/* * Windfarm PowerMac thermal control. * Control loops for machines with SMU and PPC970MP processors. * * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org> * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp. * * Use and redistribute under the terms of the GNU GPL v2. */ #include <linux/types.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <asm/prom.h> #include <asm/smu.h> #include "windfarm.h" #include "windfarm_pid.h" #define VERSION "0.2" #define DEBUG #undef LOTSA_DEBUG #ifdef DEBUG #define DBG(args...) printk(args) #else #define DBG(args...) do { } while(0) #endif #ifdef LOTSA_DEBUG #define DBG_LOTS(args...) printk(args) #else #define DBG_LOTS(args...) do { } while(0) #endif /* define this to force CPU overtemp to 60 degree, useful for testing * the overtemp code */ #undef HACKED_OVERTEMP /* We currently only handle 2 chips, 4 cores... */ #define NR_CHIPS 2 #define NR_CORES 4 #define NR_CPU_FANS 3 * NR_CHIPS /* Controls and sensors */ static struct wf_sensor *sens_cpu_temp[NR_CORES]; static struct wf_sensor *sens_cpu_power[NR_CORES]; static struct wf_sensor *hd_temp; static struct wf_sensor *slots_power; static struct wf_sensor *u4_temp; static struct wf_control *cpu_fans[NR_CPU_FANS]; static char *cpu_fan_names[NR_CPU_FANS] = { "cpu-rear-fan-0", "cpu-rear-fan-1", "cpu-front-fan-0", "cpu-front-fan-1", "cpu-pump-0", "cpu-pump-1", }; static struct wf_control *cpufreq_clamp; /* Second pump isn't required (and isn't actually present) */ #define CPU_FANS_REQD (NR_CPU_FANS - 2) #define FIRST_PUMP 4 #define LAST_PUMP 5 /* We keep a temperature history for average calculation of 180s */ #define CPU_TEMP_HIST_SIZE 180 /* Scale factor for fan speed, *100 */ static int cpu_fan_scale[NR_CPU_FANS] = { 100, 100, 97, /* inlet fans run at 97% of exhaust fan */ 97, 100, /* updated later */ 100, /* updated later */ }; static struct wf_control *backside_fan; static struct wf_control *slots_fan; static struct wf_control *drive_bay_fan; /* PID loop state */ static struct wf_cpu_pid_state cpu_pid[NR_CORES]; static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; static int cpu_thist_pt; static s64 cpu_thist_total; static s32 cpu_all_tmax = 100 << 16; static int cpu_last_target; static struct wf_pid_state backside_pid; static int backside_tick; static struct wf_pid_state slots_pid; static int slots_started; static struct wf_pid_state drive_bay_pid; static int drive_bay_tick; static int nr_cores; static int have_all_controls; static int have_all_sensors; static int started; static int failure_state; #define FAILURE_SENSOR 1 #define FAILURE_FAN 2 #define FAILURE_PERM 4 #define FAILURE_LOW_OVERTEMP 8 #define FAILURE_HIGH_OVERTEMP 16 /* Overtemp values */ #define LOW_OVER_AVERAGE 0 #define LOW_OVER_IMMEDIATE (10 << 16) #define LOW_OVER_CLEAR ((-10) << 16) #define HIGH_OVER_IMMEDIATE (14 << 16) #define HIGH_OVER_AVERAGE (10 << 16) #define HIGH_OVER_IMMEDIATE (14 << 16) /* Implementation... */ static int create_cpu_loop(int cpu) { int chip = cpu / 2; int core = cpu & 1; struct smu_sdbp_header *hdr; struct smu_sdbp_cpupiddata *piddata; struct wf_cpu_pid_param pid; struct wf_control *main_fan = cpu_fans[0]; s32 tmax; int fmin; /* Get PID params from the appropriate SAT */ hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL); if (hdr == NULL) { printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n"); return -EINVAL; } piddata = (struct smu_sdbp_cpupiddata *)&hdr[1]; /* Get FVT params to get Tmax; if not found, assume default */ hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL); if (hdr) { struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1]; tmax = fvt->maxtemp << 16; } else tmax = 95 << 16; /* default to 95 degrees C */ /* We keep a global tmax for overtemp calculations */ if (tmax < cpu_all_tmax) cpu_all_tmax = tmax; /* * Darwin has a minimum fan speed of 1000 rpm for the 4-way and * 515 for the 2-way. That appears to be overkill, so for now, * impose a minimum of 750 or 515. */ fmin = (nr_cores > 2) ? 