/* * Broadcom SPI over PCI-SPI Host Controller, low-level hardware driver * * Copyright (C) 1999-2010, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * $Id: bcmpcispi.c,v 1.22.2.4.4.5.6.1 2010/08/13 00:26:05 Exp $ */ #include <typedefs.h> #include <bcmutils.h> #include <sdio.h> /* SDIO Specs */ #include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */ #include <sdiovar.h> /* to get msglevel bit values */ #include <pcicfg.h> #include <bcmsdspi.h> #include <bcmspi.h> #include <bcmpcispi.h> /* BRCM PCI-SPI Host Controller Register definitions */ /* ndis_osl.h needs to do a runtime check of the osh to map * R_REG/W_REG to bus specific access similar to linux_osl.h. * Until then... */ /* linux */ #define SPIPCI_RREG R_REG #define SPIPCI_WREG W_REG #define SPIPCI_ANDREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) & (v))) #define SPIPCI_ORREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) | (v))) int bcmpcispi_dump = 0; /* Set to dump complete trace of all SPI bus transactions */ typedef struct spih_info_ { uint bar0; /* BAR0 of PCI Card */ uint bar1; /* BAR1 of PCI Card */ osl_t *osh; /* osh handle */ spih_pciregs_t *pciregs; /* PCI Core Registers */ spih_regs_t *regs; /* SPI Controller Registers */ uint8 rev; /* PCI Card Revision ID */ } spih_info_t; /* Attach to PCI-SPI Host Controller Hardware */ bool spi_hw_attach(sdioh_info_t *sd) { osl_t *osh; spih_info_t *si; sd_trace(("%s: enter\n", __FUNCTION__)); osh = sd->osh; if ((si = (spih_info_t *)MALLOC(osh, sizeof(spih_info_t))) == NULL) { sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh))); return FALSE; } bzero(si, sizeof(spih_info_t)); sd->controller = si; si->osh = sd->osh; si->rev = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_REV, 4) & 0xFF; if (si->rev < 3) { sd_err(("Host controller %d not supported, please upgrade to rev >= 3\n", si->rev)); MFREE(osh, si, sizeof(spih_info_t)); return (FALSE); } sd_err(("Attaching to Generic PCI SPI Host Controller Rev %d\n", si->rev)); /* FPGA Revision < 3 not supported by driver anymore. */ ASSERT(si->rev >= 3); si->bar0 = sd->bar0; /* Rev < 10 PciSpiHost has 2 BARs: * BAR0 = PCI Core Registers * BAR1 = PciSpiHost Registers (all other cores on backplane) * * Rev 10 and up use a different PCI core which only has a single * BAR0 which contains the PciSpiHost Registers. */ if (si->rev < 10) { si->pciregs = (spih_pciregs_t *)spi_reg_map(osh, (uintptr)si->bar0, sizeof(spih_pciregs_t)); sd_err(("Mapped PCI Core regs to BAR0 at %p\n", si->pciregs)); si->bar1 = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR1, 4); si->regs = (spih_regs_t *)spi_reg_map(osh, (uintptr)si->bar1, sizeof(spih_regs_t)); sd_err(("Mapped SPI Controller regs to BAR1 at %p\n", si->regs)); } else { si->regs = (spih_regs_t *)spi_reg_map(osh, (uintptr)si->bar0, sizeof(spih_regs_t)); sd_err(("Mapped SPI Controller regs to BAR0 at %p\n", si->regs)); si->pciregs = NULL; } /* Enable SPI Controller, 16.67MHz SPI Clock */ SPIPCI_WREG(osh, &si->regs->spih_ctrl, 0x000000d1); /* Set extended feature register to defaults */ SPIPCI_WREG(osh, &si->regs->spih_ext, 0x00000000); /* Set GPIO CS# High (de-asserted) */ SPIPCI_WREG(osh, &si->regs->spih_gpio_data, SPIH_CS); /* set