/* * linux/drivers/mmc/host/mxcmmc.c - Freescale i.MX MMCI driver * * This is a driver for the SDHC controller found in Freescale MX2/MX3 * SoCs. It is basically the same hardware as found on MX1 (imxmmc.c). * Unlike the hardware found on MX1, this hardware just works and does * not need all the quirks found in imxmmc.c, hence the separate driver. * * Copyright (C) 2008 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> * Copyright (C) 2006 Pavel Pisa, PiKRON <ppisa@pikron.com> * * derived from pxamci.c by Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/module.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/blkdev.h> #include <linux/dma-mapping.h> #include <linux/mmc/host.h> #include <linux/mmc/card.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/gpio.h> #include <linux/regulator/consumer.h> #include <linux/dmaengine.h> #include <asm/dma.h> #include <asm/irq.h> #include <asm/sizes.h> #include <mach/mmc.h> #include <mach/dma.h> #define DRIVER_NAME "mxc-mmc" #define MMC_REG_STR_STP_CLK 0x00 #define MMC_REG_STATUS 0x04 #define MMC_REG_CLK_RATE 0x08 #define MMC_REG_CMD_DAT_CONT 0x0C #define MMC_REG_RES_TO 0x10 #define MMC_REG_READ_TO 0x14 #define MMC_REG_BLK_LEN 0x18 #define MMC_REG_NOB 0x1C #define MMC_REG_REV_NO 0x20 #define MMC_REG_INT_CNTR 0x24 #define MMC_REG_CMD 0x28 #define MMC_REG_ARG 0x2C #define MMC_REG_RES_FIFO 0x34 #define MMC_REG_BUFFER_ACCESS 0x38 #define STR_STP_CLK_RESET (1 << 3) #define STR_STP_CLK_START_CLK (1 << 1) #define STR_STP_CLK_STOP_CLK (1 << 0) #define STATUS_CARD_INSERTION (1 << 31) #define STATUS_CARD_REMOVAL (1 << 30) #define STATUS_YBUF_EMPTY (1 << 29) #define STATUS_XBUF_EMPTY (1 << 28) #define STATUS_YBUF_FULL (1 << 27) #define STATUS_XBUF_FULL (1 << 26) #define STATUS_BUF_UND_RUN (1 << 25) #define STATUS_BUF_OVFL (1 << 24) #define STATUS_SDIO_INT_ACTIVE (1 << 14) #define STATUS_END_CMD_RESP (1 << 13) #define STATUS_WRITE_OP_DONE (1 << 12) #define STATUS_DATA_TRANS_DONE (1 << 11) #define STATUS_READ_OP_DONE (1 << 11) #define STATUS_WR_CRC_ERROR_CODE_MASK (3 << 10) #define STATUS_CARD_BUS_CLK_RUN (1 << 8) #define STATUS_BUF_READ_RDY (1 << 7) #define STATUS_BUF_WRITE_RDY (1 << 6) #define STATUS_RESP_CRC_ERR (1 << 5) #define STATUS_CRC_READ_ERR (1 << 3) #define STATUS_CRC_WRITE_ERR (1 << 2) #define STATUS_TIME_OUT_RESP (1 << 1) #define STATUS_TIME_OUT_READ (1 << 0) #define STATUS_ERR_MASK 0x2f #define CMD_DAT_CONT_CMD_RESP_LONG_OFF (1 << 12) #define CMD_DAT_CONT_STOP_READWAIT (1 << 11) #define CMD_DAT_CONT_START_READWAIT (1 << 10) #define CMD_DAT_CONT_BUS_WIDTH_4 (2 << 8) #define CMD_DAT_CONT_INIT (1 << 7) #define CMD_DAT_CONT_WRITE (1 << 4) #define CMD_DAT_CONT_DATA_ENABLE (1 << 3) #define CMD_DAT_CONT_RESPONSE_48BIT_CRC (1 << 0) #define CMD_DAT_CONT_RESPONSE_136BIT (2 << 0) #define CMD_DAT_CONT_RESPONSE_48BIT (3 << 0) #define INT_SDIO_INT_WKP_EN (1 << 18) #define INT_CARD_INSERTION_WKP_EN (1 << 17) #define INT_CARD_REMOVAL_WKP_EN (1 << 16) #define INT_CARD_INSERTION_EN (1 << 15) #define INT_CARD_REMOVAL_EN (1 << 14) #define INT_SDIO_IRQ_EN (1 << 13) #define INT_DAT0_EN (1 << 12) #define INT_BUF_READ_EN (1 << 4) #define INT_BUF_WRITE_EN (1 << 3) #define INT_END_CMD_RES_EN (1 << 2) #define INT_WRITE_OP_DONE_EN (1 << 1) #define INT_READ_OP_EN (1 << 0) struct mxcmci_host { struct mmc_host *mmc; struct resource *res; void __iomem *base; int irq; int detect_irq; struct dma_chan *dma; struct dma_async_tx_descriptor *desc; int do_dma; int default_irq_mask; int use_sdio; unsigned int power_mode; struct imxmmc_platform_data *pdata; struct mmc_request *req; struct mmc_command *cmd; struct mmc_data *data; unsigned int datasize; unsigned int dma_dir; u16 rev_no; unsigned int cmdat; struct clk *clk; int clock; struct work_struct datawork; spinlock_t lock; struct regulator *vcc; int burstlen; int dmareq; struct dma_slave_config dma_slave_config; struct imx_dma_data dma_data; }; static void mxcmci_set_clk_rate(struct mxcmci_host *host, unsigned int clk_ios); static inline void mxcmci_init_ocr(struct mxcmci_host *host) { host->vcc = regulator_get(mmc_dev(host->mmc), "vmmc"); if (IS_ERR(host->vcc)) { host->vcc = NULL; } else { host->mmc->ocr_avail = mmc_regulator_get_ocrmask(host->vcc); if (host->pdata && host->pdata->ocr_avail) dev_warn(mmc_dev(host->mmc), "pdata->ocr_avail will not be used\n"); } if (host->vcc == NULL) { /* fall-back to platform data */ if (host->pdata && host->pdata->ocr_avail) host->mmc->ocr_avail = host->pdata->ocr_avail; else host->mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; } } static inline void mxcmci_set_power(struct mxcmci_host *host, unsigned char power_mode, unsigned int vdd) { if (host->vcc) { if (power_mode == MMC_POWER_UP) mmc_regulator_set_ocr(host->mmc, host->vcc, vdd); else if (power_mode == MMC_POWER_OFF) mmc_regulator_set_ocr(host->mmc, host->vcc, 0); } if (host->pdata && host->pdata->setpower) host->pdata->setpower(mmc_dev(host->mmc), vdd); } static inline int mxcmci_use_dma(struct mxcmci_host *host) { return host->do_dma; } static void mxcmci_softreset(struct mxcmci_host *host) { int i; dev_dbg(mmc_dev(host->mmc), "mxcmci_softreset\n"); /* reset sequence */ writew(STR_STP_CLK_RESET, host->base + MMC_REG_STR_STP_CLK); writew(STR_STP_CLK_RESET | STR_STP_CLK_START_CLK, host->base + MMC_REG_STR_STP_CLK); for (i = 0; i < 8; i++) writew(STR_STP_CLK_START_CLK, host->base + MMC_REG_STR_STP_CLK); writew(0xff, host->base + MMC_REG_RES_TO); } static int mxcmci_setup_dma(struct mmc_host *mmc); static int mxcmci_setup_data(struct mxcmci_host *host, struct mmc_data *data) { unsigned int nob = data->blocks; unsigned int blksz = data->blksz; unsigned int datasize = nob * blksz; struct scatterlist *sg; int i, nents; if (data->flags & MMC_DATA_STREAM) nob = 0xffff; host->data = data; data->bytes_xfered = 0; writew(nob, host->base + MMC_REG_NOB); writew(blksz, host->base + MMC_REG_BLK_LEN); host->datasize = datasize; if (!mxcmci_use_dma(host)) return 0; for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->offset & 3 || sg->length & 3) { host->do_dma = 0; return 0; } } if (data->flags & MMC_DATA_READ) host->dma_dir = DMA_FROM_DEVICE; else host->dma_dir = DMA_TO_DEVICE; nents = dma_map_sg(host->dma->device->dev, data->sg, data->sg_len, host->dma_dir); if (nents != data->sg_len) return -EINVAL; host->desc = host->dma->device->device_prep_slave_sg(host->dma, data->sg, data->sg_len, host->dma_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!host->desc) { dma_unmap_sg(host->dma->device->dev, data->sg, data->sg_len, host->dma_dir); host->do_dma = 0; return 0; /* Fall back to PIO */ } wmb(); dmaengine_submit(host->desc); return 0; } static int mxcmci_start_cmd(struct mxcmci_host *host, struct mmc_command *cmd, unsigned int cmdat) { u32 int_cntr = host->default_irq_mask; unsigned