/* bnx2x_cmn.h: Broadcom Everest network driver. * * Copyright (c) 2007-2010 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein <eilong@broadcom.com> * Written by: Eliezer Tamir * Based on code from Michael Chan's bnx2 driver * UDP CSUM errata workaround by Arik Gendelman * Slowpath and fastpath rework by Vladislav Zolotarov * Statistics and Link management by Yitchak Gertner * */ #ifndef BNX2X_CMN_H #define BNX2X_CMN_H #include <linux/types.h> #include <linux/netdevice.h> #include "bnx2x.h" extern int num_queues; /*********************** Interfaces **************************** * Functions that need to be implemented by each driver version */ /** * Initialize link parameters structure variables. * * @param bp * @param load_mode * * @return u8 */ u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode); /** * Configure hw according to link parameters structure. * * @param bp */ void bnx2x_link_set(struct bnx2x *bp); /** * Query link status * * @param bp * @param is_serdes * * @return 0 - link is UP */ u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes); /** * Handles link status change * * @param bp */ void bnx2x__link_status_update(struct bnx2x *bp); /** * Report link status to upper layer * * @param bp * * @return int */ void bnx2x_link_report(struct bnx2x *bp); /** * calculates MF speed according to current linespeed and MF * configuration * * @param bp * * @return u16 */ u16 bnx2x_get_mf_speed(struct bnx2x *bp); /** * MSI-X slowpath interrupt handler * * @param irq * @param dev_instance * * @return irqreturn_t */ irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance); /** * non MSI-X interrupt handler * * @param irq * @param dev_instance * * @return irqreturn_t */ irqreturn_t bnx2x_interrupt(int irq, void *dev_instance); #ifdef BCM_CNIC /** * Send command to cnic driver * * @param bp * @param cmd */ int bnx2x_cnic_notify(struct bnx2x *bp, int cmd); /** * Provides cnic information for proper interrupt handling * * @param bp */ void bnx2x_setup_cnic_irq_info(struct bnx2x *bp); #endif /** * Enable HW interrupts. * * @param bp */ void bnx2x_int_enable(struct bnx2x *bp); /** * Disable interrupts. This function ensures that there are no * ISRs or SP DPCs (sp_task) are running after it returns. * * @param bp * @param disable_hw if true, disable HW interrupts. */ void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw); /** * Loads device firmware * * @param bp * * @return int */ int bnx2x_init_firmware(struct bnx2x *bp); /** * Init HW blocks according to current initialization stage: * COMMON, PORT or FUNCTION. * * @param bp * @param load_code: COMMON, PORT or FUNCTION * * @return int */ int bnx2x_init_hw(struct bnx2x *bp, u32 load_code); /** * Init driver internals: * - rings * - status blocks * - etc. * * @param bp * @param load_code COMMON, PORT or FUNCTION */ void bnx2x_nic_init(struct bnx2x *bp, u32 load_code); /** * Allocate driver's memory. * * @param bp * * @return int */ int bnx2x_alloc_mem(struct bnx2x *bp); /** * Release driver's memory. * * @param bp */ void bnx2x_free_mem(struct bnx2x *bp); /** * Setup eth Client. * * @param bp * @param fp * @param is_leading * * @return int */ int bnx2x_setup_client(struct bnx2x *bp, struct bnx2x_fastpath *fp, int is_leading); /** * Set number of queues according to mode * * @param bp * */ void bnx2x_set_num_queues(struct bnx2x *bp); /** * Cleanup chip internals: * - Cleanup MAC configuration. * - Close clients. * - etc. * * @param bp * @param unload_mode */ void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode); /** * Acquire HW lock. * * @param bp * @param resource Resource bit which was locked * * @return int */ int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource); /** * Release HW lock. * * @param bp driver handle * @param resource Resource bit which was locked * * @return int */ int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource); /** * Configure eth MAC address in the HW according to the value in * netdev->dev_addr. * * @param bp driver handle * @param set */ void bnx2x_set_eth_mac(struct bnx2x *bp, int set); #ifdef BCM_CNIC /** * Set/Clear FIP MAC(s) at the next enties in the CAM after the ETH * MAC(s). This function will wait until the ramdord completion * returns. * * @param bp driver handle * @param set set or clear the CAM entry * * @return 0 if cussess, -ENODEV if ramrod doesn't return. */ int bnx2x_set_fip_eth_mac_addr(struct bnx2x *bp, int set); /** * Set/Clear ALL_ENODE mcast MAC. * * @param bp * @param set * * @return int */ int bnx2x_set_all_enode_macs(struct bnx2x *bp, int set); #endif /** * Set MAC filtering