GPIO[0] to output for CS# */ /* set GPIO[1] to output for power control */ /* set GPIO[2] to input for card detect */ SPIPCI_WREG(osh, &si->regs->spih_gpio_ctrl, (SPIH_CS | SPIH_SLOT_POWER)); /* Clear out the Read FIFO in case there is any stuff left in there from a previous run. */ while ((SPIPCI_RREG(osh, &si->regs->spih_stat) & SPIH_RFEMPTY) == 0) { SPIPCI_RREG(osh, &si->regs->spih_data); } /* Wait for power to stabilize to the SDIO Card (100msec was insufficient) */ OSL_DELAY(250000); /* Check card detect on FPGA Revision >= 4 */ if (si->rev >= 4) { if (SPIPCI_RREG(osh, &si->regs->spih_gpio_data) & SPIH_CARD_DETECT) { sd_err(("%s: no card detected in SD slot\n", __FUNCTION__)); spi_reg_unmap(osh, (uintptr)si->regs, sizeof(spih_regs_t)); if (si->pciregs) { spi_reg_unmap(osh, (uintptr)si->pciregs, sizeof(spih_pciregs_t)); } MFREE(osh, si, sizeof(spih_info_t)); return FALSE; } } /* Interrupts are level sensitive */ SPIPCI_WREG(osh, &si->regs->spih_int_edge, 0x80000000); /* Interrupts are active low. */ SPIPCI_WREG(osh, &si->regs->spih_int_pol, 0x40000004); /* Enable interrupts through PCI Core. */ if (si->pciregs) { SPIPCI_WREG(osh, &si->pciregs->ICR, PCI_INT_PROP_EN); } sd_trace(("%s: exit\n", __FUNCTION__)); return TRUE; } /* Detach and return PCI-SPI Hardware to unconfigured state */ bool spi_hw_detach(sdioh_info_t *sd) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; spih_pciregs_t *pciregs = si->pciregs; sd_trace(("%s: enter\n", __FUNCTION__)); SPIPCI_WREG(osh, ®s->spih_ctrl, 0x00000010); SPIPCI_WREG(osh, ®s->spih_gpio_ctrl, 0x00000000); /* Disable GPIO for CS# */ SPIPCI_WREG(osh, ®s->spih_int_mask, 0x00000000); /* Clear Intmask */ SPIPCI_WREG(osh, ®s->spih_hex_disp, 0x0000DEAF); SPIPCI_WREG(osh, ®s->spih_int_edge, 0x00000000); SPIPCI_WREG(osh, ®s->spih_int_pol, 0x00000000); SPIPCI_WREG(osh, ®s->spih_hex_disp, 0x0000DEAD); /* Disable interrupts through PCI Core. */ if (si->pciregs) { SPIPCI_WREG(osh, &pciregs->ICR, 0x00000000); spi_reg_unmap(osh, (uintptr)pciregs, sizeof(spih_pciregs_t)); } spi_reg_unmap(osh, (uintptr)regs, sizeof(spih_regs_t)); MFREE(osh, si, sizeof(spih_info_t)); sd->controller = NULL; sd_trace(("%s: exit\n", __FUNCTION__)); return TRUE; } /* Switch between internal (PCI) and external clock oscillator */ static bool sdspi_switch_clock(sdioh_info_t *sd, bool ext_clk) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; /* Switch to desired clock, and reset the PLL. */ SPIPCI_WREG(osh, ®s->spih_pll_ctrl, ext_clk ? SPIH_EXT_CLK : 0); SPINWAIT(((SPIPCI_RREG(osh, ®s->spih_pll_status) & SPIH_PLL_LOCKED) != SPIH_PLL_LOCKED), 1000); if ((SPIPCI_RREG(osh, ®s->spih_pll_status) & SPIH_PLL_LOCKED) != SPIH_PLL_LOCKED) { sd_err(("%s: timeout waiting for PLL to lock\n", __FUNCTION__)); return (FALSE); } return (TRUE); } /* Configure PCI-SPI Host Controller's SPI Clock rate as a divisor into the * base clock rate. The base clock is either the PCI Clock (33MHz) or the * external clock oscillator at U17 on the PciSpiHost. */ bool spi_start_clock(sdioh_info_t *sd, uint16 div) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; uint32 t, espr, disp; uint32 disp_xtal_freq; bool ext_clock = FALSE; char disp_string[5]; if (div > 