/* * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/log2.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <rdma/ib_cache.h> #include <rdma/ib_pack.h> #include <rdma/ib_addr.h> #include <linux/mlx4/qp.h> #include "mlx4_ib.h" #include "user.h" enum { MLX4_IB_ACK_REQ_FREQ = 8, }; enum { MLX4_IB_DEFAULT_SCHED_QUEUE = 0x83, MLX4_IB_DEFAULT_QP0_SCHED_QUEUE = 0x3f, MLX4_IB_LINK_TYPE_IB = 0, MLX4_IB_LINK_TYPE_ETH = 1 }; enum { /* * Largest possible UD header: send with GRH and immediate * data plus 18 bytes for an Ethernet header with VLAN/802.1Q * tag. (LRH would only use 8 bytes, so Ethernet is the * biggest case) */ MLX4_IB_UD_HEADER_SIZE = 82, MLX4_IB_LSO_HEADER_SPARE = 128, }; enum { MLX4_IB_IBOE_ETHERTYPE = 0x8915 }; struct mlx4_ib_sqp { struct mlx4_ib_qp qp; int pkey_index; u32 qkey; u32 send_psn; struct ib_ud_header ud_header; u8 header_buf[MLX4_IB_UD_HEADER_SIZE]; }; enum { MLX4_IB_MIN_SQ_STRIDE = 6, MLX4_IB_CACHE_LINE_SIZE = 64, }; static const __be32 mlx4_ib_opcode[] = { [IB_WR_SEND] = cpu_to_be32(MLX4_OPCODE_SEND), [IB_WR_LSO] = cpu_to_be32(MLX4_OPCODE_LSO), [IB_WR_SEND_WITH_IMM] = cpu_to_be32(MLX4_OPCODE_SEND_IMM), [IB_WR_RDMA_WRITE] = cpu_to_be32(MLX4_OPCODE_RDMA_WRITE), [IB_WR_RDMA_WRITE_WITH_IMM] = cpu_to_be32(MLX4_OPCODE_RDMA_WRITE_IMM), [IB_WR_RDMA_READ] = cpu_to_be32(MLX4_OPCODE_RDMA_READ), [IB_WR_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_ATOMIC_CS), [IB_WR_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_ATOMIC_FA), [IB_WR_SEND_WITH_INV] = cpu_to_be32(MLX4_OPCODE_SEND_INVAL), [IB_WR_LOCAL_INV] = cpu_to_be32(MLX4_OPCODE_LOCAL_INVAL), [IB_WR_FAST_REG_MR] = cpu_to_be32(MLX4_OPCODE_FMR), [IB_WR_MASKED_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_CS), [IB_WR_MASKED_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_FA), }; static struct mlx4_ib_sqp *to_msqp(struct mlx4_ib_qp *mqp) { return container_of(mqp, struct mlx4_ib_sqp, qp); } static int is_sqp(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp) { return qp->mqp.qpn >= dev->dev->caps.sqp_start && qp->mqp.qpn <= dev->dev->caps.sqp_start + 3; } static int is_qp0(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp) { return qp->mqp.qpn >= dev->dev->caps.sqp_start && qp->mqp.qpn <= dev->dev->caps.sqp_start + 1; } static void *get_wqe(struct mlx4_ib_qp *qp, int offset) { return mlx4_buf_offset(&qp->buf, offset); } static void *get_recv_wqe(struct mlx4_ib_qp *qp, int n) { return get_wqe(qp, qp->rq.offset + (n << qp->rq.wqe_shift)); } static void *get_send_wqe(struct mlx4_ib_qp *qp, int n) { return get_wqe(qp, qp->sq.offset + (n << qp->sq.wqe_shift)); } /* * Stamp a SQ WQE so that it is invalid if prefetched by marking the * first four bytes of every 64 byte chunk with * 0x7FFFFFF | (invalid_ownership_value << 31). * * When the max work request size is less than or equal to the WQE * basic block size, as an optimization, we can stamp all WQEs with * 0xffffffff, and skip the very first chunk of each WQE. */ static void stamp_send_wqe(struct mlx4_ib_qp *qp, int n, int size) { __be32 *wqe; int i; int s; int ind; void *buf; __be32 stamp; struct mlx4_wqe_ctrl_seg *ctrl; if (qp->sq_max_wqes_per_wr > 1) { s = roundup(size, 1U << qp->sq.wqe_shift); for (i = 0; i < s; i += 64) { ind = (i >> qp->sq.wqe_shift) + n; stamp = ind & qp->sq.wqe_cnt ? cpu_to_be32(0x7fffffff) : cpu_to_be32(0xffffffff); buf = get_send_wqe(qp, ind & (qp->sq.wqe_cnt - 1)); wqe = buf + (i & ((1 << qp->sq.wqe_shift) - 1)); *wqe = stamp; } } else { ctrl = buf = get_send_wqe(qp, n & (qp->sq.wqe_cnt - 1)); s = (ctrl->fence_size & 0x3f) << 4; for (i = 64; i < s; i += 64) { wqe = buf + i; *wqe = cpu_to_be32(0xffffffff); } } } static void post_nop_wqe(struct mlx4_ib_qp *qp, int n, int size) { struct mlx4_wqe_ctrl_seg *ctrl; struct mlx4_wqe_inline_seg *inl; void *wqe; int s; ctrl = wqe = get_send_wqe(qp, n & (qp->sq.wqe_cnt - 1)); s = sizeof(struct mlx4_wqe_ctrl_seg); if (qp->ibqp.qp_type == IB_QPT_UD) { struct mlx4_wqe_datagram_seg *dgram = wqe + sizeof *ctrl; struct mlx4_av *av = (struct mlx4_av *)dgram->av; memset(dgram, 0, sizeof *dgram); av->port_pd = cpu_to_be32((qp->port << 24) | to_mpd(qp->ibqp.pd)->pdn); s += sizeof(struct mlx4_wqe_datagram_seg); } /* Pad the remainder of the WQE with an inline data segment. */ if (size > s) { inl = wqe + s; inl->byte_count = cpu_to_be32(1 << 31 | (size - s - sizeof *inl)); } ctrl->srcrb_flags = 0; ctrl->fence_size = size / 16; /* * Make sure descriptor is fully written before setting ownership bit * (because HW can start executing as soon as we do). */ wmb(); ctrl->owner_opcode = cpu_to_be32(MLX4_OPCODE_NOP | MLX4_WQE_CTRL_NEC) | (n & qp->sq.wqe_cnt ? cpu_to_be32(1 << 31) : 0); stamp_send_wqe(qp, n + qp->sq_spare_wqes, size); } /* Post NOP WQE to prevent wrap-around in the middle of WR */ static inline unsigned pad_wraparound(struct mlx4_ib_qp *qp, int ind) { unsigned s = qp->sq.wqe_cnt - (ind & (qp->sq.wqe_cnt - 1)); if (unlikely(s < qp->sq_max_wqes_per_wr)) { post_nop_wqe(qp, ind, s << qp->sq.wqe_shift); ind += s; } return ind; } static void mlx4_ib_qp_event(struct mlx4_qp *qp, enum mlx4_event type) { struct ib_event event; struct ib_qp *ibqp = &to_mibqp(qp)->ibqp; if (type == MLX4_EVENT_TYPE_PATH_MIG) to_mibqp(qp)->port = to_mibqp(qp)->alt_port; if (ibqp->event_handler) { event.device = ibqp->device; event.element.qp = ibqp; switch (type) { case MLX4_EVENT_TYPE_PATH_MIG: event.event = IB_EVENT_PATH_MIG; break; case MLX4_EVENT_TYPE_COMM_EST: event.event = IB_EVENT_COMM_EST; break; case MLX4_EVENT_TYPE_SQ_DRAINED: event.event = IB_EVENT_SQ_DRAINED; break; case MLX4_EVENT_TYPE_SRQ_QP_LAST_WQE: event.event = IB_EVENT_QP_LAST_WQE_REACHED; break; case MLX4_EVENT_TYPE_WQ_CATAS_ERROR: event.event = IB_EVENT_QP_FATAL; break; case MLX4_EVENT_TYPE_PATH_MIG_FAILED: event.event = IB_EVENT_PATH_MIG_ERR; break; case MLX4_EVENT_TYPE_WQ_INVAL_REQ_ERROR: event.event = IB_EVENT_QP_REQ_ERR; break; case MLX4_EVENT_TYPE_WQ_ACCESS_ERROR: event.event = IB_EVENT_QP_ACCESS_ERR; break; default: printk(KERN_WARNING "mlx4_ib: Unexpected event type %d " "on QP %06x\n", type, qp->qpn); return; } ibqp->event_handler(&event, ibqp->qp_context); } } static int send_wqe_overhead(enum ib_qp_type type, u32 flags) { /* * UD WQEs must have a datagram segment. * RC and UC WQEs might have a remote address segment. * MLX WQEs need two extra inline data segments (for the UD * header and space for the ICRC). */ switch (type) { case IB_QPT_UD: return sizeof (struct mlx4_wqe_ctrl_seg) + sizeof (struct mlx4_wqe_datagram_seg) + ((flags & MLX4_IB_QP_LSO) ? MLX4_IB_LSO_HEADER_SPARE : 0); case IB_QPT_UC: return sizeof (struct mlx4_wqe_ctrl_seg) + sizeof (struct mlx4_wqe_raddr_seg); case IB_QPT_RC: return sizeof (struct mlx4_wqe_ctrl_seg) + sizeof (struct mlx4_wqe_atomic_seg) + sizeof (struct mlx4_wqe_raddr_seg); case IB_QPT_SMI: case