/* ** ** PCI Lower Bus Adapter (LBA) manager ** ** (c) Copyright 1999,2000 Grant Grundler ** (c) Copyright 1999,2000 Hewlett-Packard Company ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** ** This module primarily provides access to PCI bus (config/IOport ** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class ** with 4 digit model numbers - eg C3000 (and A400...sigh). ** ** LBA driver isn't as simple as the Dino driver because: ** (a) this chip has substantial bug fixes between revisions ** (Only one Dino bug has a software workaround :^( ) ** (b) has more options which we don't (yet) support (DMA hints, OLARD) ** (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver) ** (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC). ** (dino only deals with "Legacy" PDC) ** ** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver. ** (I/O SAPIC is integratd in the LBA chip). ** ** FIXME: Add support to SBA and LBA drivers for DMA hint sets ** FIXME: Add support for PCI card hot-plug (OLARD). */ #include <linux/delay.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/init.h> /* for __init and __devinit */ #include <linux/pci.h> #include <linux/ioport.h> #include <linux/slab.h> #include <asm/byteorder.h> #include <asm/pdc.h> #include <asm/pdcpat.h> #include <asm/page.h> #include <asm/system.h> #include <asm/ropes.h> #include <asm/hardware.h> /* for register_parisc_driver() stuff */ #include <asm/parisc-device.h> #include <asm/io.h> /* read/write stuff */ #undef DEBUG_LBA /* general stuff */ #undef DEBUG_LBA_PORT /* debug I/O Port access */ #undef DEBUG_LBA_CFG /* debug Config Space Access (ie PCI Bus walk) */ #undef DEBUG_LBA_PAT /* debug PCI Resource Mgt code - PDC PAT only */ #undef FBB_SUPPORT /* Fast Back-Back xfers - NOT READY YET */ #ifdef DEBUG_LBA #define DBG(x...) printk(x) #else #define DBG(x...) #endif #ifdef DEBUG_LBA_PORT #define DBG_PORT(x...) printk(x) #else #define DBG_PORT(x...) #endif #ifdef DEBUG_LBA_CFG #define DBG_CFG(x...) printk(x) #else #define DBG_CFG(x...) #endif #ifdef DEBUG_LBA_PAT #define DBG_PAT(x...) printk(x) #else #define DBG_PAT(x...) #endif /* ** Config accessor functions only pass in the 8-bit bus number and not ** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus ** number based on what firmware wrote into the scratch register. ** ** The "secondary" bus number is set to this before calling ** pci_register_ops(). If any PPB's are present, the scan will ** discover them and update the "secondary" and "subordinate" ** fields in the pci_bus structure. ** ** Changes in the configuration *may* result in a different ** bus number for each LBA depending on what firmware does. */ #define MODULE_NAME "LBA" /* non-postable I/O port space, densely packed */ #define LBA_PORT_BASE (PCI_F_EXTEND | 0xfee00000UL) static void __iomem *astro_iop_base __read_mostly; static u32 lba_t32; /* lba flags */ #define LBA_FLAG_SKIP_PROBE 0x10 #define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE) /* Looks nice and keeps the compiler happy */ #define LBA_DEV(d) ((struct lba_device *) (d)) /* ** Only allow 8 subsidiary busses per LBA ** Problem is the PCI bus numbering is globally shared. */ #define LBA_MAX_NUM_BUSES 8 /************************************ * LBA register read and write support * * BE WARNED: register writes are posted. * (ie follow writes which must reach HW with a read) */ #define READ_U8(addr) __raw_readb(addr) #define READ_U16(addr) __raw_readw(addr) #define READ_U32(addr) __raw_readl(addr) #define WRITE_U8(value, addr) __raw_writeb(value, addr) #define WRITE_U16(value, addr) __raw_writew(value, addr) #define WRITE_U32(value, addr) __raw_writel(value, addr) #define READ_REG8(addr) readb(addr) #define READ_REG16(addr) readw(addr) #define READ_REG32(addr) readl(addr) #define READ_REG64(addr) readq(addr) #define WRITE_REG8(value, addr) writeb(value, addr) #define WRITE_REG16(value, addr) writew(value, addr) #define WRITE_REG32(value, addr) writel(value, addr) #define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8)) #define LBA_CFG_BUS(tok) ((u8) ((tok)>>16)) #define LBA_CFG_DEV(tok) ((u8) ((tok)>>11) & 0x1f) #define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7) /* ** Extract LBA (Rope) number from HPA ** REVISIT: 16 ropes for Stretch/Ike? */ #define ROPES_PER_IOC 8 #define LBA_NUM(x) ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1)) static void lba_dump_res(struct resource *r, int d) { int i; if (NULL == r) return; printk(KERN_DEBUG "(%p)", r->parent); for (i = d; i ; --i) printk(" "); printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r, (long)r->start, (long)r->end, r->flags); lba_dump_res(r->child, d+2); lba_dump_res(r->sibling, d); } /* ** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex ** workaround for cfg cycles: ** -- preserve LBA state ** -- prevent any DMA from occurring ** -- turn on smart mode ** -- probe with config writes before doing config reads ** -- check ERROR_STATUS ** -- clear ERROR_STATUS ** -- restore LBA state ** ** The workaround is only used for device discovery. */ static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d) { u8 first_bus = d->hba.hba_bus->secondary; u8 last_sub_bus = d->hba.hba_bus->subordinate; if ((bus < first_bus) || (bus > last_sub_bus) || ((bus - first_bus) >= LBA_MAX_NUM_BUSES)) { return 0; } return 1; } #define LBA_CFG_SETUP(d, tok) { \ /* Save contents of error config register. */ \ error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); \ \ /* Save contents of status control register. */ \ status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); \ \ /* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA \ ** arbitration for full bus walks. \ */ \ /* Save contents of arb mask register. */ \ arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK); \ \ /* \ * Turn off all device arbitration bits (i.e. everything \ * except arbitration enable bit). \ */ \ WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK); \ \ /* \ * Set the smart mode bit so that master aborts don't cause \ * LBA to go into PCI fatal mode (required). \ */ \ WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG); \ } #define LBA_CFG_PROBE(d, tok) { \ /* \ * Setup Vendor ID write and read back the address register \ * to make sure that LBA is the bus master. \ */ \ WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\ /* \ * Read address register to ensure that LBA is the bus master, \ * which implies that DMA traffic has stopped when DMA arb is off. \ */ \ lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ /* \ * Generate a cfg write cycle (will have no affect on \ * Vendor ID register since read-only). \ */ \ WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA); \ /* \ * Make sure write has completed before proceeding further, \ * i.e. before setting clear enable. \ */ \ lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ } /* * HPREVISIT: * -- Can't tell if config cycle got the error. * * OV bit is broken until rev 4.0, so can't use OV bit and * LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle. * * As of rev 4.0, no longer need the error check. * * -- Even if we could tell, we still want to return -1 * for **ANY** error (not just master abort). * * -- Only clear non-fatal errors (we don't want to bring * LBA out of pci-fatal mode). * * Actually, there is still a race in which * we could be clearing a fatal error. We will * live with this during our initial bus walk * until rev 4.0 (no driver activity during * initial bus walk). The initial bus walk * has race conditions concerning the use of * smart mode as well. */ #define LBA_MASTER_ABORT_ERROR 0xc #define LBA_FATAL_ERROR 0x10 #define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) { \ u32 error_status = 0; \ /* \ * Set clear enable (CE) bit. Unset by HW when new \ * errors are logged -- LBA HW ERS section 14.3.3). \ */ \ WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \ error_status = READ_REG32(base + LBA_ERROR_STATUS); \ if ((error_status & 0x1f) != 0) { \ /* \ * Fail the config read request. \ */ \ error = 1; \ if ((error_status & LBA_FATAL_ERROR) == 0) { \ /* \ * Clear error status (if fatal bit not set) by setting \ * clear error log bit (CL). \ */ \ WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \ } \ } \ } #define LBA_CFG_TR4_ADDR_SETUP(d, addr) \ WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); #define LBA_CFG_ADDR_SETUP(d, addr) { \ WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ /* \ * Read address register to ensure that LBA is the bus master, \ * which implies that DMA traffic has stopped when DMA arb is off. \ */ \ lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ } #define LBA_CFG_RESTORE(d, base) { \ /* \ * Restore status control register (turn off clear enable). \ */ \ WRITE_REG32(status_control, base + LBA_STAT_CTL); \ /* \ * Restore error config register (turn off smart mode). \ */ \ WRITE_REG32(error_config, base + LBA_ERROR_CONFIG); \ /* \ * Restore arb mask register (reenables DMA arbitration). \ */ \ WRITE_REG32(arb_mask, base + LBA_ARB_MASK); \ } static unsigned int lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size) { u32 data = ~0U; int error = 0; u32 arb_mask = 0; /* used by LBA_CFG_SETUP/RESTORE */ u32 error_config = 0; /* used by LBA_CFG_SETUP/RESTORE */ u32 status_control = 0; /* used by LBA_CFG_SETUP/RESTORE */ LBA_CFG_SETUP(d, tok); LBA_CFG_PROBE(d, tok); LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); if (!error) { void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; LBA_CFG_ADDR_SETUP(d, tok | reg); switch (size) { case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break; case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break; case 4: data = READ_REG32(data_reg); break; } } LBA_CFG_RESTORE(d, d->hba.base_addr); return(data); } static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) { struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; u32 tok = LBA_CFG_TOK(local_bus, devfn); void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; if ((pos > 255) || (devfn > 255)) return -EINVAL; /* FIXME: B2K/C3600 workaround is always use old method... */ /* if (!LBA_SKIP_PROBE(d)) */ { /* original - Generate config cycle on broken elroy with risk we will miss PCI bus errors. */ *data = lba_rd_cfg(d, tok, pos, size); DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data); return 0; } if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->secondary, devfn, d)) { DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos); /* either don't want to look or know device isn't present. */ *data = ~0U; return(0); } /* Basic Algorithm ** Should only get here on fully working LBA rev. ** This is how simple the code should have been. */ LBA_CFG_ADDR_SETUP(d, tok | pos); switch(size) { case 1: *data = READ_REG8 (data_reg + (pos & 3)); break; case 2: *data = READ_REG16(data_reg + (pos & 2)); break; case 4: *data = READ_REG32(data_reg); break; } DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data); return 0; } static void lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size) { int error = 0; u32 arb_mask = 0; u32 error_config = 0; u32 status_control = 0; void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; LBA_CFG_SETUP(d, tok); LBA_CFG_ADDR_SETUP(d, tok | reg); switch (size) { case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break; case 2: WRITE_REG16(data, data_reg + (reg & 2)); break; case 4: WRITE_REG32(data, data_reg); break; } LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); LBA_CFG_RESTORE(d, d->hba.base_addr); } /* * LBA 4.0 config write code implements non-postable semantics * by doing a read of CONFIG ADDR after the write. */ static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) { struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; u32 tok = LBA_CFG_TOK(local_bus,devfn); if ((pos > 255) || (devfn > 255)) return -EINVAL; if (!LBA_SKIP_PROBE(d)) { /* Original Workaround */ lba_wr_cfg(d, tok, pos, (u32) data, size); DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data); return 0; } if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->secondary, devfn, d))) { DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data); return 1; /* New Workaround */ } DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data); /* Basic Algorithm */ LBA_CFG_ADDR_SETUP(d, tok | pos); switch(size) { case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3)); break; case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2)); break; case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA); break; } /* flush posted write */ lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR); return 0; } static struct pci_ops elroy_cfg_ops = { .read = elroy_cfg_read, .write = elroy_cfg_write, }; /* * The mercury_cfg_ops are slightly misnamed; they're also used for Elroy * TR4.0 as no additional bugs were found in this areea between Elroy and * Mercury */ static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) { struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; u32 tok = LBA_CFG_TOK(local_bus, devfn); void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; if ((pos > 255) || (devfn > 255)) return -EINVAL; LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); switch(size) { case 1: *data = READ_REG8(data_reg + (pos & 3)); break; case 2: *data = READ_REG16(data_reg + (pos & 2)); break; case 4: *data = READ_REG32(data_reg); break; break; } DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data); return 0; } /* * LBA 4.0 config write code implements non-postable semantics * by doing a read of CONFIG ADDR after the write. */ static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) { struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; u32 tok = LBA_CFG_TOK(local_bus,devfn); if ((pos > 255) || (devfn > 255)) return -EINVAL; DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data); LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); switch(size) { case 1: WRITE_REG8 (data, data_reg + (pos & 3)); break; case 2: WRITE_REG16(data, data_reg + (pos & 2)); break; case 4: WRITE_REG32(data, data_reg); break; } /* flush posted write */ lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR); return 0; } static struct pci_ops mercury_cfg_ops = { .read = mercury_cfg_read, .write = mercury_cfg_write, }; static void lba_bios_init(void) { DBG(MODULE_NAME ": lba_bios_init\n"); } #ifdef CONFIG_64BIT /* * truncate_pat_collision: Deal with overlaps or outright collisions * between PAT PDC reported ranges. * * Broken PA8800 firmware will report lmmio range that * overlaps with CPU HPA. Just truncate the lmmio range. * * BEWARE: conflicts with this lmmio range may be an * elmmio range which is pointing down another rope. * * FIXME: only deals with one collision per range...theoretically we * could have several. Supporting more than one collision will get messy. */ static unsigned long truncate_pat_collision(struct resource *root, struct resource *new) { unsigned long start = new->start; unsigned long end = new->end; struct resource *tmp = root->child; if (end <= start || start < root->start || !tmp) return 0; /* find first overlap */ while (tmp && tmp->end < start) tmp = tmp->sibling; /* no entries overlap */ if (!tmp) return 0; /* found one that starts behind the new one ** Don't need to do anything. */ if (tmp->start >= end) return 0; if (tmp->start <= start) { /* "front" of new one overlaps */ new->start = tmp->end + 1; if (tmp->end >= end) { /* AACCKK! totally overlaps! drop this range. */ return 1; } } if (tmp->end < end ) { /* "end" of new one overlaps */ new->end = tmp->start - 1; } printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] " "to [%lx,%lx]\n", start, end, (long)new->start, (long)new->end ); return 0; /* truncation successful */ } #else #define truncate_pat_collision(r,n) (0) #endif /* ** The algorithm is generic code. ** But it needs to access local data structures to get the IRQ base. ** Could make this a "pci_fixup_irq(bus, region)" but not sure ** it's worth it. ** ** Called by do_pci_scan_bus() immediately after each PCI bus is walked. ** Resources aren't allocated until recursive buswalk below HBA is completed. */ static void lba_fixup_bus(struct pci_bus *bus) { struct list_head *ln; #ifdef FBB_SUPPORT u16 status; #endif struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge)); int lba_portbase = HBA_PORT_BASE(ldev->hba.hba_num); DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n", bus, bus->secondary, bus->bridge->platform_data); /* ** Properly Setup MMIO resources for this bus. ** pci_alloc_primary_bus() mangles this. */ if (bus->parent) { int i; /* PCI-PCI Bridge */ pci_read_bridge_bases(bus); for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { pci_claim_resource(bus->self, i); } } else { /* Host-PCI Bridge */ int err, i; DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", ldev->hba.io_space.name, ldev->hba.io_space.start, ldev->hba.io_space.end, ldev->hba.io_space.flags); DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", ldev->hba.lmmio_space.name, ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end, ldev->hba.lmmio_space.flags); err = request_resource(&ioport_resource, &(ldev->hba.io_space)); if (err < 0) { lba_dump_res(&ioport_resource, 2); BUG(); } /* advertize Host bridge resources to PCI bus */ bus->resource[0] = &(ldev->hba.io_space); i = 1; if (ldev->hba.elmmio_space.start) { err = request_resource(&iomem_resource, &(ldev->hba.elmmio_space)); if (err < 0) { printk("FAILED: lba_fixup_bus() request for " "elmmio_space [%lx/%lx]\n", (long)ldev->hba.elmmio_space.start, (long)ldev->hba.elmmio_space.end); /* lba_dump_res(&iomem_resource, 2); */ /* BUG(); */ } else bus->resource[i++] = &(ldev->hba.elmmio_space); } /* Overlaps with elmmio can (and should) fail here. * We will prune (or ignore) the distributed range. * * FIXME: SBA code should register all elmmio ranges first. * that would take care of elmmio ranges routed * to a different rope (already discovered) from * getting registered *after* LBA code has already * registered it's distributed lmmio range. */ if (truncate_pat_collision(&iomem_resource, &(ldev->hba.lmmio_space))) { printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n", (long)ldev->hba.lmmio_space.start, (long)ldev->hba.lmmio_space.end); } else { err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space)); if (err < 0) { printk(KERN_ERR "FAILED: lba_fixup_bus() request for " "lmmio_space [%lx/%lx]\n", (long)ldev->hba.lmmio_space.start, (long)ldev->hba.lmmio_space.end); } else bus->resource[i++] = &(ldev->hba.lmmio_space); } #ifdef CONFIG_64BIT /* GMMIO is distributed range. Every LBA/Rope gets part it. */ if (ldev->hba.gmmio_space.flags) { err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space)); if (err < 0) { printk("FAILED: lba_fixup_bus() request for " "gmmio_space [%lx/%lx]\n", (long)ldev->hba.gmmio_space.start, (long)ldev->hba.gmmio_space.end); lba_dump_res(&iomem_resource, 2); BUG(); } bus->resource[i++] = &(ldev->hba.gmmio_space); } #endif } list_for_each(ln, &bus->devices) { int i; struct pci_dev *dev = pci_dev_b(ln); DBG("lba_fixup_bus() %s\n", pci_name(dev)); /* Virtualize Device/Bridge Resources. */ for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { struct resource *res = &dev->resource[i]; /* If resource not allocated - skip it */ if (!res->start) continue; if (res->flags & IORESOURCE_IO) { DBG("lba_fixup_bus() I/O Ports [%lx/%lx] -> ", res->start, res->end); res->start |= lba_portbase; res->end |= lba_portbase; DBG("[%lx/%lx]\n", res->start, res->end); } else if (res->flags & IORESOURCE_MEM) { /* ** Convert PCI (IO_VIEW) addresses to ** processor (PA_VIEW) addresses */ DBG("lba_fixup_bus() MMIO [%lx/%lx] -> ", res->start, res->end); res->start = PCI_HOST_ADDR(HBA_DATA(ldev), res->start); res->end = PCI_HOST_ADDR(HBA_DATA(ldev), res->end); DBG("[%lx/%lx]\n", res->start, res->end); } else { DBG("lba_fixup_bus() WTF? 0x%lx [%lx/%lx] XXX", res->flags, res->start, res->end); } /* ** FIXME: this will result in whinging for devices ** that share expansion ROMs (think quad tulip), but ** isn't harmful. */ pci_claim_resource(dev, i); } #ifdef FBB_SUPPORT /* ** If one device does not support FBB transfers, ** No one on the bus can be allowed to use them. */ (void) pci_read_config_word(dev, PCI_STATUS, &status); bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK); #endif /* ** P2PB's have no IRQs. ignore them. */ if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) continue; /* Adjust INTERRUPT_LINE for this dev */ iosapic_fixup_irq(ldev->iosapic_obj, dev); } #ifdef FBB_SUPPORT /* FIXME/REVISIT - finish figuring out to set FBB on both ** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL. ** Can't fixup here anyway....garr... */ if (fbb_enable) { if (bus->parent) { u8 control; /* enable on PPB */ (void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control); (void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK); } else { /* enable on LBA */ } fbb_enable = PCI_COMMAND_FAST_BACK; } /* Lastly enable FBB/PERR/SERR on all devices too */ list_for_each(ln, &bus->devices) { (void) pci_read_config_word(dev, PCI_COMMAND, &status); status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable; (void) pci_write_config_word(dev, PCI_COMMAND, status); } #endif } static struct pci_bios_ops lba_bios_ops = { .init = lba_bios_init, .fixup_bus = lba_fixup_bus, }; /******************************************************* ** ** LBA Sprockets "I/O Port" Space Accessor Functions ** ** This set of accessor functions is intended for use with ** "legacy firmware" (ie Sprockets on Allegro/Forte boxes). ** ** Many PCI devices don't require use of I/O port space (eg Tulip, ** NCR720) since they export the same registers to both MMIO and ** I/O port space. In general I/O port space is slower than ** MMIO since drivers are designed so PIO writes can be posted. ** ********************************************************/ #define LBA_PORT_IN(size, mask) \ static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \ { \ u##size t; \ t = READ_REG##size(astro_iop_base + addr); \ DBG_PORT(" 0x%x\n", t); \ return (t); \ } LBA_PORT_IN( 8, 3) LBA_PORT_IN(16, 2) LBA_PORT_IN(32, 0) /* ** BUG X4107: Ordering broken - DMA RD return can bypass PIO WR ** ** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is ** guarantee non-postable completion semantics - not avoid X4107. ** The READ_U32 only guarantees the write data gets to elroy but ** out to the PCI bus. We can't read stuff from I/O port space ** since we don't know what has side-effects. Attempting to read ** from configuration space would be suicidal given the number of ** bugs in that elroy functionality. ** ** Description: ** DMA read results can improperly pass PIO writes (X4107). The ** result of this bug is that if a processor modifies a location in ** memory after having issued PIO writes, the PIO writes are not ** guaranteed to be completed before a PCI device is allowed to see ** the modified data in a DMA read. ** ** Note that IKE bug X3719 in TR1 IKEs will result in the same ** symptom. ** ** Workaround: ** The workaround for this bug is to always follow a PIO write with ** a PIO read to the same bus before starting DMA on that PCI bus. ** */ #define LBA_PORT_OUT(size, mask) \ static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \ { \ DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \ WRITE_REG##size(val, astro_iop_base + addr); \ if (LBA_DEV(d)->hw_rev < 3) \ lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \ } LBA_PORT_OUT( 8, 3) LBA_PORT_OUT(16, 2) LBA_PORT_OUT(32, 0) static struct pci_port_ops lba_astro_port_ops = { .inb = lba_astro_in8, .inw = lba_astro_in16, .inl = lba_astro_in32, .outb = lba_astro_out8, .outw = lba_astro_out16, .outl = lba_astro_out32 }; #ifdef CONFIG_64BIT #define PIOP_TO_GMMIO(lba, addr) \ ((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3)) /******************************************************* ** ** LBA PAT "I/O Port" Space Accessor Functions ** ** This set of accessor functions is intended for use with ** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes). ** ** This uses the PIOP space located in the first 64MB of GMMIO. ** Each rope gets a full 64*KB* (ie 4 bytes per page) this way. ** bits 1:0 stay the same. bits 15:2 become 25:12. ** Then add the base and we can generate an I/O Port cycle. ********************************************************/ #undef LBA_PORT_IN #define LBA_PORT_IN(size, mask) \ static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \ { \ u##size t; \ DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \ t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \ DBG_PORT(" 0x%x\n", t); \ return (t); \ } LBA_PORT_IN( 8, 3) LBA_PORT_IN(16, 2) LBA_PORT_IN(32, 0) #undef LBA_PORT_OUT #define LBA_PORT_OUT(size, mask) \ static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \ { \ void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \ DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \ WRITE_REG##size(val, where); \ /* flush the I/O down to the elroy at least */ \ lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \ } LBA_PORT_OUT( 8, 3) LBA_PORT_OUT(16, 2) LBA_PORT_OUT(32, 0) static struct pci_port_ops lba_pat_port_ops = { .inb = lba_pat_in8, .inw = lba_pat_in16, .inl = lba_pat_in32, .outb = lba_pat_out8, .outw = lba_pat_out16, .outl = lba_pat_out32 }; /* ** make range information from PDC available to PCI subsystem. ** We make the PDC call here in order to get the PCI bus range ** numbers. The rest will get forwarded in pcibios_fixup_bus(). ** We don't have a struct pci_bus assigned to us yet. */ static void lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) { unsigned long bytecnt; long io_count; long status; /* PDC return status */ long pa_count; pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell; /* PA_VIEW */ pdc_pat_cell_mod_maddr_block_t *io_pdc_cell; /* IO_VIEW */ int i; pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL); if (!pa_pdc_cell) return; io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL); if (!io_pdc_cell) { kfree(pa_pdc_cell); return; } /* return cell module (IO view) */ status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, PA_VIEW, pa_pdc_cell); pa_count = pa_pdc_cell->mod[1]; status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, IO_VIEW, io_pdc_cell); io_count = io_pdc_cell->mod[1]; /* We've already done this once for device discovery...*/ if (status != PDC_OK) { panic("pdc_pat_cell_module() call failed for LBA!\n"); } if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) { panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n"); } /* ** Inspect the resources PAT tells us about */ for (i = 0; i < pa_count; i++) { struct { unsigned long type; unsigned long start; unsigned long end; /* aka finish */ } *p, *io; struct resource *r; p = (void *) &(pa_pdc_cell->mod[2+i*3]); io = (void *) &(io_pdc_cell->mod[2+i*3]); /* Convert the PAT range data to PCI "struct resource" */ switch(p->type & 0xff) { case PAT_PBNUM: lba_dev->hba.bus_num.start = p->start; lba_dev->hba.bus_num.end = p->end; break; case PAT_LMMIO: /* used to fix up pre-initialized MEM BARs */ if (!lba_dev->hba.lmmio_space.start) { sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO", (int)lba_dev->hba.bus_num.start); lba_dev->hba.lmmio_space_offset = p->start - io->start; r = &lba_dev->hba.lmmio_space; r->name = lba_dev->hba.lmmio_name; } else if (!lba_dev->hba.elmmio_space.start) { sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO", (int)lba_dev->hba.bus_num.start); r = &lba_dev->hba.elmmio_space; r->name = lba_dev->hba.elmmio_name; } else { printk(KERN_WARNING MODULE_NAME " only supports 2 LMMIO resources!