2048) { sd_err(("%s: divisor %d too large; using max of 2048\n", __FUNCTION__, div)); div = 2048; } else if (div & (div - 1)) { /* Not a power of 2? */ /* Round up to a power of 2 */ while ((div + 1) & div) div |= div >> 1; div++; } /* For FPGA Rev >= 5, the use of an external clock oscillator is supported. * If the oscillator is populated, use it to provide the SPI base clock, * otherwise, default to the PCI clock as the SPI base clock. */ if (si->rev >= 5) { uint32 clk_tick; /* Enable the External Clock Oscillator as PLL clock source. */ if (!sdspi_switch_clock(sd, TRUE)) { sd_err(("%s: error switching to external clock\n", __FUNCTION__)); } /* Check to make sure the external clock is running. If not, then it * is not populated on the card, so we will default to the PCI clock. */ clk_tick = SPIPCI_RREG(osh, ®s->spih_clk_count); if (clk_tick == SPIPCI_RREG(osh, ®s->spih_clk_count)) { /* Switch back to the PCI clock as the clock source. */ if (!sdspi_switch_clock(sd, FALSE)) { sd_err(("%s: error switching to external clock\n", __FUNCTION__)); } } else { ext_clock = TRUE; } } /* Hack to allow hot-swapping oscillators: * 1. Force PCI clock as clock source, using sd_divisor of 0. * 2. Swap oscillator * 3. Set desired sd_divisor (will switch to external oscillator as clock source. */ if (div == 0) { ext_clock = FALSE; div = 2; /* Select PCI clock as the clock source. */ if (!sdspi_switch_clock(sd, FALSE)) { sd_err(("%s: error switching to external clock\n", __FUNCTION__)); } sd_err(("%s: Ok to hot-swap oscillators.\n", __FUNCTION__)); } /* If using the external oscillator, read the clock frequency from the controller * The value read is in units of 10000Hz, and it's not a nice round number because * it is calculated by the FPGA. So to make up for that, we round it off. */ if (ext_clock == TRUE) { uint32 xtal_freq; OSL_DELAY(1000); xtal_freq = SPIPCI_RREG(osh, ®s->spih_xtal_freq) * 10000; sd_info(("%s: Oscillator is %dHz\n", __FUNCTION__, xtal_freq)); disp_xtal_freq = xtal_freq / 10000; /* Round it off to a nice number. */ if ((disp_xtal_freq % 100) > 50) { disp_xtal_freq += 100; } disp_xtal_freq = (disp_xtal_freq / 100) * 100; } else { sd_err(("%s: no external oscillator installed, using PCI clock.\n", __FUNCTION__)); disp_xtal_freq = 3333; } /* Convert the SPI Clock frequency to BCD format. */ sprintf(disp_string, "%04d", disp_xtal_freq / div); disp = (disp_string[0] - '0') << 12; disp |= (disp_string[1] - '0') << 8; disp |= (disp_string[2] - '0') << 4; disp |= (disp_string[3] - '0'); /* Select the correct ESPR register value based on the divisor. */ switch (div) { case 1: espr = 0x0; break; case 2: espr = 0x1; break; case 4: espr = 0x2; break; case 8: espr = 0x5; break; case 16: espr = 0x3; break; case 32: espr = 0x4; break; case 64: espr = 0x6; break; case 128: espr = 0x7; break; case 256: espr = 0x8; break; case 512: espr = 0x9; break; case 1024: espr = 0xa; break; case 2048: espr = 0xb; break; default: espr = 0x0; ASSERT(0); break; } t = SPIPCI_RREG(osh, ®s->spih_ctrl); t &= ~3; t |= espr & 3; SPIPCI_WREG(osh, ®s->spih_ctrl, t); t = SPIPCI_RREG(osh, ®s->spih_ext); t &= ~3; t |= (espr >> 2) & 3; SPIPCI_WREG(osh, ®s->spih_ext, t); SPIPCI_WREG(osh, ®s->spih_hex_disp, disp); /* For