/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2010 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include <linux/bitops.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/rtnetlink.h> #include "net_driver.h" #include "spi.h" #include "efx.h" #include "nic.h" #include "mcdi.h" #include "mcdi_pcol.h" #define EFX_SPI_VERIFY_BUF_LEN 16 struct efx_mtd_partition { struct mtd_info mtd; union { struct { bool updating; u8 nvram_type; u16 fw_subtype; } mcdi; size_t offset; }; const char *type_name; char name[IFNAMSIZ + 20]; }; struct efx_mtd_ops { int (*read)(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u8 *buffer); int (*erase)(struct mtd_info *mtd, loff_t start, size_t len); int (*write)(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u8 *buffer); int (*sync)(struct mtd_info *mtd); }; struct efx_mtd { struct list_head node; struct efx_nic *efx; const struct efx_spi_device *spi; const char *name; const struct efx_mtd_ops *ops; size_t n_parts; struct efx_mtd_partition part[0]; }; #define efx_for_each_partition(part, efx_mtd) \ for ((part) = &(efx_mtd)->part[0]; \ (part) != &(efx_mtd)->part[(efx_mtd)->n_parts]; \ (part)++) #define to_efx_mtd_partition(mtd) \ container_of(mtd, struct efx_mtd_partition, mtd) static int falcon_mtd_probe(struct efx_nic *efx); static int siena_mtd_probe(struct efx_nic *efx); /* SPI utilities */ static int efx_spi_slow_wait(struct efx_mtd_partition *part, bool uninterruptible) { struct efx_mtd *efx_mtd = part->mtd.priv; const struct efx_spi_device *spi = efx_mtd->spi; struct efx_nic *efx = efx_mtd->efx; u8 status; int rc, i; /* Wait up to 4s for flash/EEPROM to finish a slow operation. */ for (i = 0; i < 40; i++) { __set_current_state(uninterruptible ? TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE); schedule_timeout(HZ / 10); rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, &status, sizeof(status)); if (rc) return rc; if (!(status & SPI_STATUS_NRDY)) return 0; if (signal_pending(current)) return -EINTR; } pr_err("%s: timed out waiting for %s\n", part->name, efx_mtd->name); return -ETIMEDOUT; } static int efx_spi_unlock(struct efx_nic *efx, const struct efx_spi_device *spi) { const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 | SPI_STATUS_BP0); u8 status; int rc; rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, &status, sizeof(status)); if (rc) return rc; if (!(status & unlock_mask)) return 0; /* already unlocked */ rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); if (rc) return rc; rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0); if (rc) return rc; status &= ~unlock_mask; rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status, NULL, sizeof(status)); if (rc) return rc; rc = falcon_spi_wait_write(efx, spi); if (rc) return rc; return 0; } static int efx_spi_erase(struct efx_mtd_partition *part, loff_t start, size_t len) { struct efx_mtd *efx_mtd = part->mtd.priv; const struct efx_spi_device *spi = efx_mtd->spi; struct efx_nic *efx = efx_mtd->efx; unsigned pos, block_len; u8 empty[EFX_SPI_VERIFY_BUF_LEN]; u8 buffer[EFX_SPI_VERIFY_BUF_LEN]; int rc; if (len != spi->erase_size) return -EINVAL; if (spi->erase_command == 0) return -EOPNOTSUPP; rc = efx_spi_unlock(efx, spi); if (rc) return rc; rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); if (rc) return rc; rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL, NULL, 0); if (rc) return rc; rc = efx_spi_slow_wait(part, false); /* Verify the entire region has been wiped */ memset(empty, 0xff, sizeof(empty)); for (pos = 0; pos < len; pos += block_len) { block_len = min(len - pos, sizeof(buffer)); rc = falcon_spi_read(efx, spi, start + pos, block_len, NULL, buffer); if (rc) return rc; if (memcmp(empty, buffer, block_len)) return -EIO; /* Avoid locking up the system */ cond_resched(); if (signal_pending(current)) return -EINTR; } return rc; } /* MTD interface */ static int efx_mtd_erase(struct mtd_info *mtd, struct erase_info *erase) { struct efx_mtd *efx_mtd = mtd->priv; int rc; rc = efx_mtd->ops->erase(mtd, erase->addr, erase->len); if (rc == 0) { erase->state = MTD_ERASE_DONE; } else { erase->state = MTD_ERASE_FAILED; erase->fail_addr = 0xffffffff; } mtd_erase_callback(erase); return rc; } static void efx_mtd_sync(struct mtd_info *mtd) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; int rc; rc = efx_mtd->ops->sync(mtd); if (rc) pr_err("%s: %s sync failed (%d)\n", part->name, efx_mtd->name, rc); } static void efx_mtd_remove_partition(struct efx_mtd_partition *part) { int rc; for (;;) { rc = del_mtd_device(&part->mtd); if (rc != -EBUSY) break; ssleep(1); } WARN_ON(rc); } static void efx_mtd_remove_device(struct efx_mtd *efx_mtd) { struct efx_mtd_partition *part; efx_for_each_partition(part, efx_mtd) efx_mtd_remove_partition(part); list_del(&efx_mtd->node); kfree(efx_mtd); } static void efx_mtd_rename_device(struct efx_mtd *efx_mtd) { struct efx_mtd_partition *part; efx_for_each_partition(part, efx_mtd) if (efx_nic_rev(efx_mtd->efx) >= EFX_REV_SIENA_A0) snprintf(part->name, sizeof(part->name), "%s %s:%02x", efx_mtd->efx->name, part->type_name, part->mcdi.fw_subtype); else snprintf(part->name, sizeof(part->name), "%s %s", efx_mtd->efx->name, part->type_name); } static int efx_mtd_probe_device(struct efx_nic *efx, struct efx_mtd *efx_mtd) { struct efx_mtd_partition *part; efx_mtd->efx = efx; efx_mtd_rename_device(efx_mtd); efx_for_each_partition(part, efx_mtd) { part->mtd.writesize = 1; part->mtd.owner = THIS_MODULE; part->mtd.priv = efx_mtd; part->mtd.name = part->name; part->mtd.erase = efx_mtd_erase; part->mtd.read = efx_mtd->ops->read; part->mtd.write = efx_mtd->ops->write; part->mtd.sync = efx_mtd_sync; if (add_mtd_device(&part->mtd)) goto fail; } list_add(&efx_mtd->node, &efx->mtd_list); return 0; fail: while (part != &efx_mtd->part[0]) { --part; efx_mtd_remove_partition(part); } /* add_mtd_device() returns 1 if the MTD table is full */ return -ENOMEM; } void efx_mtd_remove(struct efx_nic *efx) { struct efx_mtd *efx_mtd, *next; WARN_ON(efx_dev_registered(efx)); list_for_each_entry_safe(efx_mtd, next, &efx->mtd_list, node) efx_mtd_remove_device(efx_mtd); } void efx_mtd_rename(struct efx_nic *efx) { struct efx_mtd *efx_mtd; ASSERT_RTNL(); list_for_each_entry(efx_mtd, &efx->mtd_list, node) efx_mtd_rename_device(efx_mtd); } int efx_mtd_probe(struct efx_nic *efx) { if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) return siena_mtd_probe(efx); else return falcon_mtd_probe(efx); } /* Implementation of MTD operations for Falcon */ static int falcon_mtd_read(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u8 *buffer) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; const struct efx_spi_device *spi = efx_mtd->spi; struct efx_nic *efx = efx_mtd->efx; struct falcon_nic_data *nic_data = efx->nic_data; int rc; rc = mutex_lock_interruptible(&nic_data->spi_lock); if (rc) return rc; rc = falcon_spi_read(efx, spi, part->offset + start, len, retlen, buffer); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; struct efx_nic *efx = efx_mtd->efx; struct falcon_nic_data *nic_data = efx->nic_data; int rc; rc = mutex_lock_interruptible(&nic_data->spi_lock); if (rc) return rc; rc = efx_spi_erase(part, part->offset + start, len); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u8 *buffer) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; const struct efx_spi_device *spi = efx_mtd->spi; struct efx_nic *efx = efx_mtd->efx; struct falcon_nic_data *nic_data = efx->nic_data; int rc; rc = mutex_lock_interruptible(&nic_data->spi_lock); if (rc) return rc; rc = falcon_spi_write(efx, spi, part->offset + start, len, retlen, buffer); mutex_unlock(&nic_data->spi_lock); return rc; } static int falcon_mtd_sync(struct mtd_info *mtd) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; struct efx_nic *efx = efx_mtd->efx; struct falcon_nic_data *nic_data = efx->nic_data; int rc; mutex_lock(&nic_data->spi_lock); rc = efx_spi_slow_wait(part, true); mutex_unlock(&nic_data->spi_lock); return rc; } static struct efx_mtd_ops falcon_mtd_ops = { .read = falcon_mtd_read, .erase = falcon_mtd_erase, .write = falcon_mtd_write, .sync = falcon_mtd_sync, }; static int falcon_mtd_probe(struct efx_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; struct efx_spi_device *spi; struct efx_mtd *efx_mtd; int rc = -ENODEV; ASSERT_RTNL(); spi = &nic_data->spi_flash; if (efx_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) { efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]), GFP_KERNEL); if (!efx_mtd) return -ENOMEM; efx_mtd->spi = spi; efx_mtd->name = "flash"; efx_mtd->ops = &falcon_mtd_ops; efx_mtd->n_parts = 1; efx_mtd->part[0].mtd.type = MTD_NORFLASH; efx_mtd->part[0].mtd.flags = MTD_CAP_NORFLASH; efx_mtd->part[0].mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START; efx_mtd->part[0].mtd.erasesize = spi->erase_size; efx_mtd->part[0].offset = FALCON_FLASH_BOOTCODE_START; efx_mtd->part[0].type_name = "sfc_flash_bootrom"; rc = efx_mtd_probe_device(efx, efx_mtd); if (rc) { kfree(efx_mtd); return rc; } } spi = &nic_data->spi_eeprom; if (efx_spi_present(spi) && spi->size > EFX_EEPROM_BOOTCONFIG_START) { efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]), GFP_KERNEL); if (!efx_mtd) return -ENOMEM; efx_mtd->spi = spi; efx_mtd->name = "EEPROM"; efx_mtd->ops = &falcon_mtd_ops; efx_mtd->n_parts = 1; efx_mtd->part[0].mtd.type = MTD_RAM; efx_mtd->part[0].mtd.flags = MTD_CAP_RAM; efx_mtd->part[0].mtd.size = min(spi->size, EFX_EEPROM_BOOTCONFIG_END) - EFX_EEPROM_BOOTCONFIG_START; efx_mtd->part[0].mtd.erasesize = spi->erase_size; efx_mtd->part[0].offset = EFX_EEPROM_BOOTCONFIG_START; efx_mtd->part[0].type_name = "sfc_bootconfig"; rc = efx_mtd_probe_device(efx, efx_mtd); if (rc) { kfree(efx_mtd); return rc; } } return rc; } /* Implementation of MTD operations for Siena */ static int siena_mtd_read(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u8 *buffer) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; struct efx_nic *efx = efx_mtd->efx; loff_t offset = start; loff_t end = min_t(loff_t, start + len, mtd->size); size_t chunk; int rc = 0; while (offset < end) { chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); rc = efx_mcdi_nvram_read(efx, part->mcdi.nvram_type, offset, buffer, chunk); if (rc) goto out; offset += chunk; buffer += chunk; } out: *retlen = offset - start; return rc; } static int siena_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; struct efx_nic *efx = efx_mtd->efx; loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); loff_t end = min_t(loff_t, start + len, mtd->size); size_t chunk = part->mtd.erasesize; int rc = 0; if (!part->mcdi.updating) { rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type); if (rc) goto out; part->mcdi.updating = 1; } /* The MCDI interface can in fact do multiple erase blocks at once; * but erasing may be slow, so we make multiple calls here to avoid * tripping the MCDI RPC timeout. */ while (offset < end) { rc = efx_mcdi_nvram_erase(efx, part->mcdi.nvram_type, offset, chunk); if (rc) goto out; offset += chunk; } out: return rc; } static int siena_mtd_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u8 *buffer) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; struct efx_nic *efx = efx_mtd->efx; loff_t offset = start; loff_t end = min_t(loff_t, start + len, mtd->size); size_t chunk; int rc = 0; if (!part->mcdi.updating) { rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type); if (rc) goto out; part->mcdi.updating = 1; } while (offset < end) { chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); rc = efx_mcdi_nvram_write(efx, part->mcdi.nvram_type, offset, buffer, chunk); if (rc) goto out; offset += chunk; buffer += chunk; } out: *retlen = offset - start; return rc; } static int siena_mtd_sync(struct mtd_info *mtd) { struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); struct efx_mtd *efx_mtd = mtd->priv; struct efx_nic *efx = efx_mtd->efx; int rc = 0; if (part->mcdi.updating) { part->mcdi.updating = 0; rc = efx_mcdi_nvram_update_finish(efx, part->mcdi.nvram_type); } return rc; } static struct efx_mtd_ops siena_mtd_ops = { .read = siena_mtd_read, .erase = siena_mtd_erase, .write = siena_mtd_write, .sync = siena_mtd_sync, }; struct siena_nvram_type_info { int port; const char *name; }; static struct siena_nvram_type_info siena_nvram_types[] = { [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" }, [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" }, [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" }, [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" }, [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" }, [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" }, [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" }, [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" }, [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" }, [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" }, [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" }, [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" }, }; static int siena_mtd_probe_partition(struct efx_nic *efx, struct efx_mtd *efx_mtd, unsigned int part_id, unsigned int type) { struct efx_mtd_partition *part = &efx_mtd->part[part_id]; struct siena_nvram_type_info *info; size_t size, erase_size; bool protected; int rc; if (type >= ARRAY_SIZE(siena_nvram_types)) return -ENODEV; info = &siena_nvram_types[type]; if (info->port != efx_port_num(efx)) return -ENODEV; rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); if (rc) return rc; if (protected) return -ENODEV; /* hide it */ part->mcdi.nvram_type = type; part->type_name = info->name; part->mtd.type = MTD_NORFLASH; part->mtd.flags = MTD_CAP_NORFLASH; part->mtd.size = size; part->mtd.erasesize = erase_size; return 0; } static int siena_mtd_get_fw_subtypes(struct efx_nic *efx, struct efx_mtd *efx_mtd) { struct efx_mtd_partition *part; uint16_t fw_subtype_list[MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN / sizeof(uint16_t)]; int rc; rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list); if (rc) return rc; efx_for_each_partition(part, efx_mtd) part->mcdi.fw_subtype = fw_subtype_list[part->mcdi.nvram_type]; return 0; } static int siena_mtd_probe(struct efx_nic *efx) { struct efx_mtd *efx_mtd; int rc = -ENODEV; u32 nvram_types; unsigned int type; ASSERT_RTNL(); rc = efx_mcdi_nvram_types(efx, &nvram_types); if (rc) return rc; efx_mtd = kzalloc(sizeof(*efx_mtd) + hweight32(nvram_types) * sizeof(efx_mtd->part[0]), GFP_KERNEL); if (!efx_mtd) return -ENOMEM; efx_mtd->name = "Siena NVRAM manager"; efx_mtd->ops = &siena_mtd_ops; type = 0; efx_mtd->n_parts = 0; while (nvram_types != 0) { if (nvram_types & 1) { rc = siena_mtd_probe_partition(efx, efx_mtd, efx_mtd->n_parts, type); if (rc == 0) efx_mtd->n_parts++; else if (rc != -ENODEV) goto fail; } type++; nvram_types >>= 1; } rc = siena_mtd_get_fw_subtypes(efx, efx_mtd); if (rc) goto fail; rc = efx_mtd_probe_device(efx, efx_mtd); fail: if (rc) kfree(efx_mtd); return rc; }