/* * ispstat.c * * TI OMAP3 ISP - Statistics core * * Copyright (C) 2010 Nokia Corporation * Copyright (C) 2009 Texas Instruments, Inc * * Contacts: David Cohen <dacohen@gmail.com> * Laurent Pinchart <laurent.pinchart@ideasonboard.com> * Sakari Ailus <sakari.ailus@iki.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/uaccess.h> #include "isp.h" #define IS_COHERENT_BUF(stat) ((stat)->dma_ch >= 0) /* * MAGIC_SIZE must always be the greatest common divisor of * AEWB_PACKET_SIZE and AF_PAXEL_SIZE. */ #define MAGIC_SIZE 16 #define MAGIC_NUM 0x55 /* HACK: AF module seems to be writing one more paxel data than it should. */ #define AF_EXTRA_DATA OMAP3ISP_AF_PAXEL_SIZE /* * HACK: H3A modules go to an invalid state after have a SBL overflow. It makes * the next buffer to start to be written in the same point where the overflow * occurred instead of the configured address. The only known way to make it to * go back to a valid state is having a valid buffer processing. Of course it * requires at least a doubled buffer size to avoid an access to invalid memory * region. But it does not fix everything. It may happen more than one * consecutive SBL overflows. In that case, it might be unpredictable how many * buffers the allocated memory should fit. For that case, a recover * configuration was created. It produces the minimum buffer size for each H3A * module and decrease the change for more SBL overflows. This recover state * will be enabled every time a SBL overflow occur. As the output buffer size * isn't big, it's possible to have an extra size able to fit many recover * buffers making it extreamily unlikely to have an access to invalid memory * region. */ #define NUM_H3A_RECOVER_BUFS 10 /* * HACK: Because of HW issues the generic layer sometimes need to have * different behaviour for different statistic modules. */ #define IS_H3A_AF(stat) ((stat) == &(stat)->isp->isp_af) #define IS_H3A_AEWB(stat) ((stat) == &(stat)->isp->isp_aewb) #define IS_H3A(stat) (IS_H3A_AF(stat) || IS_H3A_AEWB(stat)) static void __isp_stat_buf_sync_magic(struct ispstat *stat, struct ispstat_buffer *buf, u32 buf_size, enum dma_data_direction dir, void (*dma_sync)(struct device *, dma_addr_t, unsigned long, size_t, enum dma_data_direction)) { struct device *dev = stat->isp->dev; struct page *pg; dma_addr_t dma_addr; u32 offset; /* Initial magic words */ pg = vmalloc_to_page(buf->virt_addr); dma_addr = pfn_to_dma(dev, page_to_pfn(pg)); dma_sync(dev, dma_addr, 0, MAGIC_SIZE, dir); /* Final magic words */ pg = vmalloc_to_page(buf->virt_addr + buf_size); dma_addr = pfn_to_dma(dev, page_to_pfn(pg)); offset = ((u32)buf->virt_addr + buf_size) & ~PAGE_MASK; dma_sync(dev, dma_addr, offset, MAGIC_SIZE, dir); } static void isp_stat_buf_sync_magic_for_device(struct ispstat *stat, struct ispstat_buffer *buf, u32 buf_size, enum dma_data_direction dir) { if (IS_COHERENT_BUF(stat)) return; __isp_stat_buf_sync_magic(stat, buf, buf_size, dir, dma_sync_single_range_for_device); } static void isp_stat_buf_sync_magic_for_cpu(struct ispstat *stat, struct ispstat_buffer *buf, u32 buf_size, enum dma_data_direction dir) { if (IS_COHERENT_BUF(stat)) return; __isp_stat_buf_sync_magic(stat, buf, buf_size, dir, dma_sync_single_range_for_cpu); } static int isp_stat_buf_check_magic(struct ispstat *stat, struct ispstat_buffer *buf) { const u32 buf_size = IS_H3A_AF(stat) ? buf->buf_size + AF_EXTRA_DATA : buf->buf_size; u8 *w; u8 *end; int ret = -EINVAL; isp_stat_buf_sync_magic_for_cpu(stat, buf, buf_size, DMA_FROM_DEVICE); /* Checking initial magic numbers. They shouldn't be here anymore. */ for (w = buf->virt_addr, end = w + MAGIC_SIZE; w < end; w++) if (likely(*w != MAGIC_NUM)) ret = 0; if (ret) { dev_dbg(stat->isp->dev, "%s: beginning magic check does not " "match.