Rev 8, writing to the PLL_CTRL register resets * the PLL, and it can re-acquire in 200uS. For * Rev 7 and older, we use a software delay to allow * the PLL to re-acquire, which takes more than 2mS. */ if (si->rev < 8) { /* Wait for clock to settle. */ OSL_DELAY(5000); } sd_info(("%s: SPI_CTRL=0x%08x SPI_EXT=0x%08x\n", __FUNCTION__, SPIPCI_RREG(osh, ®s->spih_ctrl), SPIPCI_RREG(osh, ®s->spih_ext))); return TRUE; } /* Configure PCI-SPI Host Controller High-Speed Clocking mode setting */ bool spi_controller_highspeed_mode(sdioh_info_t *sd, bool hsmode) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; if (si->rev >= 10) { if (hsmode) { SPIPCI_ORREG(osh, ®s->spih_ext, 0x10); } else { SPIPCI_ANDREG(osh, ®s->spih_ext, ~0x10); } } return TRUE; } /* Disable device interrupt */ void spi_devintr_off(sdioh_info_t *sd) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints)); if (sd->use_client_ints) { sd->intmask &= ~SPIH_DEV_INTR; SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); /* Clear Intmask */ } } /* Enable device interrupt */ void spi_devintr_on(sdioh_info_t *sd) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; ASSERT(sd->lockcount == 0); sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints)); if (sd->use_client_ints) { if (SPIPCI_RREG(osh, ®s->spih_ctrl) & 0x02) { /* Ack in case one was pending but is no longer... */ SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_DEV_INTR); } sd->intmask |= SPIH_DEV_INTR; /* Set device intr in Intmask */ SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); } } /* Check to see if an interrupt belongs to the PCI-SPI Host or a SPI Device */ bool spi_check_client_intr(sdioh_info_t *sd, int *is_dev_intr) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; bool ours = FALSE; uint32 raw_int, cur_int; ASSERT(sd); if (is_dev_intr) *is_dev_intr = FALSE; raw_int = SPIPCI_RREG(osh, ®s->spih_int_status); cur_int = raw_int & sd->intmask; if (cur_int & SPIH_DEV_INTR) { if (sd->client_intr_enabled && sd->use_client_ints) { sd->intrcount++; ASSERT(sd->intr_handler); ASSERT(sd->intr_handler_arg); (sd->intr_handler)(sd->intr_handler_arg); if (is_dev_intr) *is_dev_intr = TRUE; } else { sd_trace(("%s: Not ready for intr: enabled %d, handler 0x%p\n", __FUNCTION__, sd->client_intr_enabled, sd->intr_handler)); } SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_DEV_INTR); SPIPCI_RREG(osh, ®s->spih_int_status); ours = TRUE; } else if (cur_int & SPIH_CTLR_INTR) { /* Interrupt is from SPI FIFO... just clear and ack it... */ sd_trace(("%s: SPI CTLR interrupt: raw_int 0x%08x cur_int 0x%08x\n", __FUNCTION__, raw_int, cur_int)); /* Clear the interrupt in the SPI_STAT register */ SPIPCI_WREG(osh, ®s->spih_stat, 0x00000080); /* Ack the interrupt in the interrupt controller */ SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_CTLR_INTR); SPIPCI_RREG(osh, ®s->spih_int_status); ours = TRUE; } else if (cur_int & SPIH_WFIFO_INTR) { sd_trace(("%s: SPI WR FIFO Empty interrupt: raw_int 0x%08x cur_int 0x%08x\n", __FUNCTION__, raw_int, cur_int)); /* Disable the FIFO Empty Interrupt */ sd->intmask &= ~SPIH_WFIFO_INTR; SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); sd->local_intrcount++; sd->got_hcint = TRUE; ours = TRUE; } else { /* Not an error: can share interrupts... */ sd_trace(("%s: Not my interrupt: raw_int 0x%08x cur_int 0x%08x\n", __FUNCTION__, raw_int, cur_int)); ours = FALSE; } return ours; } static void hexdump(char *pfx, unsigned char *msg, int msglen) { int i, col; char buf[80]; ASSERT(strlen(pfx) + 49 <= sizeof(buf)); col = 0; for (i = 0; i < msglen; i++, col++) { if (col % 16 == 0) strcpy(buf, pfx); sprintf(buf + strlen(buf), "%02x", msg[i]); if ((col + 1) % 16 == 0) printf("%s\n", buf); else sprintf(buf + strlen(buf), " "); } if (col % 16 != 0) printf("%s\n", buf); } /* Send/Receive an SPI Packet */ void spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; uint32 count; uint32 spi_data_out; uint32 spi_data_in; bool yield; sd_trace(("%s: enter\n", __FUNCTION__)); if (bcmpcispi_dump) { printf("SENDRECV(len=%d)\n", msglen); hexdump(" OUT: ", msg_out, msglen); } #ifdef BCMSDYIELD /* Only yield the CPU and wait for interrupt on Rev 8 and newer FPGA images. */ yield = ((msglen > 500) && (si->rev >= 8)); #else yield = FALSE; #endif /* BCMSDYIELD */ ASSERT(msglen % 4 == 0); SPIPCI_ANDREG(osh, ®s->spih_gpio_data, ~SPIH_CS); /* Set GPIO CS# Low (asserted) */ for (count = 0; count < (uint32)msglen/4; count++) { spi_data_out = ((uint32)((uint32 *)msg_out)[count]); SPIPCI_WREG(osh, ®s->spih_data, spi_data_out); } #ifdef BCMSDYIELD if (yield) { /* Ack the interrupt in the interrupt controller */ SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_WFIFO_INTR); SPIPCI_RREG(osh, ®s->spih_int_status); /* Enable the FIFO Empty Interrupt */ sd->intmask |= SPIH_WFIFO_INTR; sd->got_hcint = FALSE; SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); } #endif /* BCMSDYIELD */ /* Wait for write fifo to empty... */ SPIPCI_ANDREG(osh, ®s->spih_gpio_data, ~0x00000020); /* Set GPIO 5 Low */ if (yield) { ASSERT((SPIPCI_RREG(sd->osh, ®s->spih_stat) & SPIH_WFEMPTY) == 0); } spi_waitbits(sd, yield); SPIPCI_ORREG(osh, ®s->spih_gpio_data, 0x00000020); /* Set GPIO 5 High (de-asserted) */ for (count = 0; count < (uint32)msglen/4; count++) { spi_data_in = SPIPCI_RREG(osh, ®s->spih_data); ((uint32 *)msg_in)[count] = spi_data_in; } /* Set GPIO CS# High (de-asserted) */ SPIPCI_ORREG(osh, ®s->spih_gpio_data, SPIH_CS); if (bcmpcispi_dump) { hexdump(" IN : ", msg_in, msglen); } } void spi_spinbits(sdioh_info_t *sd) { spih_info_t *si = (spih_info_t *)sd->controller; osl_t *osh = si->osh; spih_regs_t *regs = si->regs; uint spin_count; /* Spin loop bound check */ spin_count = 0; while ((SPIPCI_RREG(sd->osh, ®s->spih_stat) & SPIH_WFEMPTY) == 0) { if (spin_count > SPI_SPIN_BOUND) { sd_err(("%s: SPIH_WFEMPTY spin bits out of bound %u times \n", __FUNCTION__, spin_count)); ASSERT(FALSE); } spin_count++; } /* Wait for SPI Transfer state machine to return to IDLE state. * The state bits are only implemented in Rev >= 5 FPGA. These * bits are hardwired to 00 for Rev < 5, so this check doesn't cause * any problems. */ spin_count = 0; while ((SPIPCI_RREG(osh, ®s->spih_stat) & SPIH_STATE_MASK) != 0) { if (spin_count > SPI_SPIN_BOUND) { sd_err(("%s: SPIH_STATE_MASK spin bits out of bound %u times \n", __FUNCTION__, spin_count)); ASSERT(FALSE); } spin_count++; } }