF-A temperature index if(priv->ThermalMeter[0] >= (u8)tmpRegA) //lower temperature { tmpOFDMindex = tmpCCK20Mindex = 6+(priv->ThermalMeter[0]-(u8)tmpRegA); tmpCCK40Mindex = tmpCCK20Mindex - 6; if(tmpOFDMindex >= OFDM_Table_Length) tmpOFDMindex = OFDM_Table_Length-1; if(tmpCCK20Mindex >= CCK_Table_length) tmpCCK20Mindex = CCK_Table_length-1; if(tmpCCK40Mindex >= CCK_Table_length) tmpCCK40Mindex = CCK_Table_length-1; } else { tmpval = ((u8)tmpRegA - priv->ThermalMeter[0]); if(tmpval >= 6) // higher temperature tmpOFDMindex = tmpCCK20Mindex = 0; // max to +6dB else tmpOFDMindex = tmpCCK20Mindex = 6 - tmpval; tmpCCK40Mindex = 0; } if(priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) //40M tmpCCKindex = tmpCCK40Mindex; else tmpCCKindex = tmpCCK20Mindex; //record for bandwidth swith priv->Record_CCK_20Mindex = tmpCCK20Mindex; priv->Record_CCK_40Mindex = tmpCCK40Mindex; RT_TRACE(COMP_POWER_TRACKING, "Record_CCK_20Mindex / Record_CCK_40Mindex = %d / %d.\n", priv->Record_CCK_20Mindex, priv->Record_CCK_40Mindex); if(priv->ieee80211->current_network.channel == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = TRUE; CCKSwingNeedUpdate = 1; } else if(priv->ieee80211->current_network.channel != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = FALSE; CCKSwingNeedUpdate = 1; } if(priv->CCK_index != tmpCCKindex) { priv->CCK_index = tmpCCKindex; CCKSwingNeedUpdate = 1; } if(CCKSwingNeedUpdate) { dm_cck_txpower_adjust(priv, priv->bcck_in_ch14); } if(priv->OFDM_index != tmpOFDMindex) { priv->OFDM_index = tmpOFDMindex; rtl8192_setBBreg(priv, rOFDM0_XATxIQImbalance, bMaskDWord, OFDMSwingTable[priv->OFDM_index]); RT_TRACE(COMP_POWER_TRACKING, "Update OFDMSwing[%d] = 0x%x\n", priv->OFDM_index, OFDMSwingTable[priv->OFDM_index]); } priv->txpower_count = 0; } void dm_txpower_trackingcallback(struct work_struct *work) { struct delayed_work *dwork = container_of(work,struct delayed_work,work); struct r8192_priv *priv = container_of(dwork,struct r8192_priv,txpower_tracking_wq); if(priv->IC_Cut >= IC_VersionCut_D) dm_TXPowerTrackingCallback_TSSI(priv); else dm_TXPowerTrackingCallback_ThermalMeter(priv); } static const txbbgain_struct rtl8192_txbbgain_table[] = { { 12, 0x7f8001fe }, { 11, 0x788001e2 }, { 10, 0x71c001c7 }, { 9, 0x6b8001ae }, { 8, 0x65400195 }, { 7, 0x5fc0017f }, { 6, 0x5a400169 }, { 5, 0x55400155 }, { 4, 0x50800142 }, { 3, 0x4c000130 }, { 2, 0x47c0011f }, { 1, 0x43c0010f }, { 0, 0x40000100 }, { -1, 0x3c8000f2 }, { -2, 0x390000e4 }, { -3, 0x35c000d7 }, { -4, 0x32c000cb }, { -5, 0x300000c0 }, { -6, 0x2d4000b5 }, { -7, 0x2ac000ab }, { -8, 0x288000a2 }, { -9, 0x26000098 }, { -10, 0x24000090 }, { -11, 0x22000088 }, { -12, 0x20000080 }, { -13, 0x1a00006c }, { -14, 0x1c800072 }, { -15, 0x18000060 }, { -16, 0x19800066 }, { -17, 0x15800056 }, { -18, 0x26c0005b }, { -19, 0x14400051 }, { -20, 0x24400051 }, { -21, 0x1300004c }, { -22, 0x12000048 }, { -23, 0x11000044 }, { -24, 0x10000040 }, }; /* * ccktxbb_valuearray[0] is 0xA22 [1] is 0xA24 ...[7] is 0xA29 * This Table is for CH1~CH13 */ static const ccktxbbgain_struct rtl8192_cck_txbbgain_table[] = { {{ 0x36, 0x35, 0x2e, 0x25, 0x1c, 0x12, 0x09, 0x04 }}, {{ 0x33, 0x32, 0x2b, 0x23, 0x1a, 0x11, 0x08, 0x04 }}, {{ 0x30, 0x2f, 0x29, 0x21, 0x19, 0x10, 0x08, 0x03 }}, {{ 0x2d, 0x2d, 0x27, 0x1f, 0x18, 0x0f, 0x08, 0x03 }}, {{ 0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03 }}, {{ 0x28, 0x28, 0x22, 0x1c, 0x15, 0x0d, 0x07, 0x03 }}, {{ 0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03 }}, {{ 0x24, 0x23, 0x1f, 0x19, 0x13, 0x0c, 0x06, 0x03 }}, {{ 0x22, 0x21, 0x1d, 0x18, 0x11, 0x0b, 0x06, 0x02 }}, {{ 0x20, 0x20, 0x1b, 0x16, 0x11, 0x08, 0x05, 0x02 }}, {{ 0x1f, 0x1e, 0x1a, 0x15, 0x10, 0x0a, 0x05, 0x02 }}, {{ 0x1d, 0x1c, 0x18, 0x14, 0x0f, 0x0a, 0x05, 0x02 }}, {{ 0x1b, 0x1a, 0x17, 0x13, 0x0e, 0x09, 0x04, 0x02 }}, {{ 0x1a, 0x19, 0x16, 0x12, 0x0d, 0x09, 0x04, 0x02 }}, {{ 0x18, 0x17, 0x15, 0x11, 0x0c, 0x08, 0x04, 0x02 }}, {{ 0x17, 0x16, 0x13, 0x10, 0x0c, 0x08, 0x04, 0x02 }}, {{ 0x16, 0x15, 0x12, 0x0f, 0x0b, 0x07, 0x04, 0x01 }}, {{ 0x14, 0x14, 0x11, 0x0e, 0x0b, 0x07, 0x03, 0x02 }}, {{ 0x13, 0x13, 0x10, 0x0d, 0x0a, 0x06, 0x03, 0x01 }}, {{ 0x12, 0x12, 0x0f, 0x0c, 0x09, 0x06, 0x03, 0x01 }}, {{ 0x11, 0x11, 0x0f, 0x0c, 0x09, 0x06, 0x03, 0x01 }}, {{ 0x10, 0x10, 0x0e, 0x0b, 0x08, 0x05, 0x03, 0x01 }}, {{ 0x0f, 0x0f, 0x0d, 0x0b, 0x08, 0x05, 0x03, 0x01 }}, }; /* * ccktxbb_valuearray[0] is 0xA22 [1] is 0xA24 ...[7] is 0xA29 * This Table is for CH14 */ static const ccktxbbgain_struct rtl8192_cck_txbbgain_ch14_table[] = { {{ 0x36, 0x35, 0x2e, 0x1b, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x33, 0x32, 0x2b, 0x19, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x30, 0x2f, 0x29, 0x18, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x2d, 0x2d, 0x27, 0x17, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x2b, 0x2a, 0x25, 0x15, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x28, 0x28, 0x22, 0x14, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x26, 0x25, 0x21, 0x13, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x24, 0x23, 0x1f, 0x12, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x22, 0x21, 0x1d, 0x11, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x20, 0x20, 0x1b, 0x10, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x1f, 0x1e, 0x1a, 0x0f, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x1d, 0x1c, 0x18, 0x0e, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x1b, 0x1a, 0x17, 0x0e, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x1a, 0x19, 0x16, 0x0d, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x18, 0x17, 0x15, 0x0c, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x17, 0x16, 0x13, 0x0b, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x16, 0x15, 0x12, 0x0b, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x14, 0x14, 0x11, 0x0a, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x13, 0x13, 0x10, 0x0a, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x12, 0x12, 0x0f, 0x09, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x11, 0x11, 0x0f, 0x09, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x10, 0x10, 0x0e, 0x08, 0x00, 0x00, 0x00, 0x00 }}, {{ 0x0f, 0x0f, 0x0d, 0x08, 0x00, 0x00, 0x00, 0x00 }}, }; static void dm_InitializeTXPowerTracking_TSSI(struct r8192_priv *priv) { priv->txbbgain_table = rtl8192_txbbgain_table; priv->cck_txbbgain_table = rtl8192_cck_txbbgain_table; priv->cck_txbbgain_ch14_table = rtl8192_cck_txbbgain_ch14_table; priv->btxpower_tracking = TRUE; priv->txpower_count = 0; priv->btxpower_trackingInit = FALSE; } static void dm_InitializeTXPowerTracking_ThermalMeter(struct r8192_priv *priv) { // Tx Power tracking by Theremal Meter require Firmware R/W 3-wire. This mechanism // can be enabled only when Firmware R/W 3-wire is enabled. Otherwise, frequent r/w // 3-wire by driver cause RF goes into wrong state. if(priv->ieee80211->FwRWRF) priv->btxpower_tracking = TRUE; else priv->btxpower_tracking = FALSE; priv->txpower_count = 0; priv->btxpower_trackingInit = FALSE; } void dm_initialize_txpower_tracking(struct r8192_priv *priv) { if(priv->IC_Cut >= IC_VersionCut_D) dm_InitializeTXPowerTracking_TSSI(priv); else dm_InitializeTXPowerTracking_ThermalMeter(priv); } static void dm_CheckTXPowerTracking_TSSI(struct r8192_priv *priv) { static u32 tx_power_track_counter = 0; RT_TRACE(COMP_POWER_TRACKING,"%s()\n",__FUNCTION__); if(read_nic_byte(priv, 0x11e) ==1) return; if(!priv->btxpower_tracking) return; tx_power_track_counter++; if (tx_power_track_counter > 90) { queue_delayed_work(priv->priv_wq,&priv->txpower_tracking_wq,0); tx_power_track_counter =0; } } static void dm_CheckTXPowerTracking_ThermalMeter(struct r8192_priv *priv) { static u8 TM_Trigger=0; if(!priv->btxpower_tracking) return; else { if(priv->txpower_count <= 2) { priv->txpower_count++; return; } } if(!TM_Trigger) { //Attention!! You have to wirte all 12bits data to RF, or it may cause RF to crash //actually write reg0x02 bit1=0, then bit1=1. rtl8192_phy_SetRFReg(priv, RF90_PATH_A, 0x02, bMask12Bits, 0x4d); rtl8192_phy_SetRFReg(priv, RF90_PATH_A, 0x02, bMask12Bits, 0x4f); rtl8192_phy_SetRFReg(priv, RF90_PATH_A, 0x02, bMask12Bits, 0x4d); rtl8192_phy_SetRFReg(priv, RF90_PATH_A, 0x02, bMask12Bits, 0x4f); TM_Trigger = 1; return; } else { queue_delayed_work(priv->priv_wq,&priv->txpower_tracking_wq,0); TM_Trigger = 0; } } static void dm_check_txpower_tracking(struct r8192_priv *priv) { if(priv->IC_Cut >= IC_VersionCut_D) dm_CheckTXPowerTracking_TSSI(priv); else dm_CheckTXPowerTracking_ThermalMeter(priv); } static void dm_CCKTxPowerAdjust_TSSI(struct r8192_priv *priv, bool bInCH14) { u32 TempVal; //Write 0xa22 0xa23 TempVal = 0; if(!bInCH14){ //Write 0xa22 0xa23 TempVal = (u32)(priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[0] + (priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[1]<<8)) ; rtl8192_setBBreg(priv, rCCK0_TxFilter1, bMaskHWord, TempVal); //Write 0xa24 ~ 0xa27 TempVal = 0; TempVal = (u32)(priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[2] + (priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[3]<<8) + (priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[4]<<16 )+ (priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[5]<<24)); rtl8192_setBBreg(priv, rCCK0_TxFilter2, bMaskDWord, TempVal); //Write 0xa28 0xa29 TempVal = 0; TempVal = (u32)(priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[6] + (priv->cck_txbbgain_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[7]<<8)) ; rtl8192_setBBreg(priv, rCCK0_DebugPort, bMaskLWord, TempVal); } else { TempVal = (u32)(priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[0] + (priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[1]<<8)) ; rtl8192_setBBreg(priv, rCCK0_TxFilter1, bMaskHWord, TempVal); //Write 0xa24 ~ 0xa27 TempVal = 0; TempVal = (u32)(priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[2] + (priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[3]<<8) + (priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[4]<<16 )+ (priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[5]<<24)); rtl8192_setBBreg(priv, rCCK0_TxFilter2, bMaskDWord, TempVal); //Write 0xa28 0xa29 TempVal = 0; TempVal = (u32)(priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[6] + (priv->cck_txbbgain_ch14_table[(u8)(priv->CCKPresentAttentuation)].ccktxbb_valuearray[7]<<8)) ; rtl8192_setBBreg(priv, rCCK0_DebugPort, bMaskLWord, TempVal); } } static void dm_CCKTxPowerAdjust_ThermalMeter(struct r8192_priv *priv, bool bInCH14) { u32 TempVal; TempVal = 0; if(!bInCH14) { //Write 0xa22 0xa23 TempVal = CCKSwingTable_Ch1_Ch13[priv->CCK_index][0] + (CCKSwingTable_Ch1_Ch13[priv->CCK_index][1]<<8) ; rtl8192_setBBreg(priv, rCCK0_TxFilter1, bMaskHWord, TempVal); RT_TRACE(COMP_POWER_TRACKING, "CCK not chnl 14, reg 0x%x = 0x%x\n", rCCK0_TxFilter1, TempVal); //Write 0xa24 ~ 0xa27 TempVal = 0; TempVal = CCKSwingTable_Ch1_Ch13[priv->CCK_index][2] + (CCKSwingTable_Ch1_Ch13[priv->CCK_index][3]<<8) + (CCKSwingTable_Ch1_Ch13[priv->CCK_index][4]<<16 )+ (CCKSwingTable_Ch1_Ch13[priv->CCK_index][5]<<24); rtl8192_setBBreg(priv, rCCK0_TxFilter2, bMaskDWord, TempVal); RT_TRACE(COMP_POWER_TRACKING, "CCK not chnl 14, reg 0x%x = 0x%x\n", rCCK0_TxFilter2, TempVal); //Write 0xa28 0xa29 TempVal = 0; TempVal = CCKSwingTable_Ch1_Ch13[priv->CCK_index][6] + (CCKSwingTable_Ch1_Ch13[priv->CCK_index][7]<<8) ; rtl8192_setBBreg(priv, rCCK0_DebugPort, bMaskLWord, TempVal); RT_TRACE(COMP_POWER_TRACKING, "CCK not chnl 14, reg 0x%x = 0x%x\n", rCCK0_DebugPort, TempVal); } else { // priv->CCKTxPowerAdjustCntNotCh14++; //cosa add for debug. //Write 0xa22 0xa23 TempVal = CCKSwingTable_Ch14[priv->CCK_index][0] + (CCKSwingTable_Ch14[priv->CCK_index][1]<<8) ; rtl8192_setBBreg(priv, rCCK0_TxFilter1, bMaskHWord, TempVal); RT_TRACE(COMP_POWER_TRACKING, "CCK chnl 14, reg 0x%x = 0x%x\n", rCCK0_TxFilter1, TempVal); //Write 0xa24 ~ 0xa27 TempVal = 0; TempVal = CCKSwingTable_Ch14[priv->CCK_index][2] + (CCKSwingTable_Ch14[priv->CCK_index][3]<<8) + (CCKSwingTable_Ch14[priv->CCK_index][4]<<16 )+ (CCKSwingTable_Ch14[priv->CCK_index][5]<<24); rtl8192_setBBreg(priv, rCCK0_TxFilter2, bMaskDWord, TempVal); RT_TRACE(COMP_POWER_TRACKING, "CCK chnl 14, reg 0x%x = 0x%x\n", rCCK0_TxFilter2, TempVal); //Write 0xa28 0xa29 TempVal = 0; TempVal = CCKSwingTable_Ch14[priv->CCK_index][6] + (CCKSwingTable_Ch14[priv->CCK_index][7]<<8) ; rtl8192_setBBreg(priv, rCCK0_DebugPort, bMaskLWord, TempVal); RT_TRACE(COMP_POWER_TRACKING,"CCK chnl 14, reg 0x%x = 0x%x\n", rCCK0_DebugPort, TempVal); } } void dm_cck_txpower_adjust(struct r8192_priv *priv, bool binch14) { if(priv->IC_Cut >= IC_VersionCut_D) dm_CCKTxPowerAdjust_TSSI(priv, binch14); else dm_CCKTxPowerAdjust_ThermalMeter(priv, binch14); } /* Set DIG scheme init value. */ static void