\n", stat->subdev.name); return ret; } /* Checking magic numbers at the end. They must be still here. */ for (w = buf->virt_addr + buf_size, end = w + MAGIC_SIZE; w < end; w++) { if (unlikely(*w != MAGIC_NUM)) { dev_dbg(stat->isp->dev, "%s: endding magic check does " "not match.\n", stat->subdev.name); return -EINVAL; } } isp_stat_buf_sync_magic_for_device(stat, buf, buf_size, DMA_FROM_DEVICE); return 0; } static void isp_stat_buf_insert_magic(struct ispstat *stat, struct ispstat_buffer *buf) { const u32 buf_size = IS_H3A_AF(stat) ? stat->buf_size + AF_EXTRA_DATA : stat->buf_size; isp_stat_buf_sync_magic_for_cpu(stat, buf, buf_size, DMA_FROM_DEVICE); /* * Inserting MAGIC_NUM at the beginning and end of the buffer. * buf->buf_size is set only after the buffer is queued. For now the * right buf_size for the current configuration is pointed by * stat->buf_size. */ memset(buf->virt_addr, MAGIC_NUM, MAGIC_SIZE); memset(buf->virt_addr + buf_size, MAGIC_NUM, MAGIC_SIZE); isp_stat_buf_sync_magic_for_device(stat, buf, buf_size, DMA_BIDIRECTIONAL); } static void isp_stat_buf_sync_for_device(struct ispstat *stat, struct ispstat_buffer *buf) { if (IS_COHERENT_BUF(stat)) return; dma_sync_sg_for_device(stat->isp->dev, buf->iovm->sgt->sgl, buf->iovm->sgt->nents, DMA_FROM_DEVICE); } static void isp_stat_buf_sync_for_cpu(struct ispstat *stat, struct ispstat_buffer *buf) { if (IS_COHERENT_BUF(stat)) return; dma_sync_sg_for_cpu(stat->isp->dev, buf->iovm->sgt->sgl, buf->iovm->sgt->nents, DMA_FROM_DEVICE); } static void isp_stat_buf_clear(struct ispstat *stat) { int i; for (i = 0; i < STAT_MAX_BUFS; i++) stat->buf[i].empty = 1; } static struct ispstat_buffer * __isp_stat_buf_find(struct ispstat *stat, int look_empty) { struct ispstat_buffer *found = NULL; int i; for (i = 0; i < STAT_MAX_BUFS; i++) { struct ispstat_buffer *curr = &stat->buf[i]; /* * Don't select the buffer which is being copied to * userspace or used by the module. */ if (curr == stat->locked_buf || curr == stat->active_buf) continue; /* Don't select uninitialised buffers if it's not required */ if (!look_empty && curr->empty) continue; /* Pick uninitialised buffer over anything else if look_empty */ if (curr->empty) { found = curr; break; } /* Choose the oldest buffer */ if (!found || (s32)curr->frame_number - (s32)found->frame_number < 0) found = curr; } return found; } static inline struct ispstat_buffer * isp_stat_buf_find_oldest(struct ispstat *stat) { return __isp_stat_buf_find(stat, 0); } static inline struct ispstat_buffer * isp_stat_buf_find_oldest_or_empty(struct ispstat *stat) { return __isp_stat_buf_find(stat, 1); } static int isp_stat_buf_queue(struct ispstat *stat) { if (!stat->active_buf) return STAT_NO_BUF; do_gettimeofday(&stat->active_buf->ts); stat->active_buf->buf_size = stat->buf_size; if (isp_stat_buf_check_magic(stat, stat->active_buf)) { dev_dbg(stat->isp->dev, "%s: data wasn't properly written.\n", stat->subdev.name); return STAT_NO_BUF; } stat->active_buf->config_counter = stat->config_counter; stat->active_buf->frame_number = stat->frame_number; stat->active_buf->empty = 0; stat->active_buf = NULL; return STAT_BUF_DONE; } /* Get next free buffer to write the statistics to and mark it active. */ static void isp_stat_buf_next(struct ispstat *stat) { if (unlikely(stat->active_buf)) /* Overwriting unused active buffer */ dev_dbg(stat->isp->dev, "%s: new buffer requested without " "queuing active one.