\n"); break; } r->start = p->start; r->end = p->end; r->flags = IORESOURCE_MEM; r->parent = r->sibling = r->child = NULL; break; case PAT_GMMIO: /* MMIO space > 4GB phys addr; for 64-bit BAR */ sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO", (int)lba_dev->hba.bus_num.start); r = &lba_dev->hba.gmmio_space; r->name = lba_dev->hba.gmmio_name; r->start = p->start; r->end = p->end; r->flags = IORESOURCE_MEM; r->parent = r->sibling = r->child = NULL; break; case PAT_NPIOP: printk(KERN_WARNING MODULE_NAME " range[%d] : ignoring NPIOP (0x%lx)\n", i, p->start); break; case PAT_PIOP: /* ** Postable I/O port space is per PCI host adapter. ** base of 64MB PIOP region */ lba_dev->iop_base = ioremap_nocache(p->start, 64 * 1024 * 1024); sprintf(lba_dev->hba.io_name, "PCI%02x Ports", (int)lba_dev->hba.bus_num.start); r = &lba_dev->hba.io_space; r->name = lba_dev->hba.io_name; r->start = HBA_PORT_BASE(lba_dev->hba.hba_num); r->end = r->start + HBA_PORT_SPACE_SIZE - 1; r->flags = IORESOURCE_IO; r->parent = r->sibling = r->child = NULL; break; default: printk(KERN_WARNING MODULE_NAME " range[%d] : unknown pat range type (0x%lx)\n", i, p->type & 0xff); break; } } kfree(pa_pdc_cell); kfree(io_pdc_cell); } #else /* keep compiler from complaining about missing declarations */ #define lba_pat_port_ops lba_astro_port_ops #define lba_pat_resources(pa_dev, lba_dev) #endif /* CONFIG_64BIT */ extern void sba_distributed_lmmio(struct parisc_device *, struct resource *); extern void sba_directed_lmmio(struct parisc_device *, struct resource *); static void lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) { struct resource *r; int lba_num; lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND; /* ** With "legacy" firmware, the lowest byte of FW_SCRATCH ** represents bus->secondary and the second byte represents ** bus->subsidiary (i.e. highest PPB programmed by firmware). ** PCI bus walk *should* end up with the same result. ** FIXME: But we don't have sanity checks in PCI or LBA. */ lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH); r = &(lba_dev->hba.bus_num); r->name = "LBA PCI Busses"; r->start = lba_num & 0xff; r->end = (lba_num>>8) & 0xff; /* Set up local PCI Bus resources - we don't need them for ** Legacy boxes but it's nice to see in /proc/iomem. */ r = &(lba_dev->hba.lmmio_space); sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO", (int)lba_dev->hba.bus_num.start); r->name = lba_dev->hba.lmmio_name; #if 1 /* We want the CPU -> IO routing of addresses. * The SBA BASE/MASK registers control CPU -> IO routing. * Ask SBA what is routed to this rope/LBA. */ sba_distributed_lmmio(pa_dev, r); #else /* * The LBA BASE/MASK registers control IO -> System routing. * * The following code works but doesn't get us what we want. * Well, only because firmware (v5.0) on C3000 doesn't program * the LBA BASE/MASE registers to be the exact inverse of * the corresponding SBA registers. Other Astro/Pluto * based platform firmware may do it right. * * Should someone want to mess with MSI, they may need to * reprogram LBA BASE/MASK registers. Thus preserve the code * below until MSI is known to work on C3000/A500/N4000/RP3440. * * Using the code below, /proc/iomem shows: * ... * f0000000-f0ffffff : PCI00 LMMIO * f05d0000-f05d0000 : lcd_data * f05d0008-f05d0008 : lcd_cmd * f1000000-f1ffffff : PCI01 LMMIO * f4000000-f4ffffff : PCI02 LMMIO * f4000000-f4001fff : sym53c8xx * f4002000-f4003fff : sym53c8xx * f4004000-f40043ff : sym53c8xx * f4005000-f40053ff : sym53c8xx * f4007000-f4007fff : ohci_hcd * f4008000-f40083ff : tulip * f6000000-f6ffffff : PCI03 LMMIO * f8000000-fbffffff : PCI00 ELMMIO * fa100000-fa4fffff : stifb mmio * fb000000-fb1fffff : stifb fb * * But everything listed under PCI02 actually lives under PCI00. * This is clearly wrong. * * Asking SBA how things are routed tells the correct story: * LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000 * DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006 * DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004 * DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000 * DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000 * * Which looks like this in /proc/iomem: * f4000000-f47fffff : PCI00 LMMIO * f4000000-f4001fff : sym53c8xx * ...