dm_dig_init(struct r8192_priv *priv) { /* 2007/10/05 MH Disable DIG scheme now. Not tested. */ dm_digtable.dig_enable_flag = true; dm_digtable.dig_algorithm = DIG_ALGO_BY_RSSI; dm_digtable.dbg_mode = DM_DBG_OFF; //off=by real rssi value, on=by DM_DigTable.Rssi_val for new dig dm_digtable.dig_algorithm_switch = 0; /* 2007/10/04 MH Define init gain threshold. */ dm_digtable.dig_state = DM_STA_DIG_MAX; dm_digtable.dig_highpwr_state = DM_STA_DIG_MAX; dm_digtable.initialgain_lowerbound_state = false; dm_digtable.rssi_low_thresh = DM_DIG_THRESH_LOW; dm_digtable.rssi_high_thresh = DM_DIG_THRESH_HIGH; dm_digtable.rssi_high_power_lowthresh = DM_DIG_HIGH_PWR_THRESH_LOW; dm_digtable.rssi_high_power_highthresh = DM_DIG_HIGH_PWR_THRESH_HIGH; dm_digtable.rssi_val = 50; //for new dig debug rssi value dm_digtable.backoff_val = DM_DIG_BACKOFF; dm_digtable.rx_gain_range_max = DM_DIG_MAX; if(priv->CustomerID == RT_CID_819x_Netcore) dm_digtable.rx_gain_range_min = DM_DIG_MIN_Netcore; else dm_digtable.rx_gain_range_min = DM_DIG_MIN; } /* * Driver must monitor RSSI and notify firmware to change initial * gain according to different threshold. BB team provide the * suggested solution. */ static void dm_ctrl_initgain_byrssi(struct r8192_priv *priv) { if (dm_digtable.dig_enable_flag == false) return; if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) dm_ctrl_initgain_byrssi_by_fwfalse_alarm(priv); else if(dm_digtable.dig_algorithm == DIG_ALGO_BY_RSSI) dm_ctrl_initgain_byrssi_by_driverrssi(priv); } static void dm_ctrl_initgain_byrssi_by_driverrssi(struct r8192_priv *priv) { u8 i; static u8 fw_dig=0; if (dm_digtable.dig_enable_flag == false) return; if(dm_digtable.dig_algorithm_switch) // if swithed algorithm, we have to disable FW Dig. fw_dig = 0; if(fw_dig <= 3) // execute several times to make sure the FW Dig is disabled {// FW DIG Off for(i=0; i<3; i++) rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x8); // Only clear byte 1 and rewrite. fw_dig++; dm_digtable.dig_state = DM_STA_DIG_OFF; //fw dig off. } if(priv->ieee80211->state == IEEE80211_LINKED) dm_digtable.cur_connect_state = DIG_CONNECT; else dm_digtable.cur_connect_state = DIG_DISCONNECT; if(dm_digtable.dbg_mode == DM_DBG_OFF) dm_digtable.rssi_val = priv->undecorated_smoothed_pwdb; dm_initial_gain(priv); dm_pd_th(priv); dm_cs_ratio(priv); if(dm_digtable.dig_algorithm_switch) dm_digtable.dig_algorithm_switch = 0; dm_digtable.pre_connect_state = dm_digtable.cur_connect_state; } static void dm_ctrl_initgain_byrssi_by_fwfalse_alarm(struct r8192_priv *priv) { static u32 reset_cnt = 0; u8 i; if (dm_digtable.dig_enable_flag == false) return; if(dm_digtable.dig_algorithm_switch) { dm_digtable.dig_state = DM_STA_DIG_MAX; // Fw DIG On. for(i=0; i<3; i++) rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x1); // Only clear byte 1 and rewrite. dm_digtable.dig_algorithm_switch = 0; } if (priv->ieee80211->state != IEEE80211_LINKED) return; // For smooth, we can not change DIG state. if ((priv->undecorated_smoothed_pwdb > dm_digtable.rssi_low_thresh) && (priv->undecorated_smoothed_pwdb < dm_digtable.rssi_high_thresh)) { return; } /* 1. When RSSI decrease, We have to judge if it is smaller than a threshold and then execute below step. */ if ((priv->undecorated_smoothed_pwdb <= dm_digtable.rssi_low_thresh)) { /* 2008/02/05 MH When we execute silent reset, the DIG PHY parameters will be reset to init value. We must prevent the condition. */ if (dm_digtable.dig_state == DM_STA_DIG_OFF && (priv->reset_count == reset_cnt)) { return; } else { reset_cnt = priv->reset_count; } // If DIG is off, DIG high power state must reset. dm_digtable.dig_highpwr_state = DM_STA_DIG_MAX; dm_digtable.dig_state = DM_STA_DIG_OFF; // 1.1 DIG Off. rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x8); // Only clear byte 1 and rewrite. // 1.2 Set initial gain. write_nic_byte(priv, rOFDM0_XAAGCCore1, 0x17); write_nic_byte(priv, rOFDM0_XBAGCCore1, 0x17); write_nic_byte(priv, rOFDM0_XCAGCCore1, 0x17); write_nic_byte(priv, rOFDM0_XDAGCCore1, 0x17); // 1.3 Lower PD_TH for OFDM. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { /* 2008/01/11 MH 40MHZ 90/92 register are not the same. */ // 2008/02/05 MH SD3-Jerry 92U/92E PD_TH are the same. write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x00); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x42); // 1.4 Lower CS ratio for CCK. write_nic_byte(priv, 0xa0a, 0x08); // 1.5 Higher EDCCA. //PlatformEFIOWrite4Byte(pAdapter, rOFDM0_ECCAThreshold, 0x325); return; } /* 2. When RSSI increase, We have to judge if it is larger than a threshold and then execute below step. */ if ((priv->undecorated_smoothed_pwdb >= dm_digtable.rssi_high_thresh) ) { u8 reset_flag = 0; if (dm_digtable.dig_state == DM_STA_DIG_ON && (priv->reset_count == reset_cnt)) { dm_ctrl_initgain_byrssi_highpwr(priv); return; } else { if (priv->reset_count != reset_cnt) reset_flag = 1; reset_cnt = priv->reset_count; } dm_digtable.dig_state = DM_STA_DIG_ON; // 2.1 Set initial gain. // 2008/02/26 MH SD3-Jerry suggest to prevent dirty environment. if (reset_flag == 1) { write_nic_byte(priv, rOFDM0_XAAGCCore1, 0x2c); write_nic_byte(priv, rOFDM0_XBAGCCore1, 0x2c); write_nic_byte(priv, rOFDM0_XCAGCCore1, 0x2c); write_nic_byte(priv, rOFDM0_XDAGCCore1, 0x2c); } else { write_nic_byte(priv, rOFDM0_XAAGCCore1, 0x20); write_nic_byte(priv, rOFDM0_XBAGCCore1, 0x20); write_nic_byte(priv, rOFDM0_XCAGCCore1, 0x20); write_nic_byte(priv, rOFDM0_XDAGCCore1, 0x20); } // 2.2 Higher PD_TH for OFDM. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { /* 2008/01/11 MH 40MHZ 90/92 register are not the same. */ // 2008/02/05 MH SD3-Jerry 92U/92E PD_TH are the same. write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x20); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x44); // 2.3 Higher CS ratio for CCK. write_nic_byte(priv, 0xa0a, 0xcd); // 2.4 Lower EDCCA. /* 2008/01/11 MH 90/92 series are the same. */ //PlatformEFIOWrite4Byte(pAdapter, rOFDM0_ECCAThreshold, 0x346); // 2.5 DIG On. rtl8192_setBBreg(priv, UFWP, bMaskByte1, 0x1); // Only clear byte 1 and rewrite. } dm_ctrl_initgain_byrssi_highpwr(priv); } static void dm_ctrl_initgain_byrssi_highpwr(struct r8192_priv *priv) { static u32 reset_cnt_highpwr = 0; // For smooth, we can not change high power DIG state in the range. if ((priv->undecorated_smoothed_pwdb > dm_digtable.rssi_high_power_lowthresh) && (priv->undecorated_smoothed_pwdb < dm_digtable.rssi_high_power_highthresh)) { return; } /* 3. When RSSI >75% or <70%, it is a high power issue. We have to judge if it is larger than a threshold and then execute below step. */ // 2008/02/05 MH SD3-Jerry Modify PD_TH for high power issue. if (priv->undecorated_smoothed_pwdb >= dm_digtable.rssi_high_power_highthresh) { if (dm_digtable.dig_highpwr_state == DM_STA_DIG_ON && (priv->reset_count == reset_cnt_highpwr)) return; else dm_digtable.dig_highpwr_state = DM_STA_DIG_ON; // 3.1 Higher PD_TH for OFDM for high power state. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x10); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x43); } else { if (dm_digtable.dig_highpwr_state == DM_STA_DIG_OFF&& (priv->reset_count == reset_cnt_highpwr)) return; else dm_digtable.dig_highpwr_state = DM_STA_DIG_OFF; if (priv->undecorated_smoothed_pwdb < dm_digtable.rssi_high_power_lowthresh && priv->undecorated_smoothed_pwdb >= dm_digtable.rssi_high_thresh) { // 3.2 Recover PD_TH for OFDM for normal power region. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x20); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x44); } } reset_cnt_highpwr = priv->reset_count; } static void dm_initial_gain(struct r8192_priv *priv) { u8 initial_gain=0; static u8 initialized=0, force_write=0; static u32 reset_cnt=0; if(dm_digtable.dig_algorithm_switch) { initialized = 0; reset_cnt = 0; } if(dm_digtable.pre_connect_state == dm_digtable.cur_connect_state) { if(dm_digtable.cur_connect_state == DIG_CONNECT) { if((dm_digtable.rssi_val+10-dm_digtable.backoff_val) > dm_digtable.rx_gain_range_max) dm_digtable.cur_ig_value = dm_digtable.rx_gain_range_max; else if((dm_digtable.rssi_val+10-dm_digtable.backoff_val) < dm_digtable.rx_gain_range_min) dm_digtable.cur_ig_value = dm_digtable.rx_gain_range_min; else dm_digtable.cur_ig_value = dm_digtable.rssi_val+10-dm_digtable.backoff_val; } else //current state is disconnected { if(dm_digtable.cur_ig_value == 0) dm_digtable.cur_ig_value = priv->DefaultInitialGain[0]; else dm_digtable.cur_ig_value = dm_digtable.pre_ig_value; } } else // disconnected -> connected or connected -> disconnected { dm_digtable.cur_ig_value = priv->DefaultInitialGain[0]; dm_digtable.pre_ig_value = 0; } // if silent reset happened, we should rewrite the values back if(priv->reset_count != reset_cnt) { force_write = 1; reset_cnt = priv->reset_count; } if(dm_digtable.pre_ig_value != read_nic_byte(priv, rOFDM0_XAAGCCore1)) force_write = 1; { if((dm_digtable.pre_ig_value != dm_digtable.cur_ig_value) || !initialized || force_write) { initial_gain = (u8)dm_digtable.cur_ig_value; // Set initial gain. write_nic_byte(priv, rOFDM0_XAAGCCore1, initial_gain); write_nic_byte(priv, rOFDM0_XBAGCCore1, initial_gain); write_nic_byte(priv, rOFDM0_XCAGCCore1, initial_gain); write_nic_byte(priv, rOFDM0_XDAGCCore1, initial_gain); dm_digtable.pre_ig_value = dm_digtable.cur_ig_value; initialized = 1; force_write = 0; } } } static void dm_pd_th(struct r8192_priv *priv) { static u8 initialized=0, force_write=0; static u32 reset_cnt = 0; if(dm_digtable.dig_algorithm_switch) { initialized = 0; reset_cnt = 0; } if(dm_digtable.pre_connect_state == dm_digtable.cur_connect_state) { if(dm_digtable.cur_connect_state == DIG_CONNECT) { if (dm_digtable.rssi_val >= dm_digtable.rssi_high_power_highthresh) dm_digtable.curpd_thstate = DIG_PD_AT_HIGH_POWER; else if ((dm_digtable.rssi_val <= dm_digtable.rssi_low_thresh)) dm_digtable.curpd_thstate = DIG_PD_AT_LOW_POWER; else if ((dm_digtable.rssi_val >= dm_digtable.rssi_high_thresh) && (dm_digtable.rssi_val < dm_digtable.rssi_high_power_lowthresh)) dm_digtable.curpd_thstate = DIG_PD_AT_NORMAL_POWER; else dm_digtable.curpd_thstate = dm_digtable.prepd_thstate; } else { dm_digtable.curpd_thstate = DIG_PD_AT_LOW_POWER; } } else // disconnected -> connected or connected -> disconnected { dm_digtable.curpd_thstate = DIG_PD_AT_LOW_POWER; } // if silent reset happened, we should rewrite the values back if(priv->reset_count != reset_cnt) { force_write = 1; reset_cnt = priv->reset_count; } { if((dm_digtable.prepd_thstate != dm_digtable.curpd_thstate) || (initialized<=3) || force_write) { if(dm_digtable.curpd_thstate == DIG_PD_AT_LOW_POWER) { // Lower PD_TH for OFDM. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { /* 2008/01/11 MH 40MHZ 90/92 register are not the same. */ // 2008/02/05 MH SD3-Jerry 92U/92E PD_TH are the same. write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x00); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x42); } else if(dm_digtable.curpd_thstate == DIG_PD_AT_NORMAL_POWER) { // Higher PD_TH for OFDM. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { /* 2008/01/11 MH 40MHZ 90/92 register are not the same. */ // 2008/02/05 MH SD3-Jerry 92U/92E PD_TH are the same. write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x20); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x44); } else if(dm_digtable.curpd_thstate == DIG_PD_AT_HIGH_POWER) { // Higher PD_TH for OFDM for high power state. if (priv->CurrentChannelBW != HT_CHANNEL_WIDTH_20) { write_nic_byte(priv, (rOFDM0_XATxAFE+3), 0x10); } else write_nic_byte(priv, rOFDM0_RxDetector1, 0x43); } dm_digtable.prepd_thstate = dm_digtable.curpd_thstate; if(initialized <= 3) initialized++; force_write = 0; } } } static void dm_cs_ratio(struct r8192_priv *priv) { static u8 initialized=0,force_write=0; static u32 reset_cnt = 0; if(dm_digtable.dig_algorithm_switch) { initialized = 0; reset_cnt = 0; } if(dm_digtable.pre_connect_state == dm_digtable.cur_connect_state) { if(dm_digtable.cur_connect_state == DIG_CONNECT) { if ((dm_digtable.rssi_val <= dm_digtable.rssi_low_thresh)) dm_digtable.curcs_ratio_state = DIG_CS_RATIO_LOWER; else if ((dm_digtable.rssi_val >= dm_digtable.rssi_high_thresh) ) dm_digtable.curcs_ratio_state = DIG_CS_RATIO_HIGHER; else dm_digtable.curcs_ratio_state = dm_digtable.precs_ratio_state; } else { dm_digtable.curcs_ratio_state = DIG_CS_RATIO_LOWER; } } else // disconnected -> connected or connected -> disconnected { dm_digtable.curcs_ratio_state = DIG_CS_RATIO_LOWER; } // if silent reset happened, we should rewrite the values back if(priv->reset_count != reset_cnt) { force_write = 1; reset_cnt = priv->reset_count; } if((dm_digtable.precs_ratio_state != dm_digtable.curcs_ratio_state) || !initialized || force_write) { if(dm_digtable.curcs_ratio_state == DIG_CS_RATIO_LOWER) { // Lower CS ratio for CCK. write_nic_byte(priv, 0xa0a, 0x08); } else if(dm_digtable.curcs_ratio_state == DIG_CS_RATIO_HIGHER) { // Higher CS ratio for CCK. write_nic_byte(priv, 0xa0a, 0xcd); } dm_digtable.precs_ratio_state = dm_digtable.curcs_ratio_state; initialized = 1; force_write = 0; } } void dm_init_edca_turbo(struct r8192_priv *priv) { priv->bcurrent_turbo_EDCA = false; priv->ieee80211->bis_any_nonbepkts = false; priv->bis_cur_rdlstate = false; } static void dm_check_edca_turbo(struct r8192_priv *priv) { PRT_HIGH_THROUGHPUT pHTInfo = priv->ieee80211->pHTInfo; //PSTA_QOS pStaQos = pMgntInfo->pStaQos; // Keep past Tx/Rx packet count for RT-to-RT EDCA turbo. static unsigned long lastTxOkCnt = 0; static unsigned long lastRxOkCnt = 0; unsigned long curTxOkCnt = 0; unsigned long curRxOkCnt = 0; // // Do not be Turbo if it's under WiFi config and Qos Enabled, because the EDCA parameters // should follow the settings from QAP. By Bruce, 2007-12-07. // if(priv->ieee80211->state != IEEE80211_LINKED) goto dm_CheckEdcaTurbo_EXIT; // We do not turn on EDCA turbo mode for some AP that has IOT issue if(priv->ieee80211->pHTInfo->IOTAction & HT_IOT_ACT_DISABLE_EDCA_TURBO) goto dm_CheckEdcaTurbo_EXIT; // Check the status for current condition. if(!priv->ieee80211->bis_any_nonbepkts) { curTxOkCnt = priv->stats.txbytesunicast - lastTxOkCnt; curRxOkCnt = priv->stats.rxbytesunicast - lastRxOkCnt; // For RT-AP, we needs to turn it on when Rx>Tx if(curRxOkCnt > 4*curTxOkCnt) { if(!priv->bis_cur_rdlstate || !priv->bcurrent_turbo_EDCA) { write_nic_dword(priv, EDCAPARA_BE, edca_setting_DL[pHTInfo->IOTPeer]); priv->bis_cur_rdlstate = true; } } else { if(priv->bis_cur_rdlstate || !priv->bcurrent_turbo_EDCA) { write_nic_dword(priv, EDCAPARA_BE, edca_setting_UL[pHTInfo->IOTPeer]); priv->bis_cur_rdlstate = false; } } priv->bcurrent_turbo_EDCA = true; } else { // // Turn Off EDCA turbo here. // Restore original EDCA according to the declaration of AP. // if(priv->bcurrent_turbo_EDCA) { { u8 u1bAIFS; u32 u4bAcParam; struct ieee80211_qos_parameters *qos_parameters = &priv->ieee80211->current_network.qos_data.parameters; u8 mode = priv->ieee80211->mode; // For Each time updating EDCA parameter, reset EDCA turbo mode status. dm_init_edca_turbo(priv); u1bAIFS = qos_parameters->aifs[0] * ((mode&(IEEE_G|IEEE_N_24G)) ?9:20) + aSifsTime; u4bAcParam = ((((u32)(qos_parameters->tx_op_limit[0]))<< AC_PARAM_TXOP_LIMIT_OFFSET)| (((u32)(qos_parameters->cw_max[0]))<< AC_PARAM_ECW_MAX_OFFSET)| (((u32)(qos_parameters->cw_min[0]))<< AC_PARAM_ECW_MIN_OFFSET)| ((u32)u1bAIFS << AC_PARAM_AIFS_OFFSET)); printk("===>u4bAcParam:%x, ", u4bAcParam); //write_nic_dword(dev, WDCAPARA_ADD[i], u4bAcParam); write_nic_dword(priv, EDCAPARA_BE, u4bAcParam); // Check ACM bit. // If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13. { // TODO: Modified this part and try to set acm control in only 1 IO processing!! PACI_AIFSN pAciAifsn = (PACI_AIFSN)&(qos_parameters->aifs[0]); u8 AcmCtrl = read_nic_byte(priv, AcmHwCtrl ); if( pAciAifsn->f.ACM ) { // ACM bit is 1. AcmCtrl |= AcmHw_BeqEn; } else { // ACM bit is 0. AcmCtrl &= (~AcmHw_BeqEn); } RT_TRACE( COMP_QOS,"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl ) ; write_nic_byte(priv, AcmHwCtrl, AcmCtrl ); } } priv->bcurrent_turbo_EDCA = false; } } dm_CheckEdcaTurbo_EXIT: // Set variables for next time. priv->ieee80211->bis_any_nonbepkts = false; lastTxOkCnt = priv->stats.txbytesunicast; lastRxOkCnt = priv->stats.rxbytesunicast; } static void dm_init_ctstoself(struct r8192_priv *priv) { priv->ieee80211->bCTSToSelfEnable = TRUE; priv->ieee80211->CTSToSelfTH = CTSToSelfTHVal; } static void dm_ctstoself(struct r8192_priv *priv) { PRT_HIGH_THROUGHPUT pHTInfo = priv->ieee80211->pHTInfo; static unsigned long lastTxOkCnt = 0; static unsigned long lastRxOkCnt = 0; unsigned long curTxOkCnt = 0; unsigned long curRxOkCnt = 0; if(priv->ieee80211->bCTSToSelfEnable != TRUE) { pHTInfo->IOTAction &= ~HT_IOT_ACT_FORCED_CTS2SELF; return; } /* 1. Uplink 2. Linksys350/Linksys300N 3. <50 disable, >55 enable */ if(pHTInfo->IOTPeer == HT_IOT_PEER_BROADCOM) { curTxOkCnt = priv->stats.txbytesunicast - lastTxOkCnt; curRxOkCnt = priv->stats.rxbytesunicast - lastRxOkCnt; if(curRxOkCnt > 4*curTxOkCnt) //downlink, disable CTS to self { pHTInfo->IOTAction &= ~HT_IOT_ACT_FORCED_CTS2SELF; } else //uplink { pHTInfo->IOTAction |= HT_IOT_ACT_FORCED_CTS2SELF; } lastTxOkCnt = priv->stats.txbytesunicast; lastRxOkCnt = priv->stats.rxbytesunicast; } } /* Copy 8187B template for 9xseries */ static void dm_check_rfctrl_gpio(struct r8192_priv *priv) { // Walk around for DTM test, we will not enable HW - radio on/off because r/w // page 1 register before Lextra bus is enabled cause system fails when resuming // from S4. 20080218, Emily // Stop to execute workitem to prevent S3/S4 bug. queue_delayed_work(priv->priv_wq,&priv->gpio_change_rf_wq,0); } /* PCI will not support workitem call back HW radio on-off control. */ void dm_gpio_change_rf_callback(struct work_struct *work) { struct delayed_work *dwork = container_of(work,struct delayed_work,work); struct r8192_priv *priv = container_of(dwork,struct r8192_priv,gpio_change_rf_wq); u8 tmp1byte; RT_RF_POWER_STATE eRfPowerStateToSet; bool bActuallySet = false; if (!priv->up) { RT_TRACE((COMP_INIT | COMP_POWER | COMP_RF),"dm_gpio_change_rf_callback(): Callback function breaks out!!