\n", stat->subdev.name); else stat->active_buf = isp_stat_buf_find_oldest_or_empty(stat); } static void isp_stat_buf_release(struct ispstat *stat) { unsigned long flags; isp_stat_buf_sync_for_device(stat, stat->locked_buf); spin_lock_irqsave(&stat->isp->stat_lock, flags); stat->locked_buf = NULL; spin_unlock_irqrestore(&stat->isp->stat_lock, flags); } /* Get buffer to userspace. */ static struct ispstat_buffer *isp_stat_buf_get(struct ispstat *stat, struct omap3isp_stat_data *data) { int rval = 0; unsigned long flags; struct ispstat_buffer *buf; spin_lock_irqsave(&stat->isp->stat_lock, flags); while (1) { buf = isp_stat_buf_find_oldest(stat); if (!buf) { spin_unlock_irqrestore(&stat->isp->stat_lock, flags); dev_dbg(stat->isp->dev, "%s: cannot find a buffer.\n", stat->subdev.name); return ERR_PTR(-EBUSY); } if (isp_stat_buf_check_magic(stat, buf)) { dev_dbg(stat->isp->dev, "%s: current buffer has " "corrupted data\n.", stat->subdev.name); /* Mark empty because it doesn't have valid data. */ buf->empty = 1; } else { /* Buffer isn't corrupted. */ break; } } stat->locked_buf = buf; spin_unlock_irqrestore(&stat->isp->stat_lock, flags); if (buf->buf_size > data->buf_size) { dev_warn(stat->isp->dev, "%s: userspace's buffer size is " "not enough.\n", stat->subdev.name); isp_stat_buf_release(stat); return ERR_PTR(-EINVAL); } isp_stat_buf_sync_for_cpu(stat, buf); rval = copy_to_user(data->buf, buf->virt_addr, buf->buf_size); if (rval) { dev_info(stat->isp->dev, "%s: failed copying %d bytes of stat data\n", stat->subdev.name, rval); buf = ERR_PTR(-EFAULT); isp_stat_buf_release(stat); } return buf; } static void isp_stat_bufs_free(struct ispstat *stat) { struct isp_device *isp = stat->isp; int i; for (i = 0; i < STAT_MAX_BUFS; i++) { struct ispstat_buffer *buf = &stat->buf[i]; if (!IS_COHERENT_BUF(stat)) { if (IS_ERR_OR_NULL((void *)buf->iommu_addr)) continue; if (buf->iovm) dma_unmap_sg(isp->dev, buf->iovm->sgt->sgl, buf->iovm->sgt->nents, DMA_FROM_DEVICE); iommu_vfree(isp->iommu, buf->iommu_addr); } else { if (!buf->virt_addr) continue; dma_free_coherent(stat->isp->dev, stat->buf_alloc_size, buf->virt_addr, buf->dma_addr); } buf->iommu_addr = 0; buf->iovm = NULL; buf->dma_addr = 0; buf->virt_addr = NULL; buf->empty = 1; } dev_dbg(stat->isp->dev, "%s: all buffers were freed.\n", stat->subdev.name); stat->buf_alloc_size = 0; stat->active_buf = NULL; } static int isp_stat_bufs_alloc_iommu(struct ispstat *stat, unsigned int size) { struct isp_device *isp = stat->isp; int i; stat->buf_alloc_size = size; for (i = 0; i < STAT_MAX_BUFS; i++) { struct ispstat_buffer *buf = &stat->buf[i]; struct iovm_struct *iovm; WARN_ON(buf->dma_addr); buf->iommu_addr = iommu_vmalloc(isp->iommu, 0, size, IOMMU_FLAG); if (IS_ERR((void *)buf->iommu_addr)) { dev_err(stat->isp->dev, "%s: Can't acquire memory for " "buffer %d\n", stat->subdev.name, i); isp_stat_bufs_free(stat); return -ENOMEM; } iovm = find_iovm_area(isp->iommu, buf->iommu_addr); if (!iovm || !dma_map_sg(isp->dev, iovm->sgt->sgl, iovm->sgt->nents, DMA_FROM_DEVICE)) { isp_stat_bufs_free(stat); return -ENOMEM; } buf->iovm = iovm; buf->virt_addr = da_to_va(stat->isp->iommu, (u32)buf->iommu_addr); buf->empty = 1; dev_dbg(stat->isp->dev, "%s: buffer[%d] allocated." "iommu_addr=0x%08lx virt_addr=0x%08lx", stat->subdev.name, i, buf->iommu_addr, (unsigned long)buf->virt_addr); } return 0; } static int isp_stat_bufs_alloc_dma(struct ispstat *stat, unsigned int size) { int i; stat->buf_alloc_size = size; for (i = 0; i < STAT_MAX_BUFS; i++) { struct ispstat_buffer *buf = &stat->buf[i]; WARN_ON(buf->iommu_addr); buf->virt_addr = dma_alloc_coherent(stat->isp->dev, size, &buf->dma_addr, GFP_KERNEL | GFP_DMA); if (!buf->virt_addr || !buf->dma_addr) { dev_info(stat->isp->dev, "%s: Can't acquire memory for " "DMA buffer %d\n", stat->subdev.name, i); isp_stat_bufs_free(stat); return -ENOMEM; } buf->empty = 1; dev_dbg(stat->isp->dev, "%s: buffer[%d] allocated." "dma_addr=0x%08lx virt_addr=0x%08lx\n", stat->subdev.name, i, (unsigned long)buf->dma_addr, (unsigned long)buf->virt_addr); } return 0; } static int isp_stat_bufs_alloc(struct ispstat *stat, u32 size) { unsigned long flags; spin_lock_irqsave(&stat->isp->stat_lock, flags); BUG_ON(stat->locked_buf != NULL); /* Are the old buffers big enough? */ if (stat->buf_alloc_size >= size) { spin_unlock_irqrestore(&stat->isp->stat_lock, flags); return 0; } if (stat->state != ISPSTAT_DISABLED || stat->buf_processing) { dev_info(stat->isp->dev, "%s: trying to allocate memory when busy\n", stat->subdev.name); spin_unlock_irqrestore(&stat->isp->stat_lock, flags); return -EBUSY; } spin_unlock_irqrestore(&stat->isp->stat_lock, flags); isp_stat_bufs_free(stat); if (IS_COHERENT_BUF(stat)) return isp_stat_bufs_alloc_dma(stat, size); else return isp_stat_bufs_alloc_iommu(stat, size); } static void isp_stat_queue_event(struct ispstat *stat, int err) { struct video_device *vdev = &stat->subdev.devnode; struct v4l2_event event; struct omap3isp_stat_event_status *status = (void *)event.u.data; memset(&event, 0, sizeof(event)); if (!err) { status->frame_number = stat->frame_number; status->config_counter = stat->config_counter; } else { status->buf_err = 1; } event.type = stat->event_type; v4l2_event_queue(vdev, &event); } /* * omap3isp_stat_request_statistics - Request statistics. * @data: Pointer to return statistics data. * * Returns 0 if successful. */ int omap3isp_stat_request_statistics(struct ispstat *stat, struct omap3isp_stat_data *data) { struct ispstat_buffer *buf; if (stat->state != ISPSTAT_ENABLED) { dev_dbg(stat->isp->dev, "%s: engine not enabled.\n", stat->subdev.name); return -EINVAL; } mutex_lock(&stat->ioctl_lock); buf = isp_stat_buf_get(stat, data); if (IS_ERR(buf)) { mutex_unlock(&stat->ioctl_lock); return PTR_ERR(buf); } data->ts = buf->ts; data->config_counter = buf->config_counter; data->frame_number = buf->frame_number; data->buf_size = buf->buf_size; buf->empty = 1; isp_stat_buf_release(stat); mutex_unlock(&stat->ioctl_lock); return 0; } /* * omap3isp_stat_config - Receives new statistic engine configuration. * @new_conf: Pointer to config structure. * * Returns 0 if successful, -EINVAL if new_conf pointer is NULL, -ENOMEM if * was unable to allocate memory for the buffer, or other errors if parameters * are invalid. */ int omap3isp_stat_config(struct ispstat *stat, void *new_conf) { int ret; unsigned long irqflags; struct ispstat_generic_config *user_cfg = new_conf; u32 buf_size = user_cfg->buf_size; if (!new_conf) { dev_dbg(stat->isp->dev, "%s: configuration is NULL\n", stat->subdev.name); return -EINVAL; } mutex_lock(&stat->ioctl_lock); dev_dbg(stat->isp->dev, "%s: configuring module with buffer " "size=0x%08lx\n", stat->subdev.name, (unsigned long)buf_size); ret = stat->ops->validate_params(stat, new_conf); if (ret) { mutex_unlock(&stat->ioctl_lock); dev_dbg(stat->isp->dev, "%s: configuration values are " "invalid.