configurations. * * @remarks called with netif_tx_lock from dev_mcast.c * * @param dev net_device */ void bnx2x_set_rx_mode(struct net_device *dev); /** * Configure MAC filtering rules in a FW. * * @param bp driver handle */ void bnx2x_set_storm_rx_mode(struct bnx2x *bp); /* Parity errors related */ void bnx2x_inc_load_cnt(struct bnx2x *bp); u32 bnx2x_dec_load_cnt(struct bnx2x *bp); bool bnx2x_chk_parity_attn(struct bnx2x *bp); bool bnx2x_reset_is_done(struct bnx2x *bp); void bnx2x_disable_close_the_gate(struct bnx2x *bp); /** * Perform statistics handling according to event * * @param bp driver handle * @param event bnx2x_stats_event */ void bnx2x_stats_handle(struct bnx2x *bp, enum bnx2x_stats_event event); /** * Handle ramrods completion * * @param fp fastpath handle for the event * @param rr_cqe eth_rx_cqe */ void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe); /** * Init/halt function before/after sending * CLIENT_SETUP/CFC_DEL for the first/last client. * * @param bp * * @return int */ int bnx2x_func_start(struct bnx2x *bp); /** * Prepare ILT configurations according to current driver * parameters. * * @param bp */ void bnx2x_ilt_set_info(struct bnx2x *bp); /** * Inintialize dcbx protocol * * @param bp */ void bnx2x_dcbx_init(struct bnx2x *bp); /** * Set power state to the requested value. Currently only D0 and * D3hot are supported. * * @param bp * @param state D0 or D3hot * * @return int */ int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state); /** * Updates MAX part of MF configuration in HW * (if required) * * @param bp * @param value */ void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value); /* dev_close main block */ int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode); /* dev_open main block */ int bnx2x_nic_load(struct bnx2x *bp, int load_mode); /* hard_xmit callback */ netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev); /* select_queue callback */ u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb); int bnx2x_change_mac_addr(struct net_device *dev, void *p); /* NAPI poll Rx part */ int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget); /* NAPI poll Tx part */ int bnx2x_tx_int(struct bnx2x_fastpath *fp); /* suspend/resume callbacks */ int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state); int bnx2x_resume(struct pci_dev *pdev); /* Release IRQ vectors */ void bnx2x_free_irq(struct bnx2x *bp); void bnx2x_init_rx_rings(struct bnx2x *bp); void bnx2x_free_skbs(struct bnx2x *bp); void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw); void bnx2x_netif_start(struct bnx2x *bp); /** * Fill msix_table, request vectors, update num_queues according * to number of available vectors * * @param bp * * @return int */ int bnx2x_enable_msix(struct bnx2x *bp); /** * Request msi mode from OS, updated internals accordingly * * @param bp * * @return int */ int bnx2x_enable_msi(struct bnx2x *bp); /** * NAPI callback * * @param napi * @param budget * * @return int */ int bnx2x_poll(struct napi_struct *napi, int budget); /** * Allocate/release memories outsize main driver structure * * @param bp * * @return int */ int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp); void bnx2x_free_mem_bp(struct bnx2x *bp); /** * Change mtu netdev callback * * @param dev * @param new_mtu * * @return int */ int bnx2x_change_mtu(struct net_device *dev, int new_mtu); /** * tx timeout netdev callback * * @param dev * @param new_mtu * * @return int */ void bnx2x_tx_timeout(struct net_device *dev); #ifdef BCM_VLAN /** * vlan rx register netdev callback * * @param dev * @param new_mtu * * @return int */ void bnx2x_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp); #endif static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp) { barrier(); /* status block is written to by the chip */ fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID]; } static inline void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod) { struct ustorm_eth_rx_producers rx_prods = {0}; int i; /* Update producers */ rx_prods.bd_prod = bd_prod; rx_prods.cqe_prod = rx_comp_prod; rx_prods.sge_prod = rx_sge_prod; /* * Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. * This is only applicable for weak-ordered memory model archs such * as IA-64. The following barrier is also mandatory since FW will * assumes BDs must have buffers. */ wmb(); for (i = 0; i < sizeof(struct ustorm_eth_rx_producers)/4; i++) REG_WR(bp, BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset + i*4, ((u32 *)&rx_prods)[i]); mmiowb(); /* keep prod updates ordered */ DP(NETIF_MSG_RX_STATUS, "queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n", fp->index, bd_prod, rx_comp_prod, rx_sge_prod); } static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update, u32 igu_addr) { struct igu_regular cmd_data = {0}; cmd_data.sb_id_and_flags = ((index << IGU_REGULAR_SB_INDEX_SHIFT) | (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | (update << IGU_REGULAR_BUPDATE_SHIFT) | (op << IGU_REGULAR_ENABLE_INT_SHIFT)); DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n", cmd_data.sb_id_and_flags, igu_addr); REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags); /* Make sure that ACK is written */ mmiowb(); barrier(); } static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 idu_sb_id, bool is_Pf) { u32 data, ctl, cnt = 100; u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; u32 sb_bit = 1 << (idu_sb_id%32); u32 func_encode = BP_FUNC(bp) | ((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT); u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; /* Not supported in BC mode */ if (CHIP_INT_MODE_IS_BC(bp)) return; data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP; ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | func_encode << IGU_CTRL_REG_FID_SHIFT | IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", data, igu_addr_data); REG_WR(bp, igu_addr_data, data); mmiowb(); barrier(); DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", ctl, igu_addr_ctl); REG_WR(bp, igu_addr_ctl, ctl); mmiowb(); barrier(); /* wait for clean up to finish */ while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) msleep(20); if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: " "idu_sb_id %d offset %d bit %d (cnt %d)\n", idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); } } static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id, u8 storm, u16 index, u8 op, u8 update) { u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 + COMMAND_REG_INT_ACK); struct igu_ack_register igu_ack; igu_ack.status_block_index = index; igu_ack.sb_id_and_flags = ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) | (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) | (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) | (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT)); DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n", (*(u32 *)&igu_ack), hc_addr); REG_WR(bp, hc_addr, (*(u32 *)&igu_ack)); /* Make sure that ACK is written */ mmiowb(); barrier(); } static inline void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update) { u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, igu_addr); } static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm, u16 index, u8 op, u8 update) { if (bp->common.int_block == INT_BLOCK_HC) bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update); else { u8 segment; if (CHIP_INT_MODE_IS_BC(bp)) segment = storm; else if (igu_sb_id != bp->igu_dsb_id) segment = IGU_SEG_ACCESS_DEF; else if (storm == ATTENTION_ID) segment = IGU_SEG_ACCESS_ATTN; else segment = IGU_SEG_ACCESS_DEF; bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update); } } static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp) { u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 + COMMAND_REG_SIMD_MASK); u32 result = REG_RD(bp, hc_addr); DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n", result, hc_addr); barrier(); return result; } static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp) { u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8); u32 result = REG_RD(bp, igu_addr); DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n", result, igu_addr); barrier(); return result; } static inline u16 bnx2x_ack_int(struct bnx2x *bp) { barrier(); if (bp->common.int_block == INT_BLOCK_HC) return bnx2x_hc_ack_int(bp); else return bnx2x_igu_ack_int(bp); } static inline int bnx2x_has_tx_work_unload(struct bnx2x_fastpath *fp) { /* Tell compiler that consumer and producer can change */ barrier(); return fp->tx_pkt_prod != fp->tx_pkt_cons; } static inline u16 bnx2x_tx_avail(struct bnx2x_fastpath *fp) { s16 used; u16 prod; u16 cons; prod = fp->tx_bd_prod; cons = fp->tx_bd_cons; /* NUM_TX_RINGS = number of "next-page" entries It will be used as a threshold */ used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS; #ifdef BNX2X_STOP_ON_ERROR WARN_ON(used < 0); WARN_ON(used > fp->bp->tx_ring_size); WARN_ON((fp->bp->tx_ring_size - used) > MAX_TX_AVAIL); #endif return (s16)(fp->bp->tx_ring_size) - used; } static inline int bnx2x_has_tx_work(struct bnx2x_fastpath *fp) { u16 hw_cons; /* Tell compiler that status block fields can change */ barrier(); hw_cons = le16_to_cpu(*fp->tx_cons_sb); return hw_cons != fp->tx_pkt_cons; } static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp) { u16 rx_cons_sb; /* Tell compiler that status block fields can change */ barrier(); rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb); if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT) rx_cons_sb++; return (fp->rx_comp_cons != rx_cons_sb); } /** * disables tx from stack point of view * * @param bp */ static inline void bnx2x_tx_disable(struct bnx2x *bp) { netif_tx_disable(bp->dev); netif_carrier_off(bp->dev); } static inline void bnx2x_free_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 index) { struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; struct page *page = sw_buf->page; struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; /* Skip "next page" elements */ if (!page) return; dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping), SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); __free_pages(page, PAGES_PER_SGE_SHIFT); sw_buf->page = NULL; sge->addr_hi = 0; sge->addr_lo = 0; } static inline void bnx2x_add_all_napi(struct bnx2x *bp) { int i; /* Add NAPI objects */ for_each_napi_queue(bp, i) netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll, BNX2X_NAPI_WEIGHT); } static inline void bnx2x_del_all_napi(struct bnx2x *bp) { int i; for_each_napi_queue(bp, i) netif_napi_del(&bnx2x_fp(bp, i, napi)); } static inline void bnx2x_disable_msi(struct bnx2x *bp) { if (bp->flags & USING_MSIX_FLAG) { pci_disable_msix(bp->pdev); bp->flags &= ~USING_MSIX_FLAG; } else if (bp->flags & USING_MSI_FLAG) { pci_disable_msi(bp->pdev); bp->flags &= ~USING_MSI_FLAG; } } static inline int bnx2x_calc_num_queues(struct bnx2x *bp) { return num_queues ? min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) : min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp)); } static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp) { int i, j; for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { int idx = RX_SGE_CNT * i - 1; for (j = 0; j < 2; j++) { SGE_MASK_CLEAR_BIT(fp, idx); idx--; } } } static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp) { /* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */ memset(fp->sge_mask, 0xff, (NUM_RX_SGE >> RX_SGE_MASK_ELEM_SHIFT)*sizeof(u64)); /* Clear the two last indices in the page to 1: these are the indices that correspond to the "next" element, hence will never be indicated and should be removed from the calculations. */ bnx2x_clear_sge_mask_next_elems(fp); } static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 index) { struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT); struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; dma_addr_t mapping; if (unlikely(page == NULL)) return -ENOMEM; mapping = dma_map_page(&bp->pdev->dev, page, 0, SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { __free_pages(page, PAGES_PER_SGE_SHIFT); return -ENOMEM; } sw_buf->page = page; dma_unmap_addr_set(sw_buf, mapping, mapping); sge->addr_hi = cpu_to_le32(U64_HI(mapping)); sge->addr_lo = cpu_to_le32(U64_LO(mapping)); return 0; } static inline int bnx2x_alloc_rx_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 index) { struct sk_buff *skb; struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; dma_addr_t mapping; skb = netdev_alloc_skb(bp->dev, fp->rx_buf_size); if (unlikely(skb == NULL)) return -ENOMEM; mapping = dma_map_single(&bp->pdev->dev, skb->data, fp->rx_buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { dev_kfree_skb(skb); return -ENOMEM; } rx_buf->skb = skb; dma_unmap_addr_set(rx_buf, mapping, mapping); rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); return 0; } /* note that we are not allocating a new skb, * we are just moving one from cons to prod * we are not creating a new mapping, * so there is no need to check for dma_mapping_error(). */ static inline void bnx2x_reuse_rx_skb(struct bnx2x_fastpath *fp, u16 cons, u16 prod) { struct bnx2x *bp = fp->bp; struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons]; struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; dma_sync_single_for_device(&bp->pdev->dev, dma_unmap_addr(cons_rx_buf, mapping), RX_COPY_THRESH, DMA_FROM_DEVICE); prod_rx_buf->skb = cons_rx_buf->skb; dma_unmap_addr_set(prod_rx_buf, mapping, dma_unmap_addr(cons_rx_buf, mapping)); *prod_bd = *cons_bd; } static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp, struct bnx2x_fastpath *fp, int last) { int i; for (i = 0; i < last; i++) bnx2x_free_rx_sge(bp, fp, i); } static inline void bnx2x_free_tpa_pool(struct bnx2x *bp, struct bnx2x_fastpath *fp, int last) { int i; for (i = 0; i < last; i++) { struct sw_rx_bd *rx_buf = &(fp->tpa_pool[i]); struct sk_buff *skb = rx_buf->skb; if (skb == NULL) { DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); continue; } if (fp->tpa_state[i] == BNX2X_TPA_START) dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), fp->rx_buf_size, DMA_FROM_DEVICE); dev_kfree_skb(skb); rx_buf->skb = NULL; } } static inline void bnx2x_init_tx_rings(struct bnx2x *bp) { int i, j; for_each_tx_queue(bp, j) { struct bnx2x_fastpath *fp = &bp->fp[j]; for (i = 1; i <= NUM_TX_RINGS; i++) { struct eth_tx_next_bd *tx_next_bd = &fp->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; tx_next_bd->addr_hi = cpu_to_le32(U64_HI(fp->tx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); tx_next_bd->addr_lo = cpu_to_le32(U64_LO(fp->tx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); } SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); fp->tx_db.data.zero_fill1 = 0; fp->tx_db.data.prod = 0; fp->tx_pkt_prod = 0; fp->tx_pkt_cons = 0; fp->tx_bd_prod = 0; fp->tx_bd_cons = 0; fp->tx_pkt = 0; } } static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp) { int i; for (i = 1; i <= NUM_RX_RINGS; i++) { struct eth_rx_bd *rx_bd; rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2]; rx_bd->addr_hi = cpu_to_le32(U64_HI(fp->rx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); rx_bd->addr_lo = cpu_to_le32(U64_LO(fp->rx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); } } static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) { int i; for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { struct eth_rx_sge *sge; sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; sge->addr_hi = cpu_to_le32(U64_HI(fp->rx_sge_mapping + BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); sge->addr_lo = cpu_to_le32(U64_LO(fp->rx_sge_mapping + BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); } } static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) { int i; for (i = 1; i <= NUM_RCQ_RINGS; i++) { struct eth_rx_cqe_next_page *nextpg; nextpg = (struct eth_rx_cqe_next_page *) &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; nextpg->addr_hi = cpu_to_le32(U64_HI(fp->rx_comp_mapping + BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); nextpg->addr_lo = cpu_to_le32(U64_LO(fp->rx_comp_mapping + BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); } } #ifdef BCM_CNIC static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp) { bnx2x_fcoe(bp, cl_id) = BNX2X_FCOE_ETH_CL_ID + BP_E1HVN(bp) * NONE_ETH_CONTEXT_USE; bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID; bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; bnx2x_fcoe(bp, bp) = bp; bnx2x_fcoe(bp, state) = BNX2X_FP_STATE_CLOSED; bnx2x_fcoe(bp, index) = FCOE_IDX; bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; bnx2x_fcoe(bp, tx_cons_sb) = BNX2X_FCOE_L2_TX_INDEX; /* qZone id equals to FW (per path) client id */ bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fcoe(bp, cl_id) + BP_PORT(bp)*(CHIP_IS_E2(bp) ? ETH_MAX_RX_CLIENTS_E2 : ETH_MAX_RX_CLIENTS_E1H); /* init shortcut */ bnx2x_fcoe(bp, ustorm_rx_prods_offset) = CHIP_IS_E2(bp) ? USTORM_RX_PRODS_E2_OFFSET(bnx2x_fcoe(bp, cl_qzone_id)) : USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), bnx2x_fcoe_fp(bp)->cl_id); } #endif static inline void __storm_memset_struct(struct bnx2x *bp, u32 addr, size_t size, u32 *data) { int i; for (i = 0; i < size/4; i++) REG_WR(bp, addr + (i * 4), data[i]); } static inline void storm_memset_mac_filters(struct bnx2x *bp, struct tstorm_eth_mac_filter_config *mac_filters, u16 abs_fid) { size_t size = sizeof(struct tstorm_eth_mac_filter_config); u32 addr = BAR_TSTRORM_INTMEM + TSTORM_MAC_FILTER_CONFIG_OFFSET(abs_fid); __storm_memset_struct(bp, addr, size, (u32 *)mac_filters); } static inline void storm_memset_cmng(struct bnx2x *bp, struct cmng_struct_per_port *cmng, u8 port) { size_t size = sizeof(struct cmng_struct_per_port); u32 addr = BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); __storm_memset_struct(bp, addr, size, (u32 *)cmng); } /* HW Lock for shared dual port PHYs */ void bnx2x_acquire_phy_lock(struct bnx2x *bp); void bnx2x_release_phy_lock(struct bnx2x *bp); /** * Extracts MAX BW part from MF configuration. * * @param bp * @param mf_cfg * * @return u16 */ static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg) { u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT; if (!max_cfg) { BNX2X_ERR("Illegal configuration detected for Max BW - " "using 100 instead\n"); max_cfg = 100; } return max_cfg; } #endif /* BNX2X_CMN_H */