\n"); } else { // 0x108 GPIO input register is read only //set 0x108 B1= 1: RF-ON; 0: RF-OFF. tmp1byte = read_nic_byte(priv, GPI); eRfPowerStateToSet = (tmp1byte&BIT1) ? eRfOn : eRfOff; if (priv->bHwRadioOff && (eRfPowerStateToSet == eRfOn)) { RT_TRACE(COMP_RF, "gpiochangeRF - HW Radio ON\n"); priv->bHwRadioOff = false; bActuallySet = true; } else if ((!priv->bHwRadioOff) && (eRfPowerStateToSet == eRfOff)) { RT_TRACE(COMP_RF, "gpiochangeRF - HW Radio OFF\n"); priv->bHwRadioOff = true; bActuallySet = true; } if (bActuallySet) { priv->bHwRfOffAction = 1; MgntActSet_RF_State(priv, eRfPowerStateToSet, RF_CHANGE_BY_HW); //DrvIFIndicateCurrentPhyStatus(pAdapter); } else { msleep(2000); } } } /* Check if Current RF RX path is enabled */ void dm_rf_pathcheck_workitemcallback(struct work_struct *work) { struct delayed_work *dwork = container_of(work,struct delayed_work,work); struct r8192_priv *priv = container_of(dwork,struct r8192_priv,rfpath_check_wq); u8 rfpath = 0, i; /* 2008/01/30 MH After discussing with SD3 Jerry, 0xc04/0xd04 register will always be the same. We only read 0xc04 now. */ rfpath = read_nic_byte(priv, 0xc04); // Check Bit 0-3, it means if RF A-D is enabled. for (i = 0; i < RF90_PATH_MAX; i++) { if (rfpath & (0x01<<i)) priv->brfpath_rxenable[i] = 1; else priv->brfpath_rxenable[i] = 0; } if(!DM_RxPathSelTable.Enable) return; dm_rxpath_sel_byrssi(priv); } static void dm_init_rxpath_selection(struct r8192_priv *priv) { u8 i; DM_RxPathSelTable.Enable = 1; //default enabled DM_RxPathSelTable.SS_TH_low = RxPathSelection_SS_TH_low; DM_RxPathSelTable.diff_TH = RxPathSelection_diff_TH; if(priv->CustomerID == RT_CID_819x_Netcore) DM_RxPathSelTable.cck_method = CCK_Rx_Version_2; else DM_RxPathSelTable.cck_method = CCK_Rx_Version_1; DM_RxPathSelTable.DbgMode = DM_DBG_OFF; DM_RxPathSelTable.disabledRF = 0; for(i=0; i<4; i++) { DM_RxPathSelTable.rf_rssi[i] = 50; DM_RxPathSelTable.cck_pwdb_sta[i] = -64; DM_RxPathSelTable.rf_enable_rssi_th[i] = 100; } } static void dm_rxpath_sel_byrssi(struct r8192_priv *priv) { u8 i, max_rssi_index=0, min_rssi_index=0, sec_rssi_index=0, rf_num=0; u8 tmp_max_rssi=0, tmp_min_rssi=0, tmp_sec_rssi=0; u8 cck_default_Rx=0x2; //RF-C u8 cck_optional_Rx=0x3;//RF-D long tmp_cck_max_pwdb=0, tmp_cck_min_pwdb=0, tmp_cck_sec_pwdb=0; u8 cck_rx_ver2_max_index=0, cck_rx_ver2_min_index=0, cck_rx_ver2_sec_index=0; u8 cur_rf_rssi; long cur_cck_pwdb; static u8 disabled_rf_cnt=0, cck_Rx_Path_initialized=0; u8 update_cck_rx_path; if(priv->rf_type != RF_2T4R) return; if(!cck_Rx_Path_initialized) { DM_RxPathSelTable.cck_Rx_path = (read_nic_byte(priv, 0xa07)&0xf); cck_Rx_Path_initialized = 1; } DM_RxPathSelTable.disabledRF = 0xf; DM_RxPathSelTable.disabledRF &=~ (read_nic_byte(priv, 0xc04)); if(priv->ieee80211->mode == WIRELESS_MODE_B) { DM_RxPathSelTable.cck_method = CCK_Rx_Version_2; //pure B mode, fixed cck version2 } //decide max/sec/min rssi index for (i=0; i<RF90_PATH_MAX; i++) { if(!DM_RxPathSelTable.DbgMode) DM_RxPathSelTable.rf_rssi[i] = priv->stats.rx_rssi_percentage[i]; if(priv->brfpath_rxenable[i]) { rf_num++; cur_rf_rssi = DM_RxPathSelTable.rf_rssi[i]; if(rf_num == 1) // find first enabled rf path and the rssi values { //initialize, set all rssi index to the same one max_rssi_index = min_rssi_index = sec_rssi_index = i; tmp_max_rssi = tmp_min_rssi = tmp_sec_rssi = cur_rf_rssi; } else if(rf_num == 2) { // we pick up the max index first, and let sec and min to be the same one if(cur_rf_rssi >= tmp_max_rssi) { tmp_max_rssi = cur_rf_rssi; max_rssi_index = i; } else { tmp_sec_rssi = tmp_min_rssi = cur_rf_rssi; sec_rssi_index = min_rssi_index = i; } } else { if(cur_rf_rssi > tmp_max_rssi) { tmp_sec_rssi = tmp_max_rssi; sec_rssi_index = max_rssi_index; tmp_max_rssi = cur_rf_rssi; max_rssi_index = i; } else if(cur_rf_rssi == tmp_max_rssi) { // let sec and min point to the different index tmp_sec_rssi = cur_rf_rssi; sec_rssi_index = i; } else if((cur_rf_rssi < tmp_max_rssi) &&(cur_rf_rssi > tmp_sec_rssi)) { tmp_sec_rssi = cur_rf_rssi; sec_rssi_index = i; } else if(cur_rf_rssi == tmp_sec_rssi) { if(tmp_sec_rssi == tmp_min_rssi) { // let sec and min point to the different index tmp_sec_rssi = cur_rf_rssi; sec_rssi_index = i; } else { // This case we don't need to set any index } } else if((cur_rf_rssi < tmp_sec_rssi) && (cur_rf_rssi > tmp_min_rssi)) { // This case we don't need to set any index } else if(cur_rf_rssi == tmp_min_rssi) { if(tmp_sec_rssi == tmp_min_rssi) { // let sec and min point to the different index tmp_min_rssi = cur_rf_rssi; min_rssi_index = i; } else { // This case we don't need to set any index } } else if(cur_rf_rssi < tmp_min_rssi) { tmp_min_rssi = cur_rf_rssi; min_rssi_index = i; } } } } rf_num = 0; // decide max/sec/min cck pwdb index if(DM_RxPathSelTable.cck_method == CCK_Rx_Version_2) { for (i=0; i<RF90_PATH_MAX; i++) { if(priv->brfpath_rxenable[i]) { rf_num++; cur_cck_pwdb = DM_RxPathSelTable.cck_pwdb_sta[i]; if(rf_num == 1) // find first enabled rf path and the rssi values { //initialize, set all rssi index to the same one cck_rx_ver2_max_index = cck_rx_ver2_min_index = cck_rx_ver2_sec_index = i; tmp_cck_max_pwdb = tmp_cck_min_pwdb = tmp_cck_sec_pwdb = cur_cck_pwdb; } else if(rf_num == 2) { // we pick up the max index first, and let sec and min to be the same one if(cur_cck_pwdb >= tmp_cck_max_pwdb) { tmp_cck_max_pwdb = cur_cck_pwdb; cck_rx_ver2_max_index = i; } else { tmp_cck_sec_pwdb = tmp_cck_min_pwdb = cur_cck_pwdb; cck_rx_ver2_sec_index = cck_rx_ver2_min_index = i; } } else { if(cur_cck_pwdb > tmp_cck_max_pwdb) { tmp_cck_sec_pwdb = tmp_cck_max_pwdb; cck_rx_ver2_sec_index = cck_rx_ver2_max_index; tmp_cck_max_pwdb = cur_cck_pwdb; cck_rx_ver2_max_index = i; } else if(cur_cck_pwdb == tmp_cck_max_pwdb) { // let sec and min point to the different index tmp_cck_sec_pwdb = cur_cck_pwdb; cck_rx_ver2_sec_index = i; } else if((cur_cck_pwdb < tmp_cck_max_pwdb) &&(cur_cck_pwdb > tmp_cck_sec_pwdb)) { tmp_cck_sec_pwdb = cur_cck_pwdb; cck_rx_ver2_sec_index = i; } else if(cur_cck_pwdb == tmp_cck_sec_pwdb) { if(tmp_cck_sec_pwdb == tmp_cck_min_pwdb) { // let sec and min point to the different index tmp_cck_sec_pwdb = cur_cck_pwdb; cck_rx_ver2_sec_index = i; } else { // This case we don't need to set any index } } else if((cur_cck_pwdb < tmp_cck_sec_pwdb) && (cur_cck_pwdb > tmp_cck_min_pwdb)) { // This case we don't need to set any index } else if(cur_cck_pwdb == tmp_cck_min_pwdb) { if(tmp_cck_sec_pwdb == tmp_cck_min_pwdb) { // let sec and min point to the different index tmp_cck_min_pwdb = cur_cck_pwdb; cck_rx_ver2_min_index = i; } else { // This case we don't need to set any index } } else if(cur_cck_pwdb < tmp_cck_min_pwdb) { tmp_cck_min_pwdb = cur_cck_pwdb; cck_rx_ver2_min_index = i; } } } } } // Set CCK Rx path // reg0xA07[3:2]=cck default rx path, reg0xa07[1:0]=cck optional rx path. update_cck_rx_path = 0; if(DM_RxPathSelTable.cck_method == CCK_Rx_Version_2) { cck_default_Rx = cck_rx_ver2_max_index; cck_optional_Rx = cck_rx_ver2_sec_index; if(tmp_cck_max_pwdb != -64) update_cck_rx_path = 1; } if(tmp_min_rssi < DM_RxPathSelTable.SS_TH_low && disabled_rf_cnt < 2) { if((tmp_max_rssi - tmp_min_rssi) >= DM_RxPathSelTable.diff_TH) { //record the enabled rssi threshold DM_RxPathSelTable.rf_enable_rssi_th[min_rssi_index] = tmp_max_rssi+5; //disable