\n", stat->subdev.name); return ret; } if (buf_size != user_cfg->buf_size) dev_dbg(stat->isp->dev, "%s: driver has corrected buffer size " "request to 0x%08lx\n", stat->subdev.name, (unsigned long)user_cfg->buf_size); /* * Hack: H3A modules may need a doubled buffer size to avoid access * to a invalid memory address after a SBL overflow. * The buffer size is always PAGE_ALIGNED. * Hack 2: MAGIC_SIZE is added to buf_size so a magic word can be * inserted at the end to data integrity check purpose. * Hack 3: AF module writes one paxel data more than it should, so * the buffer allocation must consider it to avoid invalid memory * access. * Hack 4: H3A need to allocate extra space for the recover state. */ if (IS_H3A(stat)) { buf_size = user_cfg->buf_size * 2 + MAGIC_SIZE; if (IS_H3A_AF(stat)) /* * Adding one extra paxel data size for each recover * buffer + 2 regular ones. */ buf_size += AF_EXTRA_DATA * (NUM_H3A_RECOVER_BUFS + 2); if (stat->recover_priv) { struct ispstat_generic_config *recover_cfg = stat->recover_priv; buf_size += recover_cfg->buf_size * NUM_H3A_RECOVER_BUFS; } buf_size = PAGE_ALIGN(buf_size); } else { /* Histogram */ buf_size = PAGE_ALIGN(user_cfg->buf_size + MAGIC_SIZE); } ret = isp_stat_bufs_alloc(stat, buf_size); if (ret) { mutex_unlock(&stat->ioctl_lock); return ret; } spin_lock_irqsave(&stat->isp->stat_lock, irqflags); stat->ops->set_params(stat, new_conf); spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); /* * Returning the right future config_counter for this setup, so * userspace can *know* when it has been applied. */ user_cfg->config_counter = stat->config_counter + stat->inc_config; /* Module has a valid configuration. */ stat->configured = 1; dev_dbg(stat->isp->dev, "%s: module has been successfully " "configured.\n", stat->subdev.name); mutex_unlock(&stat->ioctl_lock); return 0; } /* * isp_stat_buf_process - Process statistic buffers. * @buf_state: points out if buffer is ready to be processed. It's necessary * because histogram needs to copy the data from internal memory * before be able to process the buffer. */ static int isp_stat_buf_process(struct ispstat *stat, int buf_state) { int ret = STAT_NO_BUF; if (!atomic_add_unless(&stat->buf_err, -1, 0) && buf_state == STAT_BUF_DONE && stat->state == ISPSTAT_ENABLED) { ret = isp_stat_buf_queue(stat); isp_stat_buf_next(stat); } return ret; } int omap3isp_stat_pcr_busy(struct ispstat *stat) { return stat->ops->busy(stat); } int omap3isp_stat_busy(struct ispstat *stat) { return omap3isp_stat_pcr_busy(stat) | stat->buf_processing | (stat->state != ISPSTAT_DISABLED); } /* * isp_stat_pcr_enable - Disables/Enables statistic engines. * @pcr_enable: 0/1 - Disables/Enables the engine. * * Must be called from ISP driver when the module is idle and synchronized * with CCDC. */ static void isp_stat_pcr_enable(struct ispstat *stat, u8 pcr_enable) { if ((stat->state != ISPSTAT_ENABLING && stat->state != ISPSTAT_ENABLED) && pcr_enable) /* Userspace has disabled the module. Aborting. */ return; stat->ops->enable(stat, pcr_enable); if (stat->state == ISPSTAT_DISABLING && !pcr_enable) stat->state = ISPSTAT_DISABLED; else if (stat->state == ISPSTAT_ENABLING && pcr_enable) stat->state = ISPSTAT_ENABLED; } void omap3isp_stat_suspend(struct ispstat *stat) { unsigned long flags; spin_lock_irqsave(&stat->isp->stat_lock, flags); if (stat->state != ISPSTAT_DISABLED) stat->ops->enable(stat, 0); if (stat->state == ISPSTAT_ENABLED) stat->state = ISPSTAT_SUSPENDED; spin_unlock_irqrestore(&stat->isp->stat_lock, flags); } void omap3isp_stat_resume(struct ispstat *stat) { /* Module