long flags; WARN_ON(host->cmd != NULL); host->cmd = cmd; switch (mmc_resp_type(cmd)) { case MMC_RSP_R1: /* short CRC, OPCODE */ case MMC_RSP_R1B:/* short CRC, OPCODE, BUSY */ cmdat |= CMD_DAT_CONT_RESPONSE_48BIT_CRC; break; case MMC_RSP_R2: /* long 136 bit + CRC */ cmdat |= CMD_DAT_CONT_RESPONSE_136BIT; break; case MMC_RSP_R3: /* short */ cmdat |= CMD_DAT_CONT_RESPONSE_48BIT; break; case MMC_RSP_NONE: break; default: dev_err(mmc_dev(host->mmc), "unhandled response type 0x%x\n", mmc_resp_type(cmd)); cmd->error = -EINVAL; return -EINVAL; } int_cntr = INT_END_CMD_RES_EN; if (mxcmci_use_dma(host)) int_cntr |= INT_READ_OP_EN | INT_WRITE_OP_DONE_EN; spin_lock_irqsave(&host->lock, flags); if (host->use_sdio) int_cntr |= INT_SDIO_IRQ_EN; writel(int_cntr, host->base + MMC_REG_INT_CNTR); spin_unlock_irqrestore(&host->lock, flags); writew(cmd->opcode, host->base + MMC_REG_CMD); writel(cmd->arg, host->base + MMC_REG_ARG); writew(cmdat, host->base + MMC_REG_CMD_DAT_CONT); return 0; } static void mxcmci_finish_request(struct mxcmci_host *host, struct mmc_request *req) { u32 int_cntr = host->default_irq_mask; unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->use_sdio) int_cntr |= INT_SDIO_IRQ_EN; writel(int_cntr, host->base + MMC_REG_INT_CNTR); spin_unlock_irqrestore(&host->lock, flags); host->req = NULL; host->cmd = NULL; host->data = NULL; mmc_request_done(host->mmc, req); } static int mxcmci_finish_data(struct mxcmci_host *host, unsigned int stat) { struct mmc_data *data = host->data; int data_error; if (mxcmci_use_dma(host)) { dmaengine_terminate_all(host->dma); dma_unmap_sg(host->dma->device->dev, data->sg, data->sg_len, host->dma_dir); } if (stat & STATUS_ERR_MASK) { dev_dbg(mmc_dev(host->mmc), "request failed. status: 0x%08x\n", stat); if (stat & STATUS_CRC_READ_ERR) { dev_err(mmc_dev(host->mmc), "%s: -EILSEQ\n", __func__); data->error = -EILSEQ; } else if (stat & STATUS_CRC_WRITE_ERR) { u32 err_code = (stat >> 9) & 0x3; if (err_code == 2) { /* No CRC response */ dev_err(mmc_dev(host->mmc), "%s: No CRC -ETIMEDOUT\n", __func__); data->error = -ETIMEDOUT; } else { dev_err(mmc_dev(host->mmc), "%s: -EILSEQ\n", __func__); data->error = -EILSEQ; } } else if (stat & STATUS_TIME_OUT_READ) { dev_err(mmc_dev(host->mmc), "%s: read -ETIMEDOUT\n", __func__); data->error = -ETIMEDOUT; } else { dev_err(mmc_dev(host->mmc), "%s: -EIO\n", __func__); data->error = -EIO; } } else { data->bytes_xfered = host->datasize; } data_error = data->error; host->data = NULL; return data_error; } static void mxcmci_read_response(struct mxcmci_host *host, unsigned int stat) { struct mmc_command *cmd = host->cmd; int i; u32 a, b, c; if (!cmd) return; if (stat & STATUS_TIME_OUT_RESP) { dev_dbg(mmc_dev(host->mmc), "CMD TIMEOUT\n"); cmd->error = -ETIMEDOUT; } else if (stat & STATUS_RESP_CRC_ERR && cmd->flags & MMC_RSP_CRC) { dev_dbg(mmc_dev(host->mmc), "cmd crc error\n"); cmd->error = -EILSEQ; } if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { for (i = 0; i < 4; i++) { a = readw(host->base + MMC_REG_RES_FIFO); b = readw(host->base + MMC_REG_RES_FIFO); cmd->resp[i] = a << 16 | b; } } else { a = readw(host->base + MMC_REG_RES_FIFO); b = readw(host->base + MMC_REG_RES_FIFO); c = readw(host->base + MMC_REG_RES_FIFO); cmd->resp[0] = a << 24 | b << 8 | c >> 8; } } } static int mxcmci_poll_status(struct mxcmci_host *host, u32 mask) { u32 stat; unsigned long