the BB Rx path, OFDM rtl8192_setBBreg(priv, rOFDM0_TRxPathEnable, 0x1<<min_rssi_index, 0x0); // 0xc04[3:0] rtl8192_setBBreg(priv, rOFDM1_TRxPathEnable, 0x1<<min_rssi_index, 0x0); // 0xd04[3:0] disabled_rf_cnt++; } if(DM_RxPathSelTable.cck_method == CCK_Rx_Version_1) { cck_default_Rx = max_rssi_index; cck_optional_Rx = sec_rssi_index; if(tmp_max_rssi) update_cck_rx_path = 1; } } if(update_cck_rx_path) { DM_RxPathSelTable.cck_Rx_path = (cck_default_Rx<<2)|(cck_optional_Rx); rtl8192_setBBreg(priv, rCCK0_AFESetting, 0x0f000000, DM_RxPathSelTable.cck_Rx_path); } if(DM_RxPathSelTable.disabledRF) { for(i=0; i<4; i++) { if((DM_RxPathSelTable.disabledRF>>i) & 0x1) //disabled rf { if(tmp_max_rssi >= DM_RxPathSelTable.rf_enable_rssi_th[i]) { //enable the BB Rx path rtl8192_setBBreg(priv, rOFDM0_TRxPathEnable, 0x1<<i, 0x1); // 0xc04[3:0] rtl8192_setBBreg(priv, rOFDM1_TRxPathEnable, 0x1<<i, 0x1); // 0xd04[3:0] DM_RxPathSelTable.rf_enable_rssi_th[i] = 100; disabled_rf_cnt--; } } } } } /* * Call a workitem to check current RXRF path and Rx Path selection by RSSI. */ static void dm_check_rx_path_selection(struct r8192_priv *priv) { queue_delayed_work(priv->priv_wq,&priv->rfpath_check_wq,0); } static void dm_init_fsync(struct r8192_priv *priv) { priv->ieee80211->fsync_time_interval = 500; priv->ieee80211->fsync_rate_bitmap = 0x0f000800; priv->ieee80211->fsync_rssi_threshold = 30; priv->ieee80211->bfsync_enable = false; priv->ieee80211->fsync_multiple_timeinterval = 3; priv->ieee80211->fsync_firstdiff_ratethreshold= 100; priv->ieee80211->fsync_seconddiff_ratethreshold= 200; priv->ieee80211->fsync_state = Default_Fsync; priv->framesyncMonitor = 1; // current default 0xc38 monitor on init_timer(&priv->fsync_timer); priv->fsync_timer.data = (unsigned long)priv; priv->fsync_timer.function = dm_fsync_timer_callback; } static void dm_deInit_fsync(struct r8192_priv *priv) { del_timer_sync(&priv->fsync_timer); } static void dm_fsync_timer_callback(unsigned long data) { struct r8192_priv *priv = (struct r8192_priv *)data; u32 rate_index, rate_count = 0, rate_count_diff=0; bool bSwitchFromCountDiff = false; bool bDoubleTimeInterval = false; if( priv->ieee80211->state == IEEE80211_LINKED && priv->ieee80211->bfsync_enable && (priv->ieee80211->pHTInfo->IOTAction & HT_IOT_ACT_CDD_FSYNC)) { // Count rate 54, MCS [7], [12, 13, 14, 15] u32 rate_bitmap; for(rate_index = 0; rate_index <= 27; rate_index++) { rate_bitmap = 1 << rate_index; if(priv->ieee80211->fsync_rate_bitmap & rate_bitmap) rate_count+= priv->stats.received_rate_histogram[1][rate_index]; } if(rate_count < priv->rate_record) rate_count_diff = 0xffffffff - rate_count + priv->rate_record; else rate_count_diff = rate_count - priv->rate_record; if(rate_count_diff < priv->rateCountDiffRecord) { u32 DiffNum = priv->rateCountDiffRecord - rate_count_diff; // Contiune count if(DiffNum >= priv->ieee80211->fsync_seconddiff_ratethreshold) priv->ContiuneDiffCount++; else priv->ContiuneDiffCount = 0; // Contiune count over if(priv->ContiuneDiffCount >=2) { bSwitchFromCountDiff = true; priv->ContiuneDiffCount = 0; } } else { // Stop contiune count priv->ContiuneDiffCount = 0; } //If Count diff <= FsyncRateCountThreshold if(rate_count_diff <= priv->ieee80211->fsync_firstdiff_ratethreshold) { bSwitchFromCountDiff = true; priv->ContiuneDiffCount = 0; } priv->rate_record = rate_count; priv->rateCountDiffRecord = rate_count_diff; RT_TRACE(COMP_HALDM, "rateRecord %d rateCount %d, rateCountdiff %d bSwitchFsync %d\n", priv->rate_record, rate_count, rate_count_diff , priv->bswitch_fsync); // if we never receive those mcs rate and rssi > 30 % then switch fsyn if(priv->undecorated_smoothed_pwdb > priv->ieee80211->fsync_rssi_threshold && bSwitchFromCountDiff) { bDoubleTimeInterval = true; priv->bswitch_fsync = !priv->bswitch_fsync; if(priv->bswitch_fsync) { write_nic_byte(priv,0xC36, 0x1c); write_nic_byte(priv, 0xC3e, 0x90); } else { write_nic_byte(priv, 0xC36, 0x5c); write_nic_byte(priv, 0xC3e, 0x96); } } else if(priv->undecorated_smoothed_pwdb <= priv->ieee80211->fsync_rssi_threshold) { if(priv->bswitch_fsync) { priv->bswitch_fsync = false; write_nic_byte(priv, 0xC36, 0x5c); write_nic_byte(priv, 0xC3e, 0x96); } } if(bDoubleTimeInterval){ if(timer_pending(&priv->fsync_timer)) del_timer_sync(&priv->fsync_timer); priv->fsync_timer.expires = jiffies + MSECS(priv->ieee80211->fsync_time_interval*priv->ieee80211->fsync_multiple_timeinterval); add_timer(&priv->fsync_timer); } else{ if(timer_pending(&priv->fsync_timer)) del_timer_sync(&priv->fsync_timer); priv->fsync_timer.expires = jiffies + MSECS(priv->ieee80211->fsync_time_interval); add_timer(&priv->fsync_timer); } } else { // Let Register return to default value; if(priv->bswitch_fsync) { priv->bswitch_fsync = false; write_nic_byte(priv, 0xC36, 0x5c); write_nic_byte(priv, 0xC3e, 0x96); } priv->ContiuneDiffCount = 0; write_nic_dword(priv, rOFDM0_RxDetector2, 0x465c52cd); } RT_TRACE(COMP_HALDM, "ContiuneDiffCount %d\n", priv->ContiuneDiffCount); RT_TRACE(COMP_HALDM, "rateRecord %d rateCount %d, rateCountdiff %d bSwitchFsync %d\n", priv->rate_record, rate_count, rate_count_diff , priv->bswitch_fsync); } static void dm_StartHWFsync(struct r8192_priv *priv) { RT_TRACE(COMP_HALDM, "%s\n", __FUNCTION__); write_nic_dword(priv, rOFDM0_RxDetector2, 0x465c12cf); write_nic_byte(priv, 0xc3b, 0x41); } static void dm_EndSWFsync(struct r8192_priv *priv) { RT_TRACE(COMP_HALDM, "%s\n", __FUNCTION__); del_timer_sync(&(priv->fsync_timer)); // Let Register return to default value; if(priv->bswitch_fsync) { priv->bswitch_fsync = false; write_nic_byte(priv, 0xC36, 0x40); write_nic_byte(priv, 0xC3e, 0x96); } priv->ContiuneDiffCount = 0; write_nic_dword(priv, rOFDM0_RxDetector2, 0x465c52cd); } static void dm_StartSWFsync(struct r8192_priv *priv) { u32 rateIndex; u32 rateBitmap; RT_TRACE(COMP_HALDM,"%s\n", __FUNCTION__); // Initial rate record to zero, start to record. priv->rate_record = 0; // Initial contiune diff count to zero, start to record. priv->ContiuneDiffCount = 0; priv->rateCountDiffRecord = 0; priv->bswitch_fsync = false; if(priv->ieee80211->mode == WIRELESS_MODE_N_24G) { priv->ieee80211->fsync_firstdiff_ratethreshold= 600; priv->ieee80211->fsync_seconddiff_ratethreshold = 0xffff; } else { priv->ieee80211->fsync_firstdiff_ratethreshold= 200; priv->ieee80211->fsync_seconddiff_ratethreshold = 200; } for(rateIndex = 