will be re-enabled with its pipeline */ if (stat->state == ISPSTAT_SUSPENDED) stat->state = ISPSTAT_ENABLING; } static void isp_stat_try_enable(struct ispstat *stat) { unsigned long irqflags; if (stat->priv == NULL) /* driver wasn't initialised */ return; spin_lock_irqsave(&stat->isp->stat_lock, irqflags); if (stat->state == ISPSTAT_ENABLING && !stat->buf_processing && stat->buf_alloc_size) { /* * Userspace's requested to enable the engine but it wasn't yet. * Let's do that now. */ stat->update = 1; isp_stat_buf_next(stat); stat->ops->setup_regs(stat, stat->priv); isp_stat_buf_insert_magic(stat, stat->active_buf); /* * H3A module has some hw issues which forces the driver to * ignore next buffers even if it was disabled in the meantime. * On the other hand, Histogram shouldn't ignore buffers anymore * if it's being enabled. */ if (!IS_H3A(stat)) atomic_set(&stat->buf_err, 0); isp_stat_pcr_enable(stat, 1); spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); dev_dbg(stat->isp->dev, "%s: module is enabled.\n", stat->subdev.name); } else { spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); } } void omap3isp_stat_isr_frame_sync(struct ispstat *stat) { isp_stat_try_enable(stat); } void omap3isp_stat_sbl_overflow(struct ispstat *stat) { unsigned long irqflags; spin_lock_irqsave(&stat->isp->stat_lock, irqflags); /* * Due to a H3A hw issue which prevents the next buffer to start from * the correct memory address, 2 buffers must be ignored. */ atomic_set(&stat->buf_err, 2); /* * If more than one SBL overflow happen in a row, H3A module may access * invalid memory region. * stat->sbl_ovl_recover is set to tell to the driver to temporarily use * a soft configuration which helps to avoid consecutive overflows. */ if (stat->recover_priv) stat->sbl_ovl_recover = 1; spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); } /* * omap3isp_stat_enable - Disable/Enable statistic engine as soon as possible * @enable: 0/1 - Disables/Enables the engine. * * Client should configure all the module registers before this. * This function can be called from a userspace request. */ int omap3isp_stat_enable(struct ispstat *stat, u8 enable) { unsigned long irqflags; dev_dbg(stat->isp->dev, "%s: user wants to %s module.\n", stat->subdev.name, enable ? "enable" : "disable"); /* Prevent enabling while configuring */ mutex_lock(&stat->ioctl_lock); spin_lock_irqsave(&stat->isp->stat_lock, irqflags); if (!stat->configured && enable) { spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); mutex_unlock(&stat->ioctl_lock); dev_dbg(stat->isp->dev, "%s: cannot enable module as it's " "never been successfully configured so far.\n", stat->subdev.name); return -EINVAL; } if (enable) { if (stat->state == ISPSTAT_DISABLING) /* Previous disabling request wasn't done yet */ stat->state = ISPSTAT_ENABLED; else if (stat->state == ISPSTAT_DISABLED) /* Module is now being enabled */ stat->state = ISPSTAT_ENABLING; } else { if (stat->state == ISPSTAT_ENABLING) { /* Previous enabling request wasn't done yet */ stat->state = ISPSTAT_DISABLED; } else if (stat->state == ISPSTAT_ENABLED) { /* Module is now being disabled */ stat->state = ISPSTAT_DISABLING; isp_stat_buf_clear(stat); } } spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); mutex_unlock(&stat->ioctl_lock); return 0; } int omap3isp_stat_s_stream(struct v4l2_subdev *subdev, int enable) { struct ispstat *stat = v4l2_get_subdevdata(subdev); if (enable) { /* * Only set enable PCR bit if the module was previously * enabled through ioct. */ isp_stat_try_enable(stat); } else { unsigned long flags; /* Disable PCR bit and config enable field */ omap3isp_stat_enable(stat, 0); spin_lock_irqsave(&stat->isp->stat_lock, flags); stat->ops->enable(stat, 0); spin_unlock_irqrestore(&stat->isp->stat_lock, flags); /* * If module isn't busy, a new interrupt may come or not to * set the state to DISABLED. As Histogram needs to read its * internal memory to clear it, let interrupt handler * responsible of changing state to DISABLED. If the last * interrupt is coming, it's still safe as the handler will * ignore the second time when state is already set to DISABLED. * It's necessary to synchronize Histogram with streamoff, once * the module may be considered idle before last SDMA transfer * starts if we return here. */ if (!omap3isp_stat_pcr_busy(stat)) omap3isp_stat_isr(stat); dev_dbg(stat->isp->dev, "%s: module is being disabled\n", stat->subdev.name); } return 0; } /* * __stat_isr - Interrupt handler for statistic drivers */ static void __stat_isr(struct ispstat *stat, int from_dma) { int ret = STAT_BUF_DONE; int buf_processing; unsigned long irqflags; struct isp_pipeline *pipe; /* * stat->buf_processing must be set before disable module. It's * necessary to not inform too early the buffers aren't busy in case * of SDMA is going to be used. */ spin_lock_irqsave(&stat->isp->stat_lock, irqflags); if (stat->state == ISPSTAT_DISABLED) { spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); return; } buf_processing = stat->buf_processing; stat->buf_processing = 1; stat->ops->enable(stat, 0); if (buf_processing && !from_dma) { if (stat->state == ISPSTAT_ENABLED) { spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); dev_err(stat->isp->dev, "%s: interrupt occurred when module was still " "processing a buffer.\n", stat->subdev.name); ret = STAT_NO_BUF; goto out; } else { /* * Interrupt handler was called from streamoff when * the module wasn't busy anymore to ensure it is being * disabled after process last buffer. If such buffer * processing has already started, no need to do * anything else. */ spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); return; } } spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); /* If it's busy we can't process this buffer anymore */ if (!omap3isp_stat_pcr_busy(stat)) { if (!from_dma && stat->ops->buf_process) /* Module still need to copy data to buffer. */ ret = stat->ops->buf_process(stat); if (ret == STAT_BUF_WAITING_DMA) /* Buffer is not ready yet */ return; spin_lock_irqsave(&stat->isp->stat_lock, irqflags); /* * Histogram needs to read its internal memory to clear it * before be disabled. For that reason, common statistic layer * can return only after call stat's buf_process() operator. */ if (stat->state == ISPSTAT_DISABLING) { stat->state = ISPSTAT_DISABLED; spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); stat->buf_processing = 0; return; } pipe = to_isp_pipeline(&stat->subdev.entity); stat->frame_number = atomic_read(&pipe->frame_number); /* * Before this point, 'ret' stores the buffer's status if it's * ready to be processed. Afterwards, it holds the status if * it was processed successfully. */ ret = isp_stat_buf_process(stat, ret); if (likely(!stat->sbl_ovl_recover)) { stat->ops->setup_regs(stat, stat->priv); } else { /* * Using recover config to increase the chance to have * a good buffer processing and make the H3A module to * go back to a valid state. */ stat->update = 1; stat->ops->setup_regs(stat, stat->recover_priv); stat->sbl_ovl_recover = 0; /* * Set 'update' in