IB_QPT_GSI: return sizeof (struct mlx4_wqe_ctrl_seg) + ALIGN(MLX4_IB_UD_HEADER_SIZE + DIV_ROUND_UP(MLX4_IB_UD_HEADER_SIZE, MLX4_INLINE_ALIGN) * sizeof (struct mlx4_wqe_inline_seg), sizeof (struct mlx4_wqe_data_seg)) + ALIGN(4 + sizeof (struct mlx4_wqe_inline_seg), sizeof (struct mlx4_wqe_data_seg)); default: return sizeof (struct mlx4_wqe_ctrl_seg); } } static int set_rq_size(struct mlx4_ib_dev *dev, struct ib_qp_cap *cap, int is_user, int has_srq, struct mlx4_ib_qp *qp) { /* Sanity check RQ size before proceeding */ if (cap->max_recv_wr > dev->dev->caps.max_wqes || cap->max_recv_sge > dev->dev->caps.max_rq_sg) return -EINVAL; if (has_srq) { /* QPs attached to an SRQ should have no RQ */ if (cap->max_recv_wr) return -EINVAL; qp->rq.wqe_cnt = qp->rq.max_gs = 0; } else { /* HW requires >= 1 RQ entry with >= 1 gather entry */ if (is_user && (!cap->max_recv_wr || !cap->max_recv_sge)) return -EINVAL; qp->rq.wqe_cnt = roundup_pow_of_two(max(1U, cap->max_recv_wr)); qp->rq.max_gs = roundup_pow_of_two(max(1U, cap->max_recv_sge)); qp->rq.wqe_shift = ilog2(qp->rq.max_gs * sizeof (struct mlx4_wqe_data_seg)); } cap->max_recv_wr = qp->rq.max_post = qp->rq.wqe_cnt; cap->max_recv_sge = qp->rq.max_gs; return 0; } static int set_kernel_sq_size(struct mlx4_ib_dev *dev, struct ib_qp_cap *cap, enum ib_qp_type type, struct mlx4_ib_qp *qp) { int s; /* Sanity check SQ size before proceeding */ if (cap->max_send_wr > dev->dev->caps.max_wqes || cap->max_send_sge > dev->dev->caps.max_sq_sg || cap->max_inline_data + send_wqe_overhead(type, qp->flags) + sizeof (struct mlx4_wqe_inline_seg) > dev->dev->caps.max_sq_desc_sz) return -EINVAL; /* * For MLX transport we need 2 extra S/G entries: * one for the header and one for the checksum at the end */ if ((type == IB_QPT_SMI || type == IB_QPT_GSI) && cap->max_send_sge + 2 > dev->dev->caps.max_sq_sg) return -EINVAL; s = max(cap->max_send_sge * sizeof (struct mlx4_wqe_data_seg), cap->max_inline_data + sizeof (struct mlx4_wqe_inline_seg)) + send_wqe_overhead(type, qp->flags); if (s > dev->dev->caps.max_sq_desc_sz) return -EINVAL; /* * Hermon supports shrinking WQEs, such that a single work * request can include multiple units of 1 << wqe_shift. This * way, work requests can differ in size, and do not have to * be a power of 2 in size, saving memory and speeding up send * WR posting. Unfortunately, if we do this then the * wqe_index field in CQEs can't be used to look up the WR ID * anymore, so we do this only if selective signaling is off. * * Further, on 32-bit platforms, we can't use vmap() to make * the QP buffer virtually contiguous. Thus we have to use * constant-sized WRs to make sure a WR is always fully within * a single page-sized chunk. * * Finally, we use NOP work requests to pad the end of the * work queue, to avoid wrap-around in the middle of WR. We * set NEC bit to avoid getting completions with error for * these NOP WRs, but since NEC is only supported starting * with firmware 2.2.232, we use constant-sized WRs for older * firmware. * * And, since MLX QPs only support SEND, we use constant-sized * WRs in this case. * * We look for the smallest value of wqe_shift such that the * resulting number of wqes does not exceed device * capabilities. * * We set WQE size to at least 64 bytes, this way stamping * invalidates each WQE. */ if (dev->dev->caps.fw_ver >= MLX4_FW_VER_WQE_CTRL_NEC && qp->sq_signal_bits && BITS_PER_LONG == 64 && type != IB_QPT_SMI && type != IB_QPT_GSI) qp->sq.wqe_shift = ilog2(64); else qp->sq.wqe_shift = ilog2(roundup_pow_of_two(s)); for (;;) { qp->sq_max_wqes_per_wr = DIV_ROUND_UP(s, 1U << qp->sq.wqe_shift); /* * We need to leave 2 KB + 1 WR of headroom in the SQ to * allow HW to prefetch. */ qp->sq_spare_wqes = (2048 >> qp->sq.wqe_shift) + qp->sq_max_wqes_per_wr; qp->sq.wqe_cnt = roundup_pow_of_two(cap->max_send_wr * qp->sq_max_wqes_per_wr + qp->sq_spare_wqes); if (qp->sq.wqe_cnt <= dev->dev->caps.max_wqes) break; if (qp->sq_max_wqes_per_wr <= 1) return -EINVAL; ++qp->sq.wqe_shift; } qp->sq.max_gs = (min(dev->dev->caps.max_sq_desc_sz, (qp->sq_max_wqes_per_wr << qp->sq.wqe_shift)) - send_wqe_overhead(type, qp->flags)) / sizeof (struct mlx4_wqe_data_seg); qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) + (qp->sq.wqe_cnt << qp->sq.wqe_shift); if (qp->rq.wqe_shift > qp->sq.wqe_shift) { qp->rq.offset = 0; qp->sq.offset = qp->rq.wqe_cnt << qp->rq.wqe_shift; } else { qp->rq.offset = qp->sq.wqe_cnt << qp->sq.wqe_shift; qp->sq.offset = 0; } cap->max_send_wr = qp->sq.max_post = (qp->sq.wqe_cnt - qp->sq_spare_wqes) / qp->sq_max_wqes_per_wr; cap->max_send_sge = min(qp->sq.max_gs, min(dev->dev->caps.max_sq_sg, dev->dev->caps.max_rq_sg)); /* We don't support inline sends for kernel QPs (yet) */ cap->max_inline_data = 0; return 0; } static int set_user_sq_size(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp, struct mlx4_ib_create_qp *ucmd) { /* Sanity check SQ size before proceeding */ if ((1 << ucmd->log_sq_bb_count) > dev->dev->caps.max_wqes || ucmd->log_sq_stride > ilog2(roundup_pow_of_two(dev->dev->caps.max_sq_desc_sz)) || ucmd->log_sq_stride < MLX4_IB_MIN_SQ_STRIDE) return -EINVAL; qp->sq.wqe_cnt = 1 << ucmd->log_sq_bb_count; qp->sq.wqe_shift = ucmd->log_sq_stride; qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) + (qp->sq.wqe_cnt << qp->sq.wqe_shift); return 0; } static int create_qp_common(struct mlx4_ib_dev *dev, struct ib_pd *pd, struct ib_qp_init_attr *init_attr, struct ib_udata *udata, int sqpn, struct mlx4_ib_qp *qp) { int qpn; int err; mutex_init(&qp->mutex); spin_lock_init(&qp->sq.lock); spin_lock_init(&qp->rq.lock); INIT_LIST_HEAD(&qp->gid_list); qp->state = IB_QPS_RESET; if (init_attr->sq_sig_type == IB_SIGNAL_ALL_WR) qp->sq_signal_bits = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE); err = set_rq_size(dev, &init_attr->cap, !!pd->uobject, !!init_attr->srq, qp); if (err) goto err; if (pd->uobject) { struct mlx4_ib_create_qp ucmd; if (ib_copy_from_udata(&ucmd, udata, sizeof ucmd)) { err = -EFAULT; goto err; } qp->sq_no_prefetch = ucmd.sq_no_prefetch; err = set_user_sq_size(dev, qp, &ucmd); if (err) goto err; qp->umem = ib_umem_get(pd->uobject->context, ucmd.buf_addr, qp->buf_size, 0, 0); if (IS_ERR(qp->umem)) { err = PTR_ERR(qp->umem); goto err; } err = mlx4_mtt_init(dev->dev, ib_umem_page_count(qp->umem), ilog2(qp->umem->page_size), &qp->mtt); if (err) goto err_buf; err = mlx4_ib_umem_write_mtt(dev, &qp->mtt, qp->umem); if (err) goto err_mtt; if (!init_attr->srq) { err = mlx4_ib_db_map_user(to_mucontext(pd->uobject->context), ucmd.db_addr, &qp->db); if (err) goto err_mtt; } } else { qp->sq_no_prefetch = 0; if (init_attr->create_flags & IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK) qp->flags |= MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK; if (init_attr->create_flags & IB_QP_CREATE_IPOIB_UD_LSO) qp->flags |= MLX4_IB_QP_LSO; err = set_kernel_sq_size(dev, &init_attr->cap, init_attr->qp_type, qp); if (err) goto err; if (!init_attr->srq) { err = mlx4_db_alloc(dev->dev, &qp->db, 0); if (err) goto err; *qp->db.db = 0; } if (mlx4_buf_alloc(dev->dev, qp->buf_size, PAGE_SIZE * 2, &qp->buf)) { err = -ENOMEM; goto err_db; } err = mlx4_mtt_init(dev->dev, qp->buf.npages, qp->buf.page_shift, &qp->mtt); if (err) goto err_buf; err = mlx4_buf_write_mtt(dev->dev, &qp->mtt, &qp->buf); if (err) goto err_mtt; qp->sq.wrid = kmalloc(qp->sq.wqe_cnt * sizeof (u64), GFP_KERNEL); qp->rq.wrid = kmalloc(qp->rq.wqe_cnt * sizeof (u64), GFP_KERNEL); if (!qp->sq.wrid || !qp->rq.wrid) { err = -ENOMEM; goto err_wrid; } } if (sqpn) { qpn = sqpn; } else { err = mlx4_qp_reserve_range(dev->dev, 1, 1, &qpn); if (err) goto err_wrid; } err = mlx4_qp_alloc(dev->dev, qpn, &qp->mqp); if (err) goto err_qpn; /* * Hardware wants QPN written in big-endian order (after * shifting) for send doorbell. Precompute this value to save * a little bit when posting sends. */ qp->doorbell_qpn = swab32(qp->mqp.qpn << 8); qp->mqp.event = mlx4_ib_qp_event; return 0; err_qpn: if (!sqpn) mlx4_qp_release_range(dev->dev, qpn, 1); err_wrid: if (pd->uobject) { if (!init_attr->srq) mlx4_ib_db_unmap_user(to_mucontext(pd->uobject->context), &qp->db); } else { kfree(qp->sq.wrid); kfree(qp->rq.wrid); } err_mtt: mlx4_mtt_cleanup(dev->dev, &qp->mtt); err_buf: if (pd->uobject) ib_umem_release(qp->umem); else mlx4_buf_free(dev->dev, qp->buf_size, &qp->buf); err_db: if (!pd->uobject && !init_attr->srq) mlx4_db_free(dev->dev, &qp->db); err: return err; } static enum mlx4_qp_state to_mlx4_state(enum ib_qp_state state) { switch (state) { case IB_QPS_RESET: return MLX4_QP_STATE_RST; case IB_QPS_INIT: return MLX4_QP_STATE_INIT; case IB_QPS_RTR: return MLX4_QP_STATE_RTR; case IB_QPS_RTS: return MLX4_QP_STATE_RTS; case IB_QPS_SQD: return MLX4_QP_STATE_SQD; case IB_QPS_SQE: return MLX4_QP_STATE_SQER; case IB_QPS_ERR: return MLX4_QP_STATE_ERR; default: return -1; } } static void mlx4_ib_lock_cqs(struct mlx4_ib_cq *send_cq, struct mlx4_ib_cq *recv_cq) __acquires(&send_cq->lock) __acquires(&recv_cq->lock) { if (send_cq == recv_cq) { spin_lock_irq(&send_cq->lock); __acquire(&recv_cq->lock); } else if (send_cq->mcq.cqn < recv_cq->mcq.cqn) { spin_lock_irq(&send_cq->lock); spin_lock_nested(&recv_cq->lock, SINGLE_DEPTH_NESTING); } else { spin_lock_irq(&recv_cq->lock); spin_lock_nested(&send_cq->lock, SINGLE_DEPTH_NESTING); } } static void mlx4_ib_unlock_cqs(struct mlx4_ib_cq *send_cq, struct mlx4_ib_cq *recv_cq) __releases(&send_cq->lock) __releases(&recv_cq->lock) { if (send_cq == recv_cq) { __release(&recv_cq->lock); spin_unlock_irq(&send_cq->lock); } else if (send_cq->mcq.cqn < recv_cq->mcq.cqn) { spin_unlock(&recv_cq->lock); spin_unlock_irq(&send_cq->lock); } else { spin_unlock(&send_cq->lock); spin_unlock_irq(&recv_cq->lock); } } static void del_gid_entries(struct mlx4_ib_qp *qp) { struct mlx4_ib_gid_entry *ge, *tmp; list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) { list_del(&ge->list); kfree(ge); } } static void destroy_qp_common(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp, int is_user) { struct mlx4_ib_cq *send_cq, *recv_cq; if (qp->state != IB_QPS_RESET) if (mlx4_qp_modify(dev->dev, NULL, to_mlx4_state(qp->state), MLX4_QP_STATE_RST, NULL, 0, 0, &qp->mqp)) printk(KERN_WARNING "mlx4_ib: modify QP %06x to RESET failed.\n", qp->mqp.qpn); send_cq = to_mcq(qp->ibqp.send_cq); recv_cq = to_mcq(qp->ibqp.recv_cq); mlx4_ib_lock_cqs(send_cq, recv_cq); if (!is_user) { __mlx4_ib_cq_clean(recv_cq, qp->mqp.qpn, qp->ibqp.srq ? to_msrq(qp->ibqp.srq): NULL); if (send_cq != recv_cq) __mlx4_ib_cq_clean(send_cq, qp->mqp.qpn, NULL); } mlx4_qp_remove(dev->dev, &qp->mqp); mlx4_ib_unlock_cqs(send_cq, recv_cq); mlx4_qp_free(dev->dev, &qp->mqp); if (!is_sqp(dev, qp)) mlx4_qp_release_range(dev->dev, qp->mqp.qpn, 1); mlx4_mtt_cleanup(dev->dev, &qp->mtt); if (is_user) { if (!qp->ibqp.srq) mlx4_ib_db_unmap_user(to_mucontext(qp->ibqp.uobject->context), &qp->db); ib_umem_release(qp->umem); } else { kfree(qp->sq.wrid); kfree(qp->rq.wrid); mlx4_buf_free(dev->dev, qp->buf_size, &qp->buf); if (!qp->ibqp.srq) mlx4_db_free(dev->dev, &qp->db); } del_gid_entries(qp); } struct ib_qp *mlx4_ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *init_attr, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_sqp *sqp; struct mlx4_ib_qp *qp; int err; /* * We only support LSO and multicast loopback blocking, and * only for kernel UD QPs. */ if (init_attr->create_flags & ~(IB_QP_CREATE_IPOIB_UD_LSO | IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK)) return ERR_PTR(-EINVAL); if (init_attr->create_flags && (pd->uobject || init_attr->qp_type != IB_QPT_UD)) return ERR_PTR(-EINVAL); switch (init_attr->qp_type) { case IB_QPT_RC: case IB_QPT_UC: case IB_QPT_UD: { qp = kzalloc(sizeof *qp, GFP_KERNEL); if (!qp) return ERR_PTR(-ENOMEM); err = create_qp_common(dev, pd, init_attr, udata, 0, qp); if (err) { kfree(qp); return ERR_PTR(err); } qp->ibqp.qp_num = qp->mqp.qpn; break; } case IB_QPT_SMI: case IB_QPT_GSI: { /* Userspace is not allowed to create special QPs: */ if (pd->uobject) return ERR_PTR(-EINVAL); sqp = kzalloc(sizeof *sqp, GFP_KERNEL); if (!sqp) return ERR_PTR(-ENOMEM); qp = &sqp->qp; err = create_qp_common(dev, pd, init_attr, udata, dev->dev->caps.sqp_start + (init_attr->qp_type == IB_QPT_SMI ? 0 : 2) + init_attr->port_num - 1, qp); if (err) { kfree(sqp); return ERR_PTR(err); } qp->port = init_attr->port_num; qp->ibqp.qp_num = init_attr->qp_type == IB_QPT_SMI ? 0 : 1; break; } default: /* Don't support raw QPs */ return ERR_PTR(-EINVAL); } return &qp->ibqp; } int mlx4_ib_destroy_qp(struct ib_qp *qp) { struct mlx4_ib_dev *dev = to_mdev(qp->device); struct mlx4_ib_qp *mqp = to_mqp(qp); if (is_qp0(dev, mqp)) mlx4_CLOSE_PORT(dev->dev, mqp->port); destroy_qp_common(dev, mqp, !!qp->pd->uobject); if (is_sqp(dev, mqp)) kfree(to_msqp(mqp)); else kfree(mqp); return 0; } static int to_mlx4_st(enum ib_qp_type type) { switch (type) { case IB_QPT_RC: return MLX4_QP_ST_RC; case IB_QPT_UC: return MLX4_QP_ST_UC; case IB_QPT_UD: return MLX4_QP_ST_UD; case IB_QPT_SMI: case IB_QPT_GSI: return MLX4_QP_ST_MLX; default: return -1; } } static __be32 to_mlx4_access_flags(struct mlx4_ib_qp *qp, const struct ib_qp_attr *attr, int attr_mask) { u8 dest_rd_atomic; u32 access_flags; u32 hw_access_flags = 0; if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) dest_rd_atomic = attr->max_dest_rd_atomic; else dest_rd_atomic = qp->resp_depth; if (attr_mask & IB_QP_ACCESS_FLAGS) access_flags = attr->qp_access_flags; else access_flags = qp->atomic_rd_en; if (!dest_rd_atomic) access_flags &= IB_ACCESS_REMOTE_WRITE; if (access_flags & IB_ACCESS_REMOTE_READ) hw_access_flags |= MLX4_QP_BIT_RRE; if (access_flags & IB_ACCESS_REMOTE_ATOMIC) hw_access_flags |= MLX4_QP_BIT_RAE; if (access_flags & IB_ACCESS_REMOTE_WRITE) hw_access_flags |= MLX4_QP_BIT_RWE; return cpu_to_be32(hw_access_flags); } static void store_sqp_attrs(struct mlx4_ib_sqp *sqp, const struct ib_qp_attr *attr, int attr_mask) { if (attr_mask & IB_QP_PKEY_INDEX) sqp->pkey_index = attr->pkey_index; if (attr_mask & IB_QP_QKEY) sqp->qkey = attr->qkey; if (attr_mask & IB_QP_SQ_PSN) sqp->send_psn = attr->sq_psn; } static void mlx4_set_sched(struct mlx4_qp_path *path, u8 port) { path->sched_queue = (path->sched_queue & 0xbf) | ((port - 1) << 6); } static int mlx4_set_path(struct mlx4_ib_dev *dev, const struct ib_ah_attr *ah, struct mlx4_qp_path *path, u8 port) { int err; int is_eth = rdma_port_get_link_layer(&dev->ib_dev, port) == IB_LINK_LAYER_ETHERNET; u8 mac[6]; int is_mcast; u16 vlan_tag; int vidx; path->grh_mylmc = ah->src_path_bits & 0x7f; path->rlid = cpu_to_be16(ah->dlid); if (ah->static_rate) { path->static_rate = ah->static_rate + MLX4_STAT_RATE_OFFSET; while (path->static_rate > IB_RATE_2_5_GBPS + MLX4_STAT_RATE_OFFSET && !(1 << path->static_rate & dev->dev->caps.stat_rate_support)) --path->static_rate; } else path->static_rate = 0; path->counter_index = 0xff; if (ah->ah_flags & IB_AH_GRH) { if (ah->grh.sgid_index >= dev->dev->caps.gid_table_len[port]) { printk(KERN_ERR "sgid_index (%u) too large. max is %d\n", ah->grh.sgid_index, dev->dev->caps.gid_table_len[port] - 1); return -1; } path->grh_mylmc |= 1 << 7; path->mgid_index = ah->grh.sgid_index; path->hop_limit = ah->grh.hop_limit; path->tclass_flowlabel = cpu_to_be32((ah->grh.traffic_class << 20) | (ah->grh.flow_label)); memcpy(path->rgid, ah->grh.dgid.raw, 16); } if (is_eth) { path->sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE | ((port - 1) << 6) | ((ah->sl & 7) << 3) | ((ah->sl & 8) >> 1); if (!(ah->ah_flags & IB_AH_GRH)) return -1; err = mlx4_ib_resolve_grh(dev, ah, mac, &is_mcast, port); if (err) return err; memcpy(path->dmac, mac, 6); path->ackto = MLX4_IB_LINK_TYPE_ETH; /* use index 0 into MAC table for IBoE */ path->grh_mylmc &= 0x80; vlan_tag = rdma_get_vlan_id(&dev->iboe.gid_table[port - 1][ah->grh.sgid_index]); if (vlan_tag < 0x1000) { if (mlx4_find_cached_vlan(dev->dev, port, vlan_tag, &vidx)) return -ENOENT; path->vlan_index = vidx; path->fl = 1 << 6; } } else path->sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE | ((port - 1) << 6) | ((ah->sl & 0xf) << 2); return 0; } static void update_mcg_macs(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp) { struct mlx4_ib_gid_entry *ge, *tmp; list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) { if (!ge->added && mlx4_ib_add_mc(dev, qp, &ge->gid)) { ge->added = 1; ge->port = qp->port; } } } static int __mlx4_ib_modify_qp(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, enum ib_qp_state cur_state, enum ib_qp_state new_state) { struct mlx4_ib_dev *dev = to_mdev(ibqp->device); struct mlx4_ib_qp *qp = to_mqp(ibqp); struct mlx4_qp_context *context; enum mlx4_qp_optpar optpar = 0; int sqd_event; int err = -EINVAL; context = kzalloc(sizeof *context, GFP_KERNEL); if (!context) return -ENOMEM; context->flags = cpu_to_be32((to_mlx4_state(new_state) << 28) | (to_mlx4_st(ibqp->qp_type) << 16)); if (!(attr_mask & IB_QP_PATH_MIG_STATE)) context->flags |= cpu_to_be32(MLX4_QP_PM_MIGRATED << 11); else { optpar |= MLX4_QP_OPTPAR_PM_STATE; switch (attr->path_mig_state) { case IB_MIG_MIGRATED: context->flags |= cpu_to_be32(MLX4_QP_PM_MIGRATED << 11); break; case IB_MIG_REARM: context->flags |= cpu_to_be32(MLX4_QP_PM_REARM << 11); break; case IB_MIG_ARMED: context->flags |= cpu_to_be32(MLX4_QP_PM_ARMED << 11); break; } } if (ibqp->qp_type == IB_QPT_GSI || ibqp->qp_type == IB_QPT_SMI) context->mtu_msgmax = (IB_MTU_4096 << 5) | 11; else if (ibqp->qp_type == IB_QPT_UD) { if (qp->flags & MLX4_IB_QP_LSO) context->mtu_msgmax = (IB_MTU_4096 << 5) | ilog2(dev->dev->caps.max_gso_sz); else context->mtu_msgmax = (IB_MTU_4096 << 5) | 12; } else if (attr_mask & IB_QP_PATH_MTU) { if (attr->path_mtu < IB_MTU_256 || attr->path_mtu > IB_MTU_4096) { printk(KERN_ERR "path MTU (%u) is invalid\n", attr->path_mtu); goto out; } context->mtu_msgmax = (attr->path_mtu << 5) | ilog2(dev->dev->caps.max_msg_sz); } if (qp->rq.wqe_cnt) context->rq_size_stride = ilog2(qp->rq.wqe_cnt) << 3; context->rq_size_stride |= qp->rq.wqe_shift - 4; if (qp->sq.wqe_cnt) context->sq_size_stride = ilog2(qp->sq.wqe_cnt) << 3; context->sq_size_stride |= qp->sq.wqe_shift - 4; if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) context->sq_size_stride |= !!qp->sq_no_prefetch << 7; if (qp->ibqp.uobject) context->usr_page = cpu_to_be32(to_mucontext(ibqp->uobject->context)->uar.index); else context->usr_page = cpu_to_be32(dev->priv_uar.index); if (attr_mask & IB_QP_DEST_QPN) context->remote_qpn = cpu_to_be32(attr->dest_qp_num); if (attr_mask & IB_QP_PORT) { if (cur_state == IB_QPS_SQD && new_state == IB_QPS_SQD && !(attr_mask & IB_QP_AV)) { mlx4_set_sched(&context->pri_path, attr->port_num); optpar |= MLX4_QP_OPTPAR_SCHED_QUEUE; } } if (attr_mask & IB_QP_PKEY_INDEX) { context->pri_path.pkey_index = attr->pkey_index; optpar |= MLX4_QP_OPTPAR_PKEY_INDEX; } if (attr_mask & IB_QP_AV) { if (mlx4_set_path(dev, &attr->ah_attr, &context->pri_path, attr_mask & IB_QP_PORT ? attr->port_num : qp->port)) goto out; optpar |= (MLX4_QP_OPTPAR_PRIMARY_ADDR_PATH | MLX4_QP_OPTPAR_SCHED_QUEUE); } if (attr_mask & IB_QP_TIMEOUT) { context->pri_path.ackto |= attr->timeout << 3; optpar |= MLX4_QP_OPTPAR_ACK_TIMEOUT; } if (attr_mask & IB_QP_ALT_PATH) { if (attr->alt_port_num == 0 || attr->alt_port_num > dev->dev->caps.num_ports) goto out; if (attr->alt_pkey_index >= dev->dev->caps.pkey_table_len[attr->alt_port_num]) goto out; if (mlx4_set_path(dev, &attr->alt_ah_attr, &context->alt_path, attr->alt_port_num)) goto out; context->alt_path.pkey_index = attr->alt_pkey_index; context->alt_path.ackto = attr->alt_timeout << 3; optpar |= MLX4_QP_OPTPAR_ALT_ADDR_PATH; } context->pd = cpu_to_be32(to_mpd(ibqp->pd)->pdn); context->params1 = cpu_to_be32(MLX4_IB_ACK_REQ_FREQ << 28); /* Set "fast registration enabled" for all kernel QPs */ if (!qp->ibqp.uobject) context->params1 |= cpu_to_be32(1 << 11); if (attr_mask & IB_QP_RNR_RETRY) { context->params1 |= cpu_to_be32(attr->rnr_retry << 13); optpar |= MLX4_QP_OPTPAR_RNR_RETRY; } if (attr_mask & IB_QP_RETRY_CNT) { context->params1 |= cpu_to_be32(attr->retry_cnt << 16); optpar |= MLX4_QP_OPTPAR_RETRY_COUNT; } if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) { if (attr->max_rd_atomic) context->params1 |= cpu_to_be32(fls(attr->max_rd_atomic - 1) << 21); optpar |= MLX4_QP_OPTPAR_SRA_MAX; } if (attr_mask & IB_QP_SQ_PSN) context->next_send_psn = cpu_to_be32(attr->sq_psn); context->cqn_send = cpu_to_be32(to_mcq(ibqp->send_cq)->mcq.cqn); if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) { if (attr->max_dest_rd_atomic) context->params2 |= cpu_to_be32(fls(attr->max_dest_rd_atomic - 1) << 21); optpar |= MLX4_QP_OPTPAR_RRA_MAX; } if (attr_mask & (IB_QP_ACCESS_FLAGS | IB_QP_MAX_DEST_RD_ATOMIC)) { context->params2 |= to_mlx4_access_flags(qp, attr, attr_mask); optpar |= MLX4_QP_OPTPAR_RWE | MLX4_QP_OPTPAR_RRE | MLX4_QP_OPTPAR_RAE; } if (ibqp->srq) context->params2 |= cpu_to_be32(MLX4_QP_BIT_RIC); if (attr_mask & IB_QP_MIN_RNR_TIMER) { context->rnr_nextrecvpsn |= cpu_to_be32(attr->min_rnr_timer << 24); optpar |= MLX4_QP_OPTPAR_RNR_TIMEOUT; } if (attr_mask & IB_QP_RQ_PSN) context->rnr_nextrecvpsn |= cpu_to_be32(attr->rq_psn); context->cqn_recv = cpu_to_be32(to_mcq(ibqp->recv_cq)->mcq.cqn); if (attr_mask & IB_QP_QKEY) { context->qkey = cpu_to_be32(attr->qkey); optpar |= MLX4_QP_OPTPAR_Q_KEY; } if (ibqp->srq) context->srqn = cpu_to_be32(1 << 24 | to_msrq(ibqp->srq)->msrq.srqn); if (!ibqp->srq && cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) context->db_rec_addr = cpu_to_be64(qp->db.dma); if (cur_state == IB_QPS_INIT && new_state == IB_QPS_RTR && (ibqp->qp_type == IB_QPT_GSI || ibqp->qp_type == IB_QPT_SMI || ibqp->qp_type == IB_QPT_UD)) { context->pri_path.sched_queue = (qp->port - 1) << 6; if (is_qp0(dev, qp)) context->pri_path.sched_queue |= MLX4_IB_DEFAULT_QP0_SCHED_QUEUE; else context->pri_path.sched_queue |= MLX4_IB_DEFAULT_SCHED_QUEUE; } if (cur_state == IB_QPS_RTS && new_state == IB_QPS_SQD && attr_mask & IB_QP_EN_SQD_ASYNC_NOTIFY && attr->en_sqd_async_notify) sqd_event = 1; else sqd_event = 0; if (!ibqp->uobject && cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) context->rlkey |= (1 << 4); /* * Before passing a kernel QP to the HW, make sure that the * ownership bits of the send queue are set and the SQ * headroom is stamped so that the hardware doesn't start * processing stale work requests. */ if (!ibqp->uobject && cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) { struct mlx4_wqe_ctrl_seg *ctrl; int i; for (i = 0; i < qp->sq.wqe_cnt; ++i) { ctrl = get_send_wqe(qp, i); ctrl->owner_opcode = cpu_to_be32(1 << 31); if (qp->sq_max_wqes_per_wr == 1) ctrl->fence_size = 1 << (qp->sq.wqe_shift - 4); stamp_send_wqe(qp, i, 1 << qp->sq.wqe_shift); } } err = mlx4_qp_modify(dev->dev, &qp->mtt, to_mlx4_state(cur_state), to_mlx4_state(new_state), context, optpar, sqd_event, &qp->mqp); if (err) goto out; qp->state = new_state; if (attr_mask & IB_QP_ACCESS_FLAGS) qp->atomic_rd_en = attr->qp_access_flags; if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) qp->resp_depth = attr->max_dest_rd_atomic; if (attr_mask & IB_QP_PORT) { qp->port = attr->port_num; update_mcg_macs(dev, qp); } if (attr_mask & IB_QP_ALT_PATH) qp->alt_port = attr->alt_port_num; if (is_sqp(dev, qp)) store_sqp_attrs(to_msqp(qp), attr, attr_mask); /* * If we moved QP0 to RTR, bring the IB link up; if we moved * QP0 to RESET or ERROR, bring the link back down. */ if (is_qp0(dev, qp)) { if (cur_state != IB_QPS_RTR && new_state == IB_QPS_RTR) if (mlx4_INIT_PORT(dev->dev, qp->port)) printk(KERN_WARNING "INIT_PORT failed for port %d\n", qp->port); if (cur_state != IB_QPS_RESET && cur_state != IB_QPS_ERR && (new_state == IB_QPS_RESET || new_state == IB_QPS_ERR)) mlx4_CLOSE_PORT(dev->dev, qp->port); } /* * If we moved a kernel QP to RESET, clean up all old CQ * entries and reinitialize the QP. */ if (new_state == IB_QPS_RESET && !ibqp->uobject) { mlx4_ib_cq_clean(to_mcq(ibqp->recv_cq), qp->mqp.qpn, ibqp->srq ? to_msrq(ibqp->srq): NULL); if (ibqp->send_cq != ibqp->recv_cq) mlx4_ib_cq_clean(to_mcq(ibqp->send_cq), qp->mqp.qpn, NULL); qp->rq.head = 0; qp->rq.tail = 0; qp->sq.head = 0; qp->sq.tail = 0; qp->sq_next_wqe = 0; if (!ibqp->srq) *qp->db.db = 0; } out: kfree(context); return err; } int mlx4_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(ibqp->device); struct mlx4_ib_qp *qp = to_mqp(ibqp); enum ib_qp_state cur_state, new_state; int err = -EINVAL; mutex_lock(&qp->mutex); cur_state = attr_mask & IB_QP_CUR_STATE ? attr->cur_qp_state : qp->state; new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, attr_mask)) goto out; if ((attr_mask & IB_QP_PORT) && (attr->port_num == 0 || attr->port_num > dev->dev->caps.num_ports)) { goto out; } if (attr_mask & IB_QP_PKEY_INDEX) { int p = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; if (attr->pkey_index >= dev->dev->caps.pkey_table_len[p]) goto out; } if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC && attr->max_rd_atomic > dev->dev->caps.max_qp_init_rdma) { goto out; } if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC && attr->max_dest_rd_atomic > dev->dev->caps.max_qp_dest_rdma) { goto out; } if (cur_state == new_state && cur_state == IB_QPS_RESET) { err = 0; goto out; } err = __mlx4_ib_modify_qp(ibqp, attr, attr_mask, cur_state, new_state); out: mutex_unlock(&qp->mutex); return err; } static int build_mlx_header(struct mlx4_ib_sqp *sqp, struct ib_send_wr *wr, void *wqe, unsigned *mlx_seg_len) { struct ib_device *ib_dev = sqp->qp.ibqp.device; struct mlx4_wqe_mlx_seg *mlx = wqe; struct mlx4_wqe_inline_seg *inl = wqe + sizeof *mlx; struct mlx4_ib_ah *ah = to_mah(wr->wr.ud.ah); union ib_gid sgid; u16 pkey; int send_size; int header_size; int spc; int i; int is_eth; int is_vlan = 0; int is_grh; u16 vlan; send_size = 0; for (i = 0; i < wr->num_sge; ++i) send_size += wr->sg_list[i].length; is_eth = rdma_port_get_link_layer(sqp->qp.ibqp.device, sqp->qp.port) == IB_LINK_LAYER_ETHERNET; is_grh = mlx4_ib_ah_grh_present(ah); if (is_eth) { ib_get_cached_gid(ib_dev, be32_to_cpu(ah->av.ib.port_pd) >> 24, ah->av.ib.gid_index, &sgid); vlan = rdma_get_vlan_id(&sgid); is_vlan = vlan < 0x1000; } ib_ud_header_init(send_size, !is_eth, is_eth, is_vlan, is_grh, 0, &sqp->ud_header); if (!is_eth) { sqp->ud_header.lrh.service_level = be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 28; sqp->ud_header.lrh.destination_lid = ah->av.ib.dlid; sqp->ud_header.lrh.source_lid = cpu_to_be16(ah->av.ib.g_slid & 0x7f); } if (is_grh) { sqp->ud_header.grh.traffic_class = (be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 20) & 0xff; sqp->ud_header.grh.flow_label = ah->av.ib.sl_tclass_flowlabel & cpu_to_be32(0xfffff); sqp->ud_header.grh.hop_limit = ah->av.ib.hop_limit; ib_get_cached_gid(ib_dev, be32_to_cpu(ah->av.ib.port_pd) >> 24, ah->av.ib.gid_index, &sqp->ud_header.grh.source_gid); memcpy(sqp->ud_header.grh.destination_gid.raw, ah->av.ib.dgid, 16); } mlx->flags &= cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE); if (!is_eth) { mlx->flags |= cpu_to_be32((!sqp->qp.ibqp.qp_num ? MLX4_WQE_MLX_VL15 : 0) | (sqp->ud_header.lrh.destination_lid == IB_LID_PERMISSIVE ? MLX4_WQE_MLX_SLR : 0) | (sqp->ud_header.lrh.service_level << 8)); mlx->rlid = sqp->ud_header.lrh.destination_lid; } switch (wr->opcode) { case