750 : 515; /* Initialize PID loop */ pid.interval = 1; /* seconds */ pid.history_len = piddata->history_len; pid.gd = piddata->gd; pid.gp = piddata->gp; pid.gr = piddata->gr / piddata->history_len; pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8); pid.ttarget = tmax - (piddata->target_temp_delta << 16); pid.tmax = tmax; pid.min = main_fan->ops->get_min(main_fan); pid.max = main_fan->ops->get_max(main_fan); if (pid.min < fmin) pid.min = fmin; wf_cpu_pid_init(&cpu_pid[cpu], &pid); return 0; } static void cpu_max_all_fans(void) { int i; /* We max all CPU fans in case of a sensor error. We also do the * cpufreq clamping now, even if it's supposedly done later by the * generic code anyway, we do it earlier here to react faster */ if (cpufreq_clamp) wf_control_set_max(cpufreq_clamp); for (i = 0; i < NR_CPU_FANS; ++i) if (cpu_fans[i]) wf_control_set_max(cpu_fans[i]); } static int cpu_check_overtemp(s32 temp) { int new_state = 0; s32 t_avg, t_old; /* First check for immediate overtemps */ if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { new_state |= FAILURE_LOW_OVERTEMP; if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" " temperature !\n"); } if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { new_state |= FAILURE_HIGH_OVERTEMP; if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Critical overtemp due to" " immediate CPU temperature !\n"); } /* We calculate a history of max temperatures and use that for the * overtemp management */ t_old = cpu_thist[cpu_thist_pt]; cpu_thist[cpu_thist_pt] = temp; cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; cpu_thist_total -= t_old; cpu_thist_total += temp; t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); /* Now check for average overtemps */ if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { new_state |= FAILURE_LOW_OVERTEMP; if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Overtemp due to average CPU" " temperature !\n"); } if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { new_state |= FAILURE_HIGH_OVERTEMP; if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) printk(KERN_ERR "windfarm: Critical overtemp due to" " average CPU temperature !\n"); } /* Now handle overtemp conditions. We don't currently use the windfarm * overtemp handling core as it's not fully suited to the needs of those * new machine. This will be fixed later. */ if (new_state) { /* High overtemp -> immediate shutdown */ if (new_state & FAILURE_HIGH_OVERTEMP) machine_power_off(); if ((failure_state & new_state) != new_state) cpu_max_all_fans(); failure_state |= new_state; } else if ((failure_state & FAILURE_LOW_OVERTEMP) && (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); failure_state &= ~FAILURE_LOW_OVERTEMP; } return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); } static void cpu_fans_tick(void) { int err, cpu; s32 greatest_delta = 0; s32 temp, power, t_max = 0; int i, t, target = 0; struct wf_sensor *sr; struct wf_control *ct; struct wf_cpu_pid_state *sp; DBG_LOTS(KERN_DEBUG); for (cpu = 0; cpu < nr_cores; ++cpu) { /* Get CPU core temperature */ sr = sens_cpu_temp[cpu]; err = sr->ops->get_value(sr, &temp); if (err) { DBG("\n"); printk(KERN_WARNING "windfarm: CPU %d temperature " "sensor error %d\n", cpu, err); failure_state |= FAILURE_SENSOR; cpu_max_all_fans(); return; } /* Keep track of highest temp */ t_max = max(t_max, temp); /* Get CPU power */ sr = sens_cpu_power[cpu]; err = sr->ops->get_value(sr, &power); if (err) { DBG("\n"); printk(KERN_WARNING "windfarm: CPU %d power " "sensor error %d\n", cpu, err); failure_state |= FAILURE_SENSOR; cpu_max_all_fans(); return; } /* Run PID */ sp = &cpu_pid[cpu]; t = wf_cpu_pid_run(sp, power, temp); if (cpu == 0 || sp->last_delta > greatest_delta) { greatest_delta = sp->last_delta; target = t; } DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ", cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp)); } DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max)); /* Darwin limits decrease to 20 per iteration */ if (target < (cpu_last_target - 20)) target = cpu_last_target - 20; cpu_last_target = target; for (cpu = 0; cpu < nr_cores; ++cpu) cpu_pid[cpu].target = target; /* Handle possible overtemps */ if (cpu_check_overtemp(t_max)) return; /* Set fans */ for (i = 0; i < NR_CPU_FANS; ++i) { ct = cpu_fans[i]; if (ct == NULL) continue; err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100); if (err) { printk(KERN_WARNING "windfarm: fan %s reports " "error %d\n", ct->name, err); failure_state |= FAILURE_FAN; break; } } } /* Backside/U4 fan */ static struct wf_pid_param backside_param = { .interval = 5, .history_len = 2, .gd = 48 << 20, .gp = 5 << 20, .gr = 0, .itarget = 64 << 16, .additive = 1, }; static void backside_fan_tick(void) { s32 temp; int speed; int err; if (!backside_fan || !u4_temp) return; if (!backside_tick) { /* first time; initialize things */ printk(KERN_INFO "windfarm: Backside control loop started.