case of the module needs to use * regular configuration after next buffer. */ stat->update = 1; } isp_stat_buf_insert_magic(stat, stat->active_buf); /* * Hack: H3A modules may access invalid memory address or send * corrupted data to userspace if more than 1 SBL overflow * happens in a row without re-writing its buffer's start memory * address in the meantime. Such situation is avoided if the * module is not immediately re-enabled when the ISR misses the * timing to process the buffer and to setup the registers. * Because of that, pcr_enable(1) was moved to inside this 'if' * block. But the next interruption will still happen as during * pcr_enable(0) the module was busy. */ isp_stat_pcr_enable(stat, 1); spin_unlock_irqrestore(&stat->isp->stat_lock, irqflags); } else { /* * If a SBL overflow occurs and the H3A driver misses the timing * to process the buffer, stat->buf_err is set and won't be * cleared now. So the next buffer will be correctly ignored. * It's necessary due to a hw issue which makes the next H3A * buffer to start from the memory address where the previous * one stopped, instead of start where it was configured to. * Do not "stat->buf_err = 0" here. */ if (stat->ops->buf_process) /* * Driver may need to erase current data prior to * process a new buffer. If it misses the timing, the * next buffer might be wrong. So should be ignored. * It happens only for Histogram. */ atomic_set(&stat->buf_err, 1); ret = STAT_NO_BUF; dev_dbg(stat->isp->dev, "%s: cannot process buffer, " "device is busy.\n", stat->subdev.name); } out: stat->buf_processing = 0; isp_stat_queue_event(stat, ret != STAT_BUF_DONE); } void omap3isp_stat_isr(struct ispstat *stat) { __stat_isr(stat, 0); } void omap3isp_stat_dma_isr(struct ispstat *stat) { __stat_isr(stat, 1); } static int isp_stat_init_entities(struct ispstat *stat, const char *name, const struct v4l2_subdev_ops *sd_ops) { struct v4l2_subdev *subdev = &stat->subdev; struct media_entity *me = &subdev->entity; v4l2_subdev_init(subdev, sd_ops); snprintf(subdev->name, V4L2_SUBDEV_NAME_SIZE, "OMAP3 ISP %s", name); subdev->grp_id = 1 << 16; /* group ID for isp subdevs */ subdev->flags |= V4L2_SUBDEV_FL_HAS_EVENTS | V4L2_SUBDEV_FL_HAS_DEVNODE; subdev->nevents = STAT_NEVENTS; v4l2_set_subdevdata(subdev, stat); stat->pad.flags = MEDIA_PAD_FL_SINK; me->ops = NULL; return media_entity_init(me, 1, &stat->pad, 0); } int omap3isp_stat_subscribe_event(struct v4l2_subdev *subdev, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { struct ispstat *stat = v4l2_get_subdevdata(subdev); if (sub->type != stat->event_type) return -EINVAL; return v4l2_event_subscribe(fh, sub); } int omap3isp_stat_unsubscribe_event(struct v4l2_subdev *subdev, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { return v4l2_event_unsubscribe(fh, sub); } void omap3isp_stat_unregister_entities(struct ispstat *stat) { media_entity_cleanup(&stat->subdev.entity); v4l2_device_unregister_subdev(&stat->subdev); } int omap3isp_stat_register_entities(struct ispstat *stat, struct v4l2_device *vdev) { return v4l2_device_register_subdev(vdev, &stat->subdev); } int omap3isp_stat_init(struct ispstat *stat, const char *name, const struct v4l2_subdev_ops *sd_ops) { stat->buf = kcalloc(STAT_MAX_BUFS, sizeof(*stat->buf), GFP_KERNEL); if (!stat->buf) return -ENOMEM; isp_stat_buf_clear(stat); mutex_init(&stat->ioctl_lock); atomic_set(&stat->buf_err, 0); return isp_stat_init_entities(stat, name, sd_ops); } void omap3isp_stat_free(struct ispstat *stat) { isp_stat_bufs_free(stat); kfree(stat->buf); }