0; rateIndex <= 27; rateIndex++) { rateBitmap = 1 << rateIndex; if(priv->ieee80211->fsync_rate_bitmap & rateBitmap) priv->rate_record += priv->stats.received_rate_histogram[1][rateIndex]; } if(timer_pending(&priv->fsync_timer)) del_timer_sync(&priv->fsync_timer); priv->fsync_timer.expires = jiffies + MSECS(priv->ieee80211->fsync_time_interval); add_timer(&priv->fsync_timer); write_nic_dword(priv, rOFDM0_RxDetector2, 0x465c12cd); } static void dm_EndHWFsync(struct r8192_priv *priv) { RT_TRACE(COMP_HALDM,"%s\n", __FUNCTION__); write_nic_dword(priv, rOFDM0_RxDetector2, 0x465c52cd); write_nic_byte(priv, 0xc3b, 0x49); } static void dm_check_fsync(struct r8192_priv *priv) { #define RegC38_Default 0 #define RegC38_NonFsync_Other_AP 1 #define RegC38_Fsync_AP_BCM 2 //u32 framesyncC34; static u8 reg_c38_State=RegC38_Default; static u32 reset_cnt=0; RT_TRACE(COMP_HALDM, "RSSI %d TimeInterval %d MultipleTimeInterval %d\n", priv->ieee80211->fsync_rssi_threshold, priv->ieee80211->fsync_time_interval, priv->ieee80211->fsync_multiple_timeinterval); RT_TRACE(COMP_HALDM, "RateBitmap 0x%x FirstDiffRateThreshold %d SecondDiffRateThreshold %d\n", priv->ieee80211->fsync_rate_bitmap, priv->ieee80211->fsync_firstdiff_ratethreshold, priv->ieee80211->fsync_seconddiff_ratethreshold); if( priv->ieee80211->state == IEEE80211_LINKED && (priv->ieee80211->pHTInfo->IOTAction & HT_IOT_ACT_CDD_FSYNC)) { if(priv->ieee80211->bfsync_enable == 0) { switch(priv->ieee80211->fsync_state) { case Default_Fsync: dm_StartHWFsync(priv); priv->ieee80211->fsync_state = HW_Fsync; break; case SW_Fsync: dm_EndSWFsync(priv); dm_StartHWFsync(priv); priv->ieee80211->fsync_state = HW_Fsync; break; case HW_Fsync: default: break; } } else { switch(priv->ieee80211->fsync_state) { case Default_Fsync: dm_StartSWFsync(priv); priv->ieee80211->fsync_state = SW_Fsync; break; case HW_Fsync: dm_EndHWFsync(priv); dm_StartSWFsync(priv); priv->ieee80211->fsync_state = SW_Fsync; break; case SW_Fsync: default: break; } } if(priv->framesyncMonitor) { if(reg_c38_State != RegC38_Fsync_AP_BCM) { //For broadcom AP we write different default value write_nic_byte(priv, rOFDM0_RxDetector3, 0x95); reg_c38_State = RegC38_Fsync_AP_BCM; } } } else { switch(priv->ieee80211->fsync_state) { case HW_Fsync: dm_EndHWFsync(priv); priv->ieee80211->fsync_state = Default_Fsync; break; case SW_Fsync: dm_EndSWFsync(priv); priv->ieee80211->fsync_state = Default_Fsync; break; case Default_Fsync: default: break; } if(priv->framesyncMonitor) { if(priv->ieee80211->state == IEEE80211_LINKED) { if(priv->undecorated_smoothed_pwdb <= RegC38_TH) { if(reg_c38_State != RegC38_NonFsync_Other_AP) { write_nic_byte(priv, rOFDM0_RxDetector3, 0x90); reg_c38_State = RegC38_NonFsync_Other_AP; } } else if(priv->undecorated_smoothed_pwdb >= (RegC38_TH+5)) { if(reg_c38_State) { write_nic_byte(priv, rOFDM0_RxDetector3, priv->framesync); reg_c38_State = RegC38_Default; } } } else { if(reg_c38_State) { write_nic_byte(priv, rOFDM0_RxDetector3, priv->framesync); reg_c38_State = RegC38_Default; } } } } if(priv->framesyncMonitor) { if(priv->reset_count != reset_cnt) { //After silent reset, the reg_c38_State will be returned to default value write_nic_byte(priv, rOFDM0_RxDetector3, priv->framesync); reg_c38_State = RegC38_Default; reset_cnt = priv->reset_count; } } else { if(reg_c38_State) { write_nic_byte(priv, rOFDM0_RxDetector3, priv->framesync); reg_c38_State = RegC38_Default; } } } /* * Detect Signal strength to control TX Registry * Tx Power Control For Near/Far Range */ static void dm_init_dynamic_txpower(struct r8192_priv *priv) { //Initial TX Power Control for near/far range , add by amy 2008/05/15, porting from windows code. priv->ieee80211->bdynamic_txpower_enable = true; //Default to enable Tx Power Control priv->bLastDTPFlag_High = false; priv->bLastDTPFlag_Low = false; priv->bDynamicTxHighPower = false; priv->bDynamicTxLowPower = false; } static void dm_dynamic_txpower(struct r8192_priv *priv) { unsigned int txhipower_threshhold=0; unsigned int txlowpower_threshold=0; if(priv->ieee80211->bdynamic_txpower_enable != true) { priv->bDynamicTxHighPower = false; priv->bDynamicTxLowPower = false; return; } if((priv->ieee80211->current_network.atheros_cap_exist ) && (priv->ieee80211->mode == IEEE_G)){ txhipower_threshhold = TX_POWER_ATHEROAP_THRESH_HIGH; txlowpower_threshold = TX_POWER_ATHEROAP_THRESH_LOW; } else { txhipower_threshhold = TX_POWER_NEAR_FIELD_THRESH_HIGH; txlowpower_threshold = TX_POWER_NEAR_FIELD_THRESH_LOW; } RT_TRACE(COMP_TXAGC, "priv->undecorated_smoothed_pwdb = %ld\n" , priv->undecorated_smoothed_pwdb); if(priv->ieee80211->state == IEEE80211_LINKED) { if(priv->undecorated_smoothed_pwdb >= txhipower_threshhold) { priv->bDynamicTxHighPower = true; priv->bDynamicTxLowPower = false; } else { // high power state check if(priv->undecorated_smoothed_pwdb < txlowpower_threshold && priv->bDynamicTxHighPower == true) { priv->bDynamicTxHighPower = false; } // low power state check if(priv->undecorated_smoothed_pwdb < 35) { priv->bDynamicTxLowPower = true; } else if(priv->undecorated_smoothed_pwdb >= 40) { priv->bDynamicTxLowPower = false; } } } else { //pHalData->bTXPowerCtrlforNearFarRange = !pHalData->bTXPowerCtrlforNearFarRange; priv->bDynamicTxHighPower = false; priv->bDynamicTxLowPower = false; } if( (priv->bDynamicTxHighPower != priv->bLastDTPFlag_High ) || (priv->bDynamicTxLowPower != priv->bLastDTPFlag_Low ) ) { RT_TRACE(COMP_TXAGC, "SetTxPowerLevel8190() channel = %d\n", priv->ieee80211->current_network.channel); rtl8192_phy_setTxPower(priv, priv->ieee80211->current_network.channel); } priv->bLastDTPFlag_High = priv->bDynamicTxHighPower; priv->bLastDTPFlag_Low = priv->bDynamicTxLowPower; } //added by vivi, for read tx rate and retrycount static void dm_check_txrateandretrycount(struct r8192_priv *priv) { struct ieee80211_device* ieee = priv->ieee80211; //for initial tx rate ieee->softmac_stats.last_packet_rate = read_nic_byte(priv ,Initial_Tx_Rate_Reg); //for tx tx retry count ieee->softmac_stats.txretrycount = read_nic_dword(priv, Tx_Retry_Count_Reg); } static void dm_send_rssi_tofw(struct r8192_priv *priv) { // If we test chariot, we should stop the TX command ? // Because 92E will always silent reset when we send tx command. We use register // 0x1e0(byte) to botify driver. write_nic_byte(priv, DRIVER_RSSI, (u8)priv->undecorated_smoothed_pwdb); return; }