[deteled core devices - same as above]... * f4008000-f40083ff : tulip * f4800000-f4ffffff : PCI01 LMMIO * f6000000-f67fffff : PCI02 LMMIO * f7000000-f77fffff : PCI03 LMMIO * f9000000-f9ffffff : PCI02 ELMMIO * fa000000-fbffffff : PCI03 ELMMIO * fa100000-fa4fffff : stifb mmio * fb000000-fb1fffff : stifb fb * * ie all Built-in core are under now correctly under PCI00. * The "PCI02 ELMMIO" directed range is for: * +-[02]---03.0 3Dfx Interactive, Inc. Voodoo 2 * * All is well now. */ r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE); if (r->start & 1) { unsigned long rsize; r->flags = IORESOURCE_MEM; /* mmio_mask also clears Enable bit */ r->start &= mmio_mask; r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK); /* ** Each rope only gets part of the distributed range. ** Adjust "window" for this rope. */ rsize /= ROPES_PER_IOC; r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start); r->end = r->start + rsize; } else { r->end = r->start = 0; /* Not enabled. */ } #endif /* ** "Directed" ranges are used when the "distributed range" isn't ** sufficient for all devices below a given LBA. Typically devices ** like graphics cards or X25 may need a directed range when the ** bus has multiple slots (ie multiple devices) or the device ** needs more than the typical 4 or 8MB a distributed range offers. ** ** The main reason for ignoring it now frigging complications. ** Directed ranges may overlap (and have precedence) over ** distributed ranges. Or a distributed range assigned to a unused ** rope may be used by a directed range on a different rope. ** Support for graphics devices may require fixing this ** since they may be assigned a directed range which overlaps ** an existing (but unused portion of) distributed range. */ r = &(lba_dev->hba.elmmio_space); sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO", (int)lba_dev->hba.bus_num.start); r->name = lba_dev->hba.elmmio_name; #if 1 /* See comment which precedes call to sba_directed_lmmio() */ sba_directed_lmmio(pa_dev, r); #else r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE); if (r->start & 1) { unsigned long rsize; r->flags = IORESOURCE_MEM; /* mmio_mask also clears Enable bit */ r->start &= mmio_mask; r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK); r->end = r->start + ~rsize; } #endif r = &(lba_dev->hba.io_space); sprintf(lba_dev->hba.io_name, "PCI%02x Ports", (int)lba_dev->hba.bus_num.start); r->name = lba_dev->hba.io_name; r->flags = IORESOURCE_IO; r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L; r->end = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1)); /* Virtualize the I/O Port space ranges */ lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num); r->start |= lba_num; r->end |= lba_num; } /************************************************************************** ** ** LBA initialization code (HW and SW) ** ** o identify LBA chip itself ** o initialize LBA chip modes (HardFail) ** o FIXME: initialize DMA hints for reasonable defaults ** o enable configuration functions ** o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked) ** **************************************************************************/ static int __init lba_hw_init(struct lba_device *d) { u32 stat; u32 bus_reset; /* PDC_PAT_BUG */ #if 0 printk(KERN_DEBUG "LBA %lx STAT_CTL %Lx ERROR_CFG %Lx STATUS %Lx DMA_CTL %Lx\n", d->hba.base_addr, READ_REG64(d->hba.base_addr + LBA_STAT_CTL), READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG), READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS), READ_REG64(d->hba.base_addr + LBA_DMA_CTL) ); printk(KERN_DEBUG " ARB mask %Lx pri %Lx mode %Lx mtlt %Lx\n", READ_REG64(d->hba.base_addr + LBA_ARB_MASK), READ_REG64(d->hba.base_addr + LBA_ARB_PRI), READ_REG64(d->hba.base_addr + LBA_ARB_MODE), READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) ); printk(KERN_DEBUG " HINT cfg 0x%Lx\n", READ_REG64(d->hba.base_addr + LBA_HINT_CFG)); printk(KERN_DEBUG " HINT reg "); { int i; for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8) printk(" %Lx", READ_REG64(d->hba.base_addr + i)); } printk("\n"); #endif /* DEBUG_LBA_PAT */ #ifdef CONFIG_64BIT /* * FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support * Only N-Class and up can really make use of Get slot status. * maybe L-class too but I've never played with it there. */ #endif /* PDC_PAT_BUG: exhibited in rev 40.48 on L2000 */ bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1; if (bus_reset) { printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n"); } stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); if (stat & LBA_SMART_MODE) { printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n"); stat &= ~LBA_SMART_MODE; WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG); } /* Set HF mode as the default (vs. -1 mode). */ stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL); /* ** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal ** if it's not already set. If we just cleared the PCI Bus Reset ** signal, wait a bit for the PCI devices to recover and setup. */ if (bus_reset) mdelay(pci_post_reset_delay); if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) { /* ** PDC_PAT_BUG: PDC rev 40.48 on L2000. ** B2000/C3600/J6000 also have this problem? ** ** Elroys with hot pluggable slots don't get configured ** correctly if the slot is empty. ARB_MASK is set to 0 ** and we can't master transactions on the bus if it's ** not at least one. 0x3 enables elroy and first slot. */ printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n"); WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK); } /* ** FIXME: Hint registers are programmed with default hint ** values by firmware. Hints should be sane even if we ** can't reprogram them the way drivers want. */ return 0; } /* * Unfortunately, when firmware numbers busses, it doesn't take into account * Cardbus bridges. So we have to renumber the busses to suit ourselves. * Elroy/Mercury don't actually know what bus number they're attached to; * we use bus 0 to indicate the directly attached bus and any other bus * number will be taken care of by the PCI-PCI bridge. */ static unsigned int lba_next_bus = 0; /* * Determine if lba should claim this chip (return 0) or