IB_WR_SEND: sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY; sqp->ud_header.immediate_present = 0; break; case IB_WR_SEND_WITH_IMM: sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE; sqp->ud_header.immediate_present = 1; sqp->ud_header.immediate_data = wr->ex.imm_data; break; default: return -EINVAL; } if (is_eth) { u8 *smac; memcpy(sqp->ud_header.eth.dmac_h, ah->av.eth.mac, 6); /* FIXME: cache smac value? */ smac = to_mdev(sqp->qp.ibqp.device)->iboe.netdevs[sqp->qp.port - 1]->dev_addr; memcpy(sqp->ud_header.eth.smac_h, smac, 6); if (!memcmp(sqp->ud_header.eth.smac_h, sqp->ud_header.eth.dmac_h, 6)) mlx->flags |= cpu_to_be32(MLX4_WQE_CTRL_FORCE_LOOPBACK); if (!is_vlan) { sqp->ud_header.eth.type = cpu_to_be16(MLX4_IB_IBOE_ETHERTYPE); } else { u16 pcp; sqp->ud_header.vlan.type = cpu_to_be16(MLX4_IB_IBOE_ETHERTYPE); pcp = (be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 27 & 3) << 13; sqp->ud_header.vlan.tag = cpu_to_be16(vlan | pcp); } } else { sqp->ud_header.lrh.virtual_lane = !sqp->qp.ibqp.qp_num ? 15 : 0; if (sqp->ud_header.lrh.destination_lid == IB_LID_PERMISSIVE) sqp->ud_header.lrh.source_lid = IB_LID_PERMISSIVE; } sqp->ud_header.bth.solicited_event = !!(wr->send_flags & IB_SEND_SOLICITED); if (!sqp->qp.ibqp.qp_num) ib_get_cached_pkey(ib_dev, sqp->qp.port, sqp->pkey_index, &pkey); else ib_get_cached_pkey(ib_dev, sqp->qp.port, wr->wr.ud.pkey_index, &pkey); sqp->ud_header.bth.pkey = cpu_to_be16(pkey); sqp->ud_header.bth.destination_qpn = cpu_to_be32(wr->wr.ud.remote_qpn); sqp->ud_header.bth.psn = cpu_to_be32((sqp->send_psn++) & ((1 << 24) - 1)); sqp->ud_header.deth.qkey = cpu_to_be32(wr->wr.ud.remote_qkey & 0x80000000 ? sqp->qkey : wr->wr.ud.remote_qkey); sqp->ud_header.deth.source_qpn = cpu_to_be32(sqp->qp.ibqp.qp_num); header_size = ib_ud_header_pack(&sqp->ud_header, sqp->header_buf); if (0) { printk(KERN_ERR "built UD header of size %d:\n", header_size); for (i = 0; i < header_size / 4; ++i) { if (i % 8 == 0) printk(" [%02x] ", i * 4); printk(" %08x", be32_to_cpu(((__be32 *) sqp->header_buf)[i])); if ((i + 1) % 8 == 0) printk("\n"); } printk("\n"); } /* * Inline data segments may not cross a 64 byte boundary. If * our UD header is bigger than the space available up to the * next 64 byte boundary in the WQE, use two inline data * segments to hold the UD header. */ spc = MLX4_INLINE_ALIGN - ((unsigned long) (inl + 1) & (MLX4_INLINE_ALIGN - 1)); if (header_size <= spc) { inl->byte_count = cpu_to_be32(1 << 31 | header_size); memcpy(inl + 1, sqp->header_buf, header_size); i = 1; } else { inl->byte_count = cpu_to_be32(1 << 31 | spc); memcpy(inl + 1, sqp->header_buf, spc); inl = (void *) (inl + 1) + spc; memcpy(inl + 1, sqp->header_buf + spc, header_size - spc); /* * Need a barrier here to make sure all the data is * visible before the byte_count field is set. * Otherwise the HCA prefetcher could grab the 64-byte * chunk with this inline segment and get a valid (!= * 0xffffffff) byte count but stale data, and end up * generating a packet with bad headers. * * The first inline segment's byte_count field doesn't * need a barrier, because it comes after a * control/MLX segment and therefore is at an offset * of 16 mod 64. */ wmb(); inl->byte_count = cpu_to_be32(1 << 31 | (header_size - spc)); i = 2; } *mlx_seg_len = ALIGN(i * sizeof (struct mlx4_wqe_inline_seg) + header_size, 16); return 0; } static int mlx4_wq_overflow(struct mlx4_ib_wq *wq, int nreq, struct ib_cq *ib_cq) { unsigned cur; struct mlx4_ib_cq *cq; cur = wq->head - wq->tail; if (likely(cur + nreq < wq->max_post)) return 0; cq = to_mcq(ib_cq); spin_lock(&cq->lock); cur = wq->head - wq->tail; spin_unlock(&cq->lock); return cur + nreq >= wq->max_post; } static __be32 convert_access(int acc) { return (acc & IB_ACCESS_REMOTE_ATOMIC ? cpu_to_be32(MLX4_WQE_FMR_PERM_ATOMIC) : 0) | (acc & IB_ACCESS_REMOTE_WRITE ? cpu_to_be32(MLX4_WQE_FMR_PERM_REMOTE_WRITE) : 0) | (acc & IB_ACCESS_REMOTE_READ ? cpu_to_be32(MLX4_WQE_FMR_PERM_REMOTE_READ) : 0) | (acc & IB_ACCESS_LOCAL_WRITE ? cpu_to_be32(MLX4_WQE_FMR_PERM_LOCAL_WRITE) : 0) | cpu_to_be32(MLX4_WQE_FMR_PERM_LOCAL_READ); } static void set_fmr_seg(struct mlx4_wqe_fmr_seg *fseg, struct ib_send_wr *wr) { struct mlx4_ib_fast_reg_page_list *mfrpl = to_mfrpl(wr->wr.fast_reg.page_list); int i; for (i = 0; i < wr->wr.fast_reg.page_list_len; ++i) mfrpl->mapped_page_list[i] = cpu_to_be64(wr->wr.fast_reg.page_list->page_list[i] | MLX4_MTT_FLAG_PRESENT); fseg->flags = convert_access(wr->wr.fast_reg.access_flags); fseg->mem_key = cpu_to_be32(wr->wr.fast_reg.rkey); fseg->buf_list = cpu_to_be64(mfrpl->map); fseg->start_addr = cpu_to_be64(wr->wr.fast_reg.iova_start); fseg->reg_len = cpu_to_be64(wr->wr.fast_reg.length); fseg->offset = 0; /* XXX -- is this just for ZBVA? */ fseg->page_size = cpu_to_be32(wr->wr.fast_reg.page_shift); fseg->reserved[0] = 0; fseg->reserved[1] = 0; } static void set_local_inv_seg(struct mlx4_wqe_local_inval_seg *iseg, u32 rkey) { iseg->flags = 0; iseg->mem_key = cpu_to_be32(rkey); iseg->guest_id = 0; iseg->pa = 0; } static __always_inline void set_raddr_seg(struct mlx4_wqe_raddr_seg *rseg, u64 remote_addr, u32 rkey) { rseg->raddr = cpu_to_be64(remote_addr); rseg->rkey = cpu_to_be32(rkey); rseg->reserved = 0; } static void set_atomic_seg(struct mlx4_wqe_atomic_seg *aseg, struct ib_send_wr *wr) { if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP) { aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap); aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add); } else if (wr->opcode == IB_WR_MASKED_ATOMIC_FETCH_AND_ADD) { aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add); aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add_mask); } else { aseg->swap_add = cpu_to_be64(wr->wr.atomic.compare_add); aseg->compare = 0; } } static void set_masked_atomic_seg(struct mlx4_wqe_masked_atomic_seg *aseg, struct ib_send_wr *wr) { aseg->swap_add = cpu_to_be64(wr->wr.atomic.swap); aseg->swap_add_mask = cpu_to_be64(wr->wr.atomic.swap_mask); aseg->compare = cpu_to_be64(wr->wr.atomic.compare_add); aseg->compare_mask = cpu_to_be64(wr->wr.atomic.compare_add_mask); } static void set_datagram_seg(struct mlx4_wqe_datagram_seg *dseg, struct ib_send_wr *wr, __be16 *vlan) { memcpy(dseg->av, &to_mah(wr->wr.ud.ah)->av, sizeof (struct mlx4_av)); dseg->dqpn = cpu_to_be32(wr->wr.ud.remote_qpn); dseg->qkey = cpu_to_be32(wr->wr.ud.remote_qkey); dseg->vlan = to_mah(wr->wr.ud.ah)->av.eth.vlan; memcpy(dseg->mac, to_mah(wr->wr.ud.ah)->av.eth.mac, 6); *vlan = dseg->vlan; } static void set_mlx_icrc_seg(void *dseg) { u32 *t = dseg; struct mlx4_wqe_inline_seg *iseg = dseg; t[1] = 0; /* * Need a barrier here before writing the byte_count field to * make sure that all the data is visible before the * byte_count field is set. Otherwise, if the segment begins * a new cacheline, the HCA prefetcher could grab the 64-byte * chunk and get a valid (!