timeout = jiffies + HZ; do { stat = readl(host->base + MMC_REG_STATUS); if (stat & STATUS_ERR_MASK) return stat; if (time_after(jiffies, timeout)) { mxcmci_softreset(host); mxcmci_set_clk_rate(host, host->clock); return STATUS_TIME_OUT_READ; } if (stat & mask) return 0; cpu_relax(); } while (1); } static int mxcmci_pull(struct mxcmci_host *host, void *_buf, int bytes) { unsigned int stat; u32 *buf = _buf; while (bytes > 3) { stat = mxcmci_poll_status(host, STATUS_BUF_READ_RDY | STATUS_READ_OP_DONE); if (stat) return stat; *buf++ = readl(host->base + MMC_REG_BUFFER_ACCESS); bytes -= 4; } if (bytes) { u8 *b = (u8 *)buf; u32 tmp; stat = mxcmci_poll_status(host, STATUS_BUF_READ_RDY | STATUS_READ_OP_DONE); if (stat) return stat; tmp = readl(host->base + MMC_REG_BUFFER_ACCESS); memcpy(b, &tmp, bytes); } return 0; } static int mxcmci_push(struct mxcmci_host *host, void *_buf, int bytes) { unsigned int stat; u32 *buf = _buf; while (bytes > 3) { stat = mxcmci_poll_status(host, STATUS_BUF_WRITE_RDY); if (stat) return stat; writel(*buf++, host->base + MMC_REG_BUFFER_ACCESS); bytes -= 4; } if (bytes) { u8 *b = (u8 *)buf; u32 tmp; stat = mxcmci_poll_status(host, STATUS_BUF_WRITE_RDY); if (stat) return stat; memcpy(&tmp, b, bytes); writel(tmp, host->base + MMC_REG_BUFFER_ACCESS); } stat = mxcmci_poll_status(host, STATUS_BUF_WRITE_RDY); if (stat) return stat; return 0; } static int mxcmci_transfer_data(struct mxcmci_host *host) { struct mmc_data *data = host->req->data; struct scatterlist *sg; int stat, i; host->data = data; host->datasize = 0; if (data->flags & MMC_DATA_READ) { for_each_sg(data->sg, sg, data->sg_len, i) { stat = mxcmci_pull(host, sg_virt(sg), sg->length); if (stat) return stat; host->datasize += sg->length; } } else { for_each_sg(data->sg, sg, data->sg_len, i) { stat = mxcmci_push(host, sg_virt(sg), sg->length); if (stat) return stat; host->datasize += sg->length; } stat = mxcmci_poll_status(host, STATUS_WRITE_OP_DONE); if (stat) return stat; } return 0; } static void mxcmci_datawork(struct work_struct *work) { struct mxcmci_host *host = container_of(work, struct mxcmci_host, datawork); int datastat = mxcmci_transfer_data(host); writel(STATUS_READ_OP_DONE | STATUS_WRITE_OP_DONE, host->base + MMC_REG_STATUS); mxcmci_finish_data(host, datastat); if (host->req->stop) { if (mxcmci_start_cmd(host, host->req->stop, 0)) { mxcmci_finish_request(host, host->req); return; } } else { mxcmci_finish_request(host, host->req); } } static void mxcmci_data_done(struct mxcmci_host *host, unsigned int stat) { struct mmc_data *data = host->data; int data_error; if (!data) return; data_error = mxcmci_finish_data(host, stat); mxcmci_read_response(host, stat); host->cmd = NULL; if (host->req->stop) { if (mxcmci_start_cmd(host, host->req->stop, 0)) { mxcmci_finish_request(host, host->req); return; } } else { mxcmci_finish_request(host, host->req); } } static void mxcmci_cmd_done(struct mxcmci_host *host, unsigned int stat) { mxcmci_read_response(host, stat); host->cmd = NULL; if (!host->data && host->req) { mxcmci_finish_request(host, host->req); return; } /* For the DMA case the DMA engine handles the data transfer * automatically. For non DMA we have to do it ourselves. * Don't do it in interrupt context though. */ if (!mxcmci_use_dma(host) && host->data) schedule_work(&host->datawork); } static irqreturn_t mxcmci_irq(int irq, void *devid) { struct mxcmci_host *host = devid; unsigned long flags; bool sdio_irq; u32 stat; stat = readl(host->base + MMC_REG_STATUS); writel(stat & ~(STATUS_SDIO_INT_ACTIVE | STATUS_DATA_TRANS_DONE | STATUS_WRITE_OP_DONE), host->base + MMC_REG_STATUS); dev_dbg(mmc_dev(host->mmc), "%s: 0x%08x\n", __func__, stat); spin_lock_irqsave(&host->lock, flags); sdio_irq = (stat & STATUS_SDIO_INT_ACTIVE) && host->use_sdio; spin_unlock_irqrestore(&host->lock, flags); if (mxcmci_use_dma(host) && (stat & (STATUS_READ_OP_DONE | STATUS_WRITE_OP_DONE))) writel(STATUS_READ_OP_DONE | STATUS_WRITE_OP_DONE, host->base + MMC_REG_STATUS); if (sdio_irq) { writel(STATUS_SDIO_INT_ACTIVE, host->base + MMC_REG_STATUS); mmc_signal_sdio_irq(host->mmc); } if (stat & STATUS_END_CMD_RESP) mxcmci_cmd_done(host, stat); if (mxcmci_use_dma(host) && (stat & (STATUS_DATA_TRANS_DONE | STATUS_WRITE_OP_DONE))) mxcmci_data_done(host, stat); if (host->default_irq_mask && (stat & (STATUS_CARD_INSERTION | STATUS_CARD_REMOVAL))) mmc_detect_change(host->mmc, msecs_to_jiffies(200)); return IRQ_HANDLED; } static void mxcmci_request(struct mmc_host *mmc, struct mmc_request *req) { struct mxcmci_host *host = mmc_priv(mmc); unsigned int cmdat = host->cmdat; int error; WARN_ON(host->req != NULL); host->req = req; host->cmdat &= ~CMD_DAT_CONT_INIT; if (host->dma) host->do_dma = 1; if (req->data) { error = mxcmci_setup_data(host, req->data); if (error) { req->cmd->error = error; goto out; } cmdat |= CMD_DAT_CONT_DATA_ENABLE; if (req->data->flags & MMC_DATA_WRITE) cmdat |= CMD_DAT_CONT_WRITE; } error = mxcmci_start_cmd(host, req->cmd, cmdat); out: if (error) mxcmci_finish_request(host, req); } static void mxcmci_set_clk_rate(struct mxcmci_host *host, unsigned int clk_ios) { unsigned int divider; int prescaler = 0; unsigned int clk_in = clk_get_rate(host->clk); while (prescaler <= 0x800) { for (divider = 1; divider <= 0xF; divider++) { int x; x = (clk_in / (divider + 1)); if (prescaler) x /= (prescaler * 2); if (x <= clk_ios) break; } if (divider < 0x10) break; if (prescaler == 0) prescaler = 1; else prescaler <<= 1; } writew((prescaler << 4) | divider, host->base + MMC_REG_CLK_RATE); dev_dbg(mmc_dev(host->mmc), "scaler: %d divider: %d in: %d out: %d\n", prescaler, divider, clk_in, clk_ios); } static int mxcmci_setup_dma(struct mmc_host *mmc) { struct mxcmci_host *host = mmc_priv(mmc); struct dma_slave_config *config = &host->dma_slave_config; config->dst_addr = host->res->start + MMC_REG_BUFFER_ACCESS; config->src_addr = host->res->start + MMC_REG_BUFFER_ACCESS; config->dst_addr_width = 4; config->src_addr_width = 4; config->dst_maxburst = host->burstlen; config->src_maxburst = host->burstlen; return dmaengine_slave_config(host->dma, config); } static void mxcmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mxcmci_host *host = mmc_priv(mmc); int burstlen, ret; /* * use burstlen of 64 in 4 bit mode (--> reg value 0) * use burstlen of 16 in 1 bit mode (--> reg value 16) */ if (ios->bus_width == MMC_BUS_WIDTH_4) burstlen = 64; else burstlen = 16; if (mxcmci_use_dma(host) && burstlen != host->burstlen) { host->burstlen = burstlen; ret = mxcmci_setup_dma(mmc); if (ret) { dev_err(mmc_dev(host->mmc), "failed to config DMA channel. Falling back to PIO\n"); dma_release_channel(host->dma); host->do_dma = 0; } } if (ios->bus_width == MMC_BUS_WIDTH_4) host->cmdat |= CMD_DAT_CONT_BUS_WIDTH_4; else