not (return 1). * If so, initialize the chip and tell other partners in crime they * have work to do. */ static int __init lba_driver_probe(struct parisc_device *dev) { struct lba_device *lba_dev; struct pci_bus *lba_bus; struct pci_ops *cfg_ops; u32 func_class; void *tmp_obj; char *version; void __iomem *addr = ioremap_nocache(dev->hpa.start, 4096); /* Read HW Rev First */ func_class = READ_REG32(addr + LBA_FCLASS); if (IS_ELROY(dev)) { func_class &= 0xf; switch (func_class) { case 0: version = "TR1.0"; break; case 1: version = "TR2.0"; break; case 2: version = "TR2.1"; break; case 3: version = "TR2.2"; break; case 4: version = "TR3.0"; break; case 5: version = "TR4.0"; break; default: version = "TR4+"; } printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n", version, func_class & 0xf, (long)dev->hpa.start); if (func_class < 2) { printk(KERN_WARNING "Can't support LBA older than " "TR2.1 - continuing under adversity.\n"); } #if 0 /* Elroy TR4.0 should work with simple algorithm. But it doesn't. Still missing something. *sigh* */ if (func_class > 4) { cfg_ops = &mercury_cfg_ops; } else #endif { cfg_ops = &elroy_cfg_ops; } } else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) { int major, minor; func_class &= 0xff; major = func_class >> 4, minor = func_class & 0xf; /* We could use one printk for both Elroy and Mercury, * but for the mask for func_class. */ printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n", IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major, minor, func_class, (long)dev->hpa.start); cfg_ops = &mercury_cfg_ops; } else { printk(KERN_ERR "Unknown LBA found at 0x%lx\n", (long)dev->hpa.start); return -ENODEV; } /* Tell I/O SAPIC driver we have a IRQ handler/region. */ tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE); /* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't ** have an IRT entry will get NULL back from iosapic code. */ lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL); if (!lba_dev) { printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n"); return(1); } /* ---------- First : initialize data we already have --------- */ lba_dev->hw_rev = func_class; lba_dev->hba.base_addr = addr; lba_dev->hba.dev = dev; lba_dev->iosapic_obj = tmp_obj; /* save interrupt handle */ lba_dev->hba.iommu = sba_get_iommu(dev); /* get iommu data */ parisc_set_drvdata(dev, lba_dev); /* ------------ Second : initialize common stuff ---------- */ pci_bios = &lba_bios_ops; pcibios_register_hba(HBA_DATA(lba_dev)); spin_lock_init(&lba_dev->lba_lock); if (lba_hw_init(lba_dev)) return(1); /* ---------- Third : setup I/O Port and MMIO resources --------- */ if (is_pdc_pat()) { /* PDC PAT firmware uses PIOP region of GMMIO space. */ pci_port = &lba_pat_port_ops; /* Go ask PDC PAT what resources this LBA has */ lba_pat_resources(dev, lba_dev); } else { if (!astro_iop_base) { /* Sprockets PDC uses NPIOP region */ astro_iop_base = ioremap_nocache(LBA_PORT_BASE, 64 * 1024); pci_port = &lba_astro_port_ops; } /* Poke the chip a bit for /proc output */ lba_legacy_resources(dev, lba_dev); } if (lba_dev->hba.bus_num.start < lba_next_bus) lba_dev->hba.bus_num.start = lba_next_bus; dev->dev.platform_data = lba_dev; lba_bus = lba_dev->hba.hba_bus = pci_scan_bus_parented(&dev->dev, lba_dev->hba.bus_num.start, cfg_ops, NULL); /* This is in lieu of calling pci_assign_unassigned_resources() */ if (is_pdc_pat()) { /* assign resources to un-initialized devices */ DBG_PAT("LBA pci_bus_size_bridges()\n"); pci_bus_size_bridges(lba_bus); DBG_PAT("LBA pci_bus_assign_resources()\n"); pci_bus_assign_resources(lba_bus); #ifdef DEBUG_LBA_PAT DBG_PAT("\nLBA PIOP resource tree\n"); lba_dump_res(&lba_dev->hba.io_space, 2); DBG_PAT("\nLBA LMMIO resource tree\n"); lba_dump_res(&lba_dev->hba.lmmio_space, 2); #endif } pci_enable_bridges(lba_bus); /* ** Once PCI register ops has walked the bus, access to config ** space is restricted. Avoids master aborts on config cycles. ** Early LBA revs go fatal on *any* master abort. */ if (cfg_ops == &elroy_cfg_ops) { lba_dev->flags |= LBA_FLAG_SKIP_PROBE; } if (lba_bus) { lba_next_bus = lba_bus->subordinate + 1; pci_bus_add_devices(lba_bus); } /* Whew! Finally done! Tell services we got this one covered. */ return 0; } static struct parisc_device_id lba_tbl[] = { { HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa }, { HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa }, { HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa }, { 0, } }; static struct parisc_driver lba_driver = { .name = MODULE_NAME, .id_table = lba_tbl, .probe = lba_driver_probe, }; /* ** One time initialization to let the world know the LBA was found. ** Must be called exactly once before pci_init(). */ void __init lba_init(void) { register_parisc_driver(&lba_driver); } /* ** Initialize the IBASE/IMASK registers for LBA (Elroy). ** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA). ** sba_iommu is responsible for locking (none needed at init time). */ void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask) { void __iomem * base_addr = ioremap_nocache(lba->hpa.start, 4096); imask <<= 2; /* adjust for hints - 2 more bits */ /* Make sure we aren't trying to set bits that aren't writeable. */ WARN_ON((ibase & 0x001fffff) != 0); WARN_ON((imask & 0x001fffff) != 0); DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask); WRITE_REG32( imask, base_addr + LBA_IMASK); WRITE_REG32( ibase, base_addr + LBA_IBASE); iounmap(base_addr); }