= * 0xffffffff) byte count but * stale data, and end up sending the wrong data. */ wmb(); iseg->byte_count = cpu_to_be32((1 << 31) | 4); } static void set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ib_sge *sg) { dseg->lkey = cpu_to_be32(sg->lkey); dseg->addr = cpu_to_be64(sg->addr); /* * Need a barrier here before writing the byte_count field to * make sure that all the data is visible before the * byte_count field is set. Otherwise, if the segment begins * a new cacheline, the HCA prefetcher could grab the 64-byte * chunk and get a valid (!= * 0xffffffff) byte count but * stale data, and end up sending the wrong data. */ wmb(); dseg->byte_count = cpu_to_be32(sg->length); } static void __set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ib_sge *sg) { dseg->byte_count = cpu_to_be32(sg->length); dseg->lkey = cpu_to_be32(sg->lkey); dseg->addr = cpu_to_be64(sg->addr); } static int build_lso_seg(struct mlx4_wqe_lso_seg *wqe, struct ib_send_wr *wr, struct mlx4_ib_qp *qp, unsigned *lso_seg_len, __be32 *lso_hdr_sz, __be32 *blh) { unsigned halign = ALIGN(sizeof *wqe + wr->wr.ud.hlen, 16); if (unlikely(halign > MLX4_IB_CACHE_LINE_SIZE)) *blh = cpu_to_be32(1 << 6); if (unlikely(!(qp->flags & MLX4_IB_QP_LSO) && wr->num_sge > qp->sq.max_gs - (halign >> 4))) return -EINVAL; memcpy(wqe->header, wr->wr.ud.header, wr->wr.ud.hlen); *lso_hdr_sz = cpu_to_be32((wr->wr.ud.mss - wr->wr.ud.hlen) << 16 | wr->wr.ud.hlen); *lso_seg_len = halign; return 0; } static __be32 send_ieth(struct ib_send_wr *wr) { switch (wr->opcode) { case IB_WR_SEND_WITH_IMM: case IB_WR_RDMA_WRITE_WITH_IMM: return wr->ex.imm_data; case IB_WR_SEND_WITH_INV: return cpu_to_be32(wr->ex.invalidate_rkey); default: return 0; } } int mlx4_ib_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr, struct ib_send_wr **bad_wr) { struct mlx4_ib_qp *qp = to_mqp(ibqp); void *wqe; struct mlx4_wqe_ctrl_seg *ctrl; struct mlx4_wqe_data_seg *dseg; unsigned long flags; int nreq; int err = 0; unsigned ind; int uninitialized_var(stamp); int uninitialized_var(size); unsigned uninitialized_var(seglen); __be32 dummy; __be32 *lso_wqe; __be32 uninitialized_var(lso_hdr_sz); __be32 blh; int i; __be16 vlan = cpu_to_be16(0xffff); spin_lock_irqsave(&qp->sq.lock, flags); ind = qp->sq_next_wqe; for (nreq = 0; wr; ++nreq, wr = wr->next) { lso_wqe = &dummy; blh = 0; if (mlx4_wq_overflow(&qp->sq, nreq, qp->ibqp.send_cq)) { err = -ENOMEM; *bad_wr = wr; goto out; } if (unlikely(wr->num_sge > qp->sq.max_gs)) { err = -EINVAL; *bad_wr = wr; goto out; } ctrl = wqe = get_send_wqe(qp, ind & (qp->sq.wqe_cnt - 1)); qp->sq.wrid[(qp->sq.head + nreq) & (qp->sq.wqe_cnt - 1)] = wr->wr_id; ctrl->srcrb_flags = (wr->send_flags & IB_SEND_SIGNALED ? cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE) : 0) | (wr->send_flags & IB_SEND_SOLICITED ? cpu_to_be32(MLX4_WQE_CTRL_SOLICITED) : 0) | ((wr->send_flags & IB_SEND_IP_CSUM) ? cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | MLX4_WQE_CTRL_TCP_UDP_CSUM) : 0) | qp->sq_signal_bits; ctrl->imm = send_ieth(wr); wqe += sizeof *ctrl; size = sizeof *ctrl / 16; switch (ibqp->qp_type) { case IB_QPT_RC: case IB_QPT_UC: switch (wr->opcode) { case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_FETCH_AND_ADD: case IB_WR_MASKED_ATOMIC_FETCH_AND_ADD: set_raddr_seg(wqe, wr->wr.atomic.remote_addr, wr->wr.atomic.rkey); wqe += sizeof (struct mlx4_wqe_raddr_seg); set_atomic_seg(wqe, wr); wqe += sizeof (struct mlx4_wqe_atomic_seg); size += (sizeof (struct mlx4_wqe_raddr_seg) + sizeof (struct mlx4_wqe_atomic_seg)) / 16; break; case IB_WR_MASKED_ATOMIC_CMP_AND_SWP: set_raddr_seg(wqe, wr->wr.atomic.remote_addr, wr->wr.atomic.rkey); wqe += sizeof (struct mlx4_wqe_raddr_seg); set_masked_atomic_seg(wqe, wr); wqe += sizeof (struct mlx4_wqe_masked_atomic_seg); size += (sizeof (struct mlx4_wqe_raddr_seg) + sizeof (struct mlx4_wqe_masked_atomic_seg)) / 16; break; case IB_WR_RDMA_READ: case IB_WR_RDMA_WRITE: case IB_WR_RDMA_WRITE_WITH_IMM: set_raddr_seg(wqe, wr->wr.rdma.remote_addr, wr->wr.rdma.rkey); wqe += sizeof (struct mlx4_wqe_raddr_seg); size += sizeof (struct mlx4_wqe_raddr_seg) / 16; break; case IB_WR_LOCAL_INV: ctrl->srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_STRONG_ORDER); set_local_inv_seg(wqe, wr->ex.invalidate_rkey); wqe += sizeof (struct mlx4_wqe_local_inval_seg); size += sizeof (struct mlx4_wqe_local_inval_seg) / 16; break; case IB_WR_FAST_REG_MR: ctrl->srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_STRONG_ORDER); set_fmr_seg(wqe, wr); wqe += sizeof (struct mlx4_wqe_fmr_seg); size += sizeof (struct mlx4_wqe_fmr_seg) / 16; break; default: /* No extra segments required for sends */ break; } break; case IB_QPT_UD: set_datagram_seg(wqe, wr, &vlan); wqe += sizeof (struct mlx4_wqe_datagram_seg); size += sizeof (struct mlx4_wqe_datagram_seg) / 16; if (wr->opcode == IB_WR_LSO) { err = build_lso_seg(wqe, wr, qp, &seglen, &lso_hdr_sz, &blh); if (unlikely(err)) { *bad_wr = wr; goto out; } lso_wqe = (__be32 *) wqe; wqe += seglen; size += seglen / 16; } break; case IB_QPT_SMI: case IB_QPT_GSI: err = build_mlx_header(to_msqp(qp), wr, ctrl, &seglen); if (unlikely(err)) { *bad_wr = wr; goto out; } wqe += seglen; size += seglen / 16; break; default: break; } /* * Write data segments in reverse order, so as to * overwrite cacheline stamp last within each * cacheline. This avoids issues with WQE * prefetching. */ dseg = wqe; dseg += wr->num_sge - 1; size += wr->num_sge * (sizeof (struct mlx4_wqe_data_seg) / 16); /* Add one more inline data segment for ICRC for MLX sends */ if (unlikely(qp->ibqp.qp_type == IB_QPT_SMI || qp->ibqp.qp_type == IB_QPT_GSI)) { set_mlx_icrc_seg(dseg + 1); size += sizeof (struct mlx4_wqe_data_seg) / 16; } for (i = wr->num_sge - 1; i >= 0; --i, --dseg) set_data_seg(dseg, wr->sg_list + i); /* * Possibly overwrite stamping in cacheline with LSO * segment only after making sure all data segments * are written. */ wmb(); *lso_wqe = lso_hdr_sz; ctrl->fence_size = (wr->send_flags & IB_SEND_FENCE ? MLX4_WQE_CTRL_FENCE : 0) | size; if (be16_to_cpu(vlan) < 0x1000) { ctrl->ins_vlan = 1 << 6; ctrl->vlan_tag = vlan; } /* * Make sure descriptor is fully written before * setting ownership bit (because HW can start * executing as soon as we do). */ wmb(); if (wr->opcode < 0 || wr->opcode >= ARRAY_SIZE(mlx4_ib_opcode)) { err = -EINVAL; goto out; } ctrl->owner_opcode = mlx4_ib_opcode[wr->opcode] | (ind & qp->sq.wqe_cnt ? cpu_to_be32(1 << 31) : 0) | blh; stamp = ind + qp->sq_spare_wqes; ind += DIV_ROUND_UP(size * 16, 1U << qp->sq.wqe_shift); /* * We can improve latency by not stamping the last * send queue WQE until after ringing the doorbell, so * only stamp here if there are still more WQEs to post. * * Same optimization applies to padding with NOP wqe * in case of WQE shrinking (used to prevent wrap-around * in the middle of WR). */ if (wr->next) { stamp_send_wqe(qp, stamp, size * 16); ind = pad_wraparound(qp, ind); } } out: if (likely(nreq)) { qp->sq.head += nreq; /* * Make sure that descriptors are written before * doorbell record. */ wmb(); writel(qp->doorbell_qpn, to_mdev(ibqp->device)->uar_map + MLX4_SEND_DOORBELL); /* * Make sure doorbells don't leak out of SQ spinlock * and reach the HCA out of order. */ mmiowb(); stamp_send_wqe(qp, stamp, size * 16); ind = pad_wraparound(qp, ind); qp->sq_next_wqe = ind; } spin_unlock_irqrestore(&qp->sq.lock, flags); return err; } int mlx4_ib_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr, struct ib_recv_wr **bad_wr) { struct mlx4_ib_qp *qp = to_mqp(ibqp); struct mlx4_wqe_data_seg *scat; unsigned long flags; int err = 0; int nreq; int ind; int i; spin_lock_irqsave(&qp->rq.lock, flags); ind = qp->rq.head & (qp->rq.wqe_cnt - 1); for (nreq = 0; wr; ++nreq, wr = wr->next) { if (mlx4_wq_overflow(&qp->rq, nreq, qp->ibqp.recv_cq)) { err = -ENOMEM; *bad_wr = wr; goto out; } if (unlikely(wr->num_sge > qp->rq.max_gs)) { err = -EINVAL; *bad_wr = wr; goto out; } scat = get_recv_wqe(qp, ind); for (i = 0; i < wr->num_sge; ++i) __set_data_seg(scat + i, wr->sg_list + i); if (i < qp->rq.max_gs) { scat[i].byte_count = 0; scat[i].lkey = cpu_to_be32(MLX4_INVALID_LKEY); scat[i].addr = 0; } qp->rq.wrid[ind] = wr->wr_id; ind = (ind + 1) & (qp->rq.wqe_cnt - 1); } out: if (likely(nreq)) { qp->rq.head += nreq; /* * Make sure that descriptors are written before * doorbell record. */ wmb(); *qp->db.db = cpu_to_be32(qp->rq.head & 0xffff); } spin_unlock_irqrestore(&qp->rq.lock, flags); return err; } static inline enum ib_qp_state to_ib_qp_state(enum mlx4_qp_state mlx4_state) { switch (mlx4_state) { case MLX4_QP_STATE_RST: return IB_QPS_RESET; case MLX4_QP_STATE_INIT: return IB_QPS_INIT; case MLX4_QP_STATE_RTR: return IB_QPS_RTR; case MLX4_QP_STATE_RTS: return IB_QPS_RTS; case MLX4_QP_STATE_SQ_DRAINING: case MLX4_QP_STATE_SQD: return IB_QPS_SQD; case MLX4_QP_STATE_SQER: return IB_QPS_SQE; case MLX4_QP_STATE_ERR: return IB_QPS_ERR; default: return -1; } } static inline enum ib_mig_state to_ib_mig_state(int mlx4_mig_state) { switch (mlx4_mig_state) { case MLX4_QP_PM_ARMED: return IB_MIG_ARMED; case MLX4_QP_PM_REARM: return IB_MIG_REARM; case MLX4_QP_PM_MIGRATED: return IB_MIG_MIGRATED; default: return -1; } } static int to_ib_qp_access_flags(int mlx4_flags) { int ib_flags = 0; if (mlx4_flags & MLX4_QP_BIT_RRE) ib_flags |= IB_ACCESS_REMOTE_READ; if (mlx4_flags & MLX4_QP_BIT_RWE) ib_flags |= IB_ACCESS_REMOTE_WRITE; if (mlx4_flags & MLX4_QP_BIT_RAE) ib_flags |= IB_ACCESS_REMOTE_ATOMIC; return ib_flags; } static void to_ib_ah_attr(struct mlx4_ib_dev *ibdev, struct ib_ah_attr *ib_ah_attr, struct mlx4_qp_path *path) { struct mlx4_dev *dev = ibdev->dev; int is_eth; memset(ib_ah_attr, 0, sizeof *ib_ah_attr); ib_ah_attr->port_num = path->sched_queue & 0x40 ? 2 : 1; if (ib_ah_attr->port_num == 0 || ib_ah_attr->port_num > dev->caps.num_ports) return; is_eth = rdma_port_get_link_layer(&ibdev->ib_dev, ib_ah_attr->port_num) == IB_LINK_LAYER_ETHERNET; if (is_eth) ib_ah_attr->sl = ((path->sched_queue >> 3) & 0x7) | ((path->sched_queue & 4) << 1); else ib_ah_attr->sl = (path->sched_queue >> 2) & 0xf; ib_ah_attr->dlid = be16_to_cpu(path->rlid); ib_ah_attr->src_path_bits = path->grh_mylmc & 0x7f; ib_ah_attr->static_rate = path->static_rate ? path->static_rate - 5 : 0; ib_ah_attr->ah_flags = (path->grh_mylmc & (1 << 7)) ? IB_AH_GRH : 0; if (ib_ah_attr->ah_flags) { ib_ah_attr->grh.sgid_index = path->mgid_index; ib_ah_attr->grh.hop_limit = path->hop_limit; ib_ah_attr->grh.traffic_class = (be32_to_cpu(path->tclass_flowlabel) >> 20) & 0xff; ib_ah_attr->grh.flow_label = be32_to_cpu(path->tclass_flowlabel) & 0xfffff; memcpy(ib_ah_attr->grh.dgid.raw, path->rgid, sizeof ib_ah_attr->grh.dgid.raw); } } int mlx4_ib_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) { struct mlx4_ib_dev *dev = to_mdev(ibqp->device); struct mlx4_ib_qp *qp = to_mqp(ibqp); struct mlx4_qp_context context; int mlx4_state; int err = 0; mutex_lock(&qp->mutex); if (qp->state == IB_QPS_RESET) { qp_attr->qp_state = IB_QPS_RESET; goto done; } err = mlx4_qp_query(dev->dev, &qp->mqp, &context); if (err) { err = -EINVAL; goto out; } mlx4_state = be32_to_cpu(context.flags) >> 28; qp->state = to_ib_qp_state(mlx4_state); qp_attr->qp_state = qp->state; qp_attr->path_mtu = context.mtu_msgmax >> 5; qp_attr->path_mig_state = to_ib_mig_state((be32_to_cpu(context.flags) >> 11) & 0x3); qp_attr->qkey = be32_to_cpu(context.qkey); qp_attr->rq_psn = be32_to_cpu(context.rnr_nextrecvpsn) & 0xffffff; qp_attr->sq_psn = be32_to_cpu(context.next_send_psn) & 0xffffff; qp_attr->dest_qp_num = be32_to_cpu(context.remote_qpn) & 0xffffff; qp_attr->qp_access_flags = to_ib_qp_access_flags(be32_to_cpu(context.params2)); if (qp->ibqp.qp_type == IB_QPT_RC || qp->ibqp.qp_type == IB_QPT_UC) { to_ib_ah_attr(dev, &qp_attr->ah_attr, &context.pri_path); to_ib_ah_attr(dev, &qp_attr->alt_ah_attr, &context.alt_path); qp_attr->alt_pkey_index = context.alt_path.pkey_index & 0x7f; qp_attr->alt_port_num = qp_attr->alt_ah_attr.port_num; } qp_attr->pkey_index = context.pri_path.pkey_index & 0x7f; if (qp_attr->qp_state == IB_QPS_INIT) qp_attr->port_num = qp->port; else qp_attr->port_num = context.pri_path.sched_queue & 0x40 ? 2 : 1; /* qp_attr->en_sqd_async_notify is only applicable in modify qp */ qp_attr->sq_draining = mlx4_state == MLX4_QP_STATE_SQ_DRAINING; qp_attr->max_rd_atomic = 1 << ((be32_to_cpu(context.params1) >> 21) & 0x7); qp_attr->max_dest_rd_atomic = 1 << ((be32_to_cpu(context.params2) >> 21) & 0x7); qp_attr->min_rnr_timer = (be32_to_cpu(context.rnr_nextrecvpsn) >> 24) & 0x1f; qp_attr->timeout = context.pri_path.ackto >> 3; qp_attr->retry_cnt = (be32_to_cpu(context.params1) >> 16) & 0x7; qp_attr->rnr_retry = (be32_to_cpu(context.params1) >> 13) & 0x7; qp_attr->alt_timeout = context.alt_path.ackto >> 3; done: qp_attr->cur_qp_state = qp_attr->qp_state; qp_attr->cap.max_recv_wr = qp->rq.wqe_cnt; qp_attr->cap.max_recv_sge = qp->rq.max_gs; if (!ibqp->uobject) { qp_attr->cap.max_send_wr = qp->sq.wqe_cnt; qp_attr->cap.max_send_sge = qp->sq.max_gs; } else { qp_attr->cap.max_send_wr = 0; qp_attr->cap.max_send_sge = 0; } /* * We don't support inline sends for kernel QPs (yet), and we * don't know what userspace's value should be. */ qp_attr->cap.max_inline_data = 0; qp_init_attr->cap = qp_attr->cap; qp_init_attr->create_flags = 0; if (qp->flags & MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK) qp_init_attr->create_flags |= IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK; if (qp->flags & MLX4_IB_QP_LSO) qp_init_attr->create_flags |= IB_QP_CREATE_IPOIB_UD_LSO; out: mutex_unlock(&qp->mutex); return err; }