host->cmdat &= ~CMD_DAT_CONT_BUS_WIDTH_4; if (host->power_mode != ios->power_mode) { mxcmci_set_power(host, ios->power_mode, ios->vdd); host->power_mode = ios->power_mode; if (ios->power_mode == MMC_POWER_ON) host->cmdat |= CMD_DAT_CONT_INIT; } if (ios->clock) { mxcmci_set_clk_rate(host, ios->clock); writew(STR_STP_CLK_START_CLK, host->base + MMC_REG_STR_STP_CLK); } else { writew(STR_STP_CLK_STOP_CLK, host->base + MMC_REG_STR_STP_CLK); } host->clock = ios->clock; } static irqreturn_t mxcmci_detect_irq(int irq, void *data) { struct mmc_host *mmc = data; dev_dbg(mmc_dev(mmc), "%s\n", __func__); mmc_detect_change(mmc, msecs_to_jiffies(250)); return IRQ_HANDLED; } static int mxcmci_get_ro(struct mmc_host *mmc) { struct mxcmci_host *host = mmc_priv(mmc); if (host->pdata && host->pdata->get_ro) return !!host->pdata->get_ro(mmc_dev(mmc)); /* * Board doesn't support read only detection; let the mmc core * decide what to do. */ return -ENOSYS; } static void mxcmci_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct mxcmci_host *host = mmc_priv(mmc); unsigned long flags; u32 int_cntr; spin_lock_irqsave(&host->lock, flags); host->use_sdio = enable; int_cntr = readl(host->base + MMC_REG_INT_CNTR); if (enable) int_cntr |= INT_SDIO_IRQ_EN; else int_cntr &= ~INT_SDIO_IRQ_EN; writel(int_cntr, host->base + MMC_REG_INT_CNTR); spin_unlock_irqrestore(&host->lock, flags); } static void mxcmci_init_card(struct mmc_host *host, struct mmc_card *card) { /* * MX3 SoCs have a silicon bug which corrupts CRC calculation of * multi-block transfers when connected SDIO peripheral doesn't * drive the BUSY line as required by the specs. * One way to prevent this is to only allow 1-bit transfers. */ if (cpu_is_mx3() && card->type == MMC_TYPE_SDIO) host->caps &= ~MMC_CAP_4_BIT_DATA; else host->caps |= MMC_CAP_4_BIT_DATA; } static bool filter(struct dma_chan *chan, void *param) { struct mxcmci_host *host = param; if (!imx_dma_is_general_purpose(chan)) return false; chan->private = &host->dma_data; return true; } static const struct mmc_host_ops mxcmci_ops = { .request = mxcmci_request, .set_ios = mxcmci_set_ios, .get_ro = mxcmci_get_ro, .enable_sdio_irq = mxcmci_enable_sdio_irq, .init_card = mxcmci_init_card, }; static int mxcmci_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct mxcmci_host *host = NULL; struct resource *iores, *r; int ret = 0, irq; dma_cap_mask_t mask; printk(KERN_INFO "i.MX SDHC driver\n"); iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!iores || irq < 0) return -EINVAL; r = request_mem_region(iores->start, resource_size(iores), pdev->name); if (!r) return -EBUSY; mmc = mmc_alloc_host(sizeof(struct mxcmci_host), &pdev->dev); if (!mmc) { ret = -ENOMEM; goto out_release_mem; } mmc->ops = &mxcmci_ops; mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ; /* MMC core transfer sizes tunable parameters */ mmc->max_segs = 64; mmc->max_blk_size = 2048; mmc->max_blk_count = 65535; mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->max_seg_size = mmc->max_req_size; host = mmc_priv(mmc); host->base = ioremap(r->start, resource_size(r)); if (!host->base) { ret = -ENOMEM; goto out_free; } host->mmc = mmc; host->pdata = pdev->dev.platform_data; spin_lock_init(&host->lock); mxcmci_init_ocr(host); if (host->pdata && host->pdata->dat3_card_detect) host->default_irq_mask = INT_CARD_INSERTION_EN | INT_CARD_REMOVAL_EN; else host->default_irq_mask = 0; host->res = r; host->irq = irq; host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto out_iounmap; } clk_enable(host->clk); mxcmci_softreset(host); host->rev_no = readw(host->base + MMC_REG_REV_NO); if (host->rev_no != 0x400) { ret = -ENODEV; dev_err(mmc_dev(host->mmc), "wrong rev.no. 0x%08x. aborting.