\n"); backside_param.min = backside_fan->ops->get_min(backside_fan); backside_param.max = backside_fan->ops->get_max(backside_fan); wf_pid_init(&backside_pid, &backside_param); backside_tick = 1; } if (--backside_tick > 0) return; backside_tick = backside_pid.param.interval; err = u4_temp->ops->get_value(u4_temp, &temp); if (err) { printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", err); failure_state |= FAILURE_SENSOR; wf_control_set_max(backside_fan); return; } speed = wf_pid_run(&backside_pid, temp); DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", FIX32TOPRINT(temp), speed); err = backside_fan->ops->set_value(backside_fan, speed); if (err) { printk(KERN_WARNING "windfarm: backside fan error %d\n", err); failure_state |= FAILURE_FAN; } } /* Drive bay fan */ static struct wf_pid_param drive_bay_prm = { .interval = 5, .history_len = 2, .gd = 30 << 20, .gp = 5 << 20, .gr = 0, .itarget = 40 << 16, .additive = 1, }; static void drive_bay_fan_tick(void) { s32 temp; int speed; int err; if (!drive_bay_fan || !hd_temp) return; if (!drive_bay_tick) { /* first time; initialize things */ printk(KERN_INFO "windfarm: Drive bay control loop started.\n"); drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan); drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan); wf_pid_init(&drive_bay_pid, &drive_bay_prm); drive_bay_tick = 1; } if (--drive_bay_tick > 0) return; drive_bay_tick = drive_bay_pid.param.interval; err = hd_temp->ops->get_value(hd_temp, &temp); if (err) { printk(KERN_WARNING "windfarm: drive bay temp sensor " "error %d\n", err); failure_state |= FAILURE_SENSOR; wf_control_set_max(drive_bay_fan); return; } speed = wf_pid_run(&drive_bay_pid, temp); DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n", FIX32TOPRINT(temp), speed); err = drive_bay_fan->ops->set_value(drive_bay_fan, speed); if (err) { printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); failure_state |= FAILURE_FAN; } } /* PCI slots area fan */ /* This makes the fan speed proportional to the power consumed */ static struct wf_pid_param slots_param = { .interval = 1, .history_len = 2, .gd = 0, .gp = 0, .gr = 0x1277952, .itarget = 0, .min = 1560, .max = 3510, }; static void slots_fan_tick(void) { s32 power; int speed; int err; if (!slots_fan || !slots_power) return; if (!slots_started) { /* first time; initialize things */ printk(KERN_INFO "windfarm: Slots control loop started.\n"); wf_pid_init(&slots_pid, &slots_param); slots_started = 1; } err = slots_power->ops->get_value(slots_power, &power); if (err) { printk(KERN_WARNING "windfarm: slots power sensor error %d\n", err); failure_state |= FAILURE_SENSOR; wf_control_set_max(slots_fan); return; } speed = wf_pid_run(&slots_pid, power); DBG_LOTS("slots PID power=%d.%.3d speed=%d\n", FIX32TOPRINT(power), speed); err = slots_fan->ops->set_value(slots_fan, speed); if (err) { printk(KERN_WARNING "windfarm: slots fan error %d\n", err); failure_state |= FAILURE_FAN; } } static void set_fail_state(void) { int i; if (cpufreq_clamp) wf_control_set_max(cpufreq_clamp); for (i = 0; i < NR_CPU_FANS; ++i) if (cpu_fans[i]) wf_control_set_max(cpu_fans[i]); if (backside_fan) wf_control_set_max(backside_fan); if (slots_fan) wf_control_set_max(slots_fan); if (drive_bay_fan) wf_control_set_max(drive_bay_fan); } static void pm112_tick(void) { int i, last_failure; if (!started) { started = 1; printk(KERN_INFO "windfarm: CPUs control loops started.