\n", host->rev_no); goto out_clk_put; } mmc->f_min = clk_get_rate(host->clk) >> 16; mmc->f_max = clk_get_rate(host->clk) >> 1; /* recommended in data sheet */ writew(0x2db4, host->base + MMC_REG_READ_TO); writel(host->default_irq_mask, host->base + MMC_REG_INT_CNTR); r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (r) { host->dmareq = r->start; host->dma_data.peripheral_type = IMX_DMATYPE_SDHC; host->dma_data.priority = DMA_PRIO_LOW; host->dma_data.dma_request = host->dmareq; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); host->dma = dma_request_channel(mask, filter, host); if (host->dma) mmc->max_seg_size = dma_get_max_seg_size( host->dma->device->dev); } if (!host->dma) dev_info(mmc_dev(host->mmc), "dma not available. Using PIO\n"); INIT_WORK(&host->datawork, mxcmci_datawork); ret = request_irq(host->irq, mxcmci_irq, 0, DRIVER_NAME, host); if (ret) goto out_free_dma; platform_set_drvdata(pdev, mmc); if (host->pdata && host->pdata->init) { ret = host->pdata->init(&pdev->dev, mxcmci_detect_irq, host->mmc); if (ret) goto out_free_irq; } mmc_add_host(mmc); return 0; out_free_irq: free_irq(host->irq, host); out_free_dma: if (host->dma) dma_release_channel(host->dma); out_clk_put: clk_disable(host->clk); clk_put(host->clk); out_iounmap: iounmap(host->base); out_free: mmc_free_host(mmc); out_release_mem: release_mem_region(iores->start, resource_size(iores)); return ret; } static int mxcmci_remove(struct platform_device *pdev) { struct mmc_host *mmc = platform_get_drvdata(pdev); struct mxcmci_host *host = mmc_priv(mmc); platform_set_drvdata(pdev, NULL); mmc_remove_host(mmc); if (host->vcc) regulator_put(host->vcc); if (host->pdata && host->pdata->exit) host->pdata->exit(&pdev->dev, mmc); free_irq(host->irq, host); iounmap(host->base); if (host->dma) dma_release_channel(host->dma); clk_disable(host->clk); clk_put(host->clk); release_mem_region(host->res->start, resource_size(host->res)); mmc_free_host(mmc); return 0; } #ifdef CONFIG_PM static int mxcmci_suspend(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct mxcmci_host *host = mmc_priv(mmc); int ret = 0; if (mmc) ret = mmc_suspend_host(mmc); clk_disable(host->clk); return ret; } static int mxcmci_resume(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct mxcmci_host *host = mmc_priv(mmc); int ret = 0; clk_enable(host->clk); if (mmc) ret = mmc_resume_host(mmc); return ret; } static const struct dev_pm_ops mxcmci_pm_ops = { .suspend = mxcmci_suspend, .resume = mxcmci_resume, }; #endif static struct platform_driver mxcmci_driver = { .probe = mxcmci_probe, .remove = mxcmci_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &mxcmci_pm_ops, #endif } }; static int __init mxcmci_init(void) { return platform_driver_register(&mxcmci_driver); } static void __exit mxcmci_exit(void) { platform_driver_unregister(&mxcmci_driver); } module_init(mxcmci_init); module_exit(mxcmci_exit); MODULE_DESCRIPTION("i.MX Multimedia Card Interface Driver"); MODULE_AUTHOR("Sascha Hauer, Pengutronix"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:imx-mmc");