\n"); for (i = 0; i < nr_cores; ++i) { if (create_cpu_loop(i) < 0) { failure_state = FAILURE_PERM; set_fail_state(); break; } } DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); #ifdef HACKED_OVERTEMP cpu_all_tmax = 60 << 16; #endif } /* Permanent failure, bail out */ if (failure_state & FAILURE_PERM) return; /* Clear all failure bits except low overtemp which will be eventually * cleared by the control loop itself */ last_failure = failure_state; failure_state &= FAILURE_LOW_OVERTEMP; cpu_fans_tick(); backside_fan_tick(); slots_fan_tick(); drive_bay_fan_tick(); DBG_LOTS("last_failure: 0x%x, failure_state: %x\n", last_failure, failure_state); /* Check for failures. Any failure causes cpufreq clamping */ if (failure_state && last_failure == 0 && cpufreq_clamp) wf_control_set_max(cpufreq_clamp); if (failure_state == 0 && last_failure && cpufreq_clamp) wf_control_set_min(cpufreq_clamp); /* That's it for now, we might want to deal with other failures * differently in the future though */ } static void pm112_new_control(struct wf_control *ct) { int i, max_exhaust; if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) { if (wf_get_control(ct) == 0) cpufreq_clamp = ct; } for (i = 0; i < NR_CPU_FANS; ++i) { if (!strcmp(ct->name, cpu_fan_names[i])) { if (cpu_fans[i] == NULL && wf_get_control(ct) == 0) cpu_fans[i] = ct; break; } } if (i >= NR_CPU_FANS) { /* not a CPU fan, try the others */ if (!strcmp(ct->name, "backside-fan")) { if (backside_fan == NULL && wf_get_control(ct) == 0) backside_fan = ct; } else if (!strcmp(ct->name, "slots-fan")) { if (slots_fan == NULL && wf_get_control(ct) == 0) slots_fan = ct; } else if (!strcmp(ct->name, "drive-bay-fan")) { if (drive_bay_fan == NULL && wf_get_control(ct) == 0) drive_bay_fan = ct; } return; } for (i = 0; i < CPU_FANS_REQD; ++i) if (cpu_fans[i] == NULL) return; /* work out pump scaling factors */ max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]); for (i = FIRST_PUMP; i <= LAST_PUMP; ++i) if ((ct = cpu_fans[i]) != NULL) cpu_fan_scale[i] = ct->ops->get_max(ct) * 100 / max_exhaust; have_all_controls = 1; } static void pm112_new_sensor(struct wf_sensor *sr) { unsigned int i; if (!strncmp(sr->name, "cpu-temp-", 9)) { i = sr->name[9] - '0'; if (sr->name[10] == 0 && i < NR_CORES && sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0) sens_cpu_temp[i] = sr; } else if (!strncmp(sr->name, "cpu-power-", 10)) { i = sr->name[10] - '0'; if (sr->name[11] == 0 && i < NR_CORES && sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0) sens_cpu_power[i] = sr; } else if (!strcmp(sr->name, "hd-temp")) { if (hd_temp == NULL && wf_get_sensor(sr) == 0) hd_temp = sr; } else if (!strcmp(sr->name, "slots-power")) { if (slots_power == NULL && wf_get_sensor(sr) == 0) slots_power = sr; } else if (!strcmp(sr->name, "backside-temp")) { if (u4_temp == NULL && wf_get_sensor(sr) == 0) u4_temp = sr; } else return; /* check if we have all the sensors we need */ for (i = 0; i < nr_cores; ++i) if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL) return; have_all_sensors = 1; } static int pm112_wf_notify(struct notifier_block *self, unsigned long event, void *data) { switch (event) { case WF_EVENT_NEW_SENSOR: pm112_new_sensor(data); break; case WF_EVENT_NEW_CONTROL: pm112_new_control(data); break; case WF_EVENT_TICK: if (have_all_controls && have_all_sensors) pm112_tick(); } return 0; } static struct notifier_block pm112_events = { .notifier_call = pm112_wf_notify, }; static int wf_pm112_probe(struct platform_device *dev) { wf_register_client(&pm112_events); return 0; } static int __devexit wf_pm112_remove(struct platform_device *dev) { wf_unregister_client(&pm112_events); /* should release all sensors and controls */ return 0; } static struct platform_driver wf_pm112_driver = { .probe = wf_pm112_probe, .remove = __devexit_p(wf_pm112_remove), .driver = { .name = "windfarm", .owner = THIS_MODULE, }, }; static int __init wf_pm112_init(void) { struct device_node *cpu; if (!of_machine_is_compatible("PowerMac11,2")) return -ENODEV; /* Count the number of CPU cores */ nr_cores = 0; for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; ) ++nr_cores; printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n"); #ifdef MODULE request_module("windfarm_smu_controls"); request_module("windfarm_smu_sensors"); request_module("windfarm_smu_sat"); request_module("windfarm_lm75_sensor"); request_module("windfarm_max6690_sensor"); request_module("windfarm_cpufreq_clamp"); #endif /* MODULE */ platform_driver_register(&wf_pm112_driver); return 0; } static void __exit wf_pm112_exit(void) { platform_driver_unregister(&wf_pm112_driver); } module_init(wf_pm112_init); module_exit(wf_pm112_exit); MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>"); MODULE_DESCRIPTION("Thermal control for PowerMac11,2"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:windfarm");