/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __T4_H__ #define __T4_H__ #include "t4_hw.h" #include "t4_regs.h" #include "t4_msg.h" #include "t4fw_ri_api.h" #define T4_MAX_NUM_QP (1<<16) #define T4_MAX_NUM_CQ (1<<15) #define T4_MAX_NUM_PD (1<<15) #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1) #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES) #define T4_MAX_IQ_SIZE (65520 - 1) #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES) #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1) #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1) #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1) #define T4_MAX_NUM_STAG (1<<15) #define T4_MAX_MR_SIZE (~0ULL - 1) #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */ #define T4_STAG_UNSET 0xffffffff #define T4_FW_MAJ 0 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1) #define A_PCIE_MA_SYNC 0x30b4 struct t4_status_page { __be32 rsvd1; /* flit 0 - hw owns */ __be16 rsvd2; __be16 qid; __be16 cidx; __be16 pidx; u8 qp_err; /* flit 1 - sw owns */ u8 db_off; }; #define T4_EQ_ENTRY_SIZE 64 #define T4_SQ_NUM_SLOTS 5 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS) #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \ sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge)) #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \ sizeof(struct fw_ri_immd))) #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \ sizeof(struct fw_ri_rdma_write_wr) - \ sizeof(struct fw_ri_immd))) #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \ sizeof(struct fw_ri_rdma_write_wr) - \ sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge)) #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \ sizeof(struct fw_ri_immd)) & ~31UL) #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64)) #define T4_RQ_NUM_SLOTS 2 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS) #define T4_MAX_RECV_SGE 4 union t4_wr { struct fw_ri_res_wr res; struct fw_ri_wr ri; struct fw_ri_rdma_write_wr write; struct fw_ri_send_wr send; struct fw_ri_rdma_read_wr read; struct fw_ri_bind_mw_wr bind; struct fw_ri_fr_nsmr_wr fr; struct fw_ri_inv_lstag_wr inv; struct t4_status_page status; __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS]; }; union t4_recv_wr { struct fw_ri_recv_wr recv; struct t4_status_page status; __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS]; }; static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid, enum fw_wr_opcodes opcode, u8 flags, u8 len16) { wqe->send.opcode = (u8)opcode; wqe->send.flags = flags; wqe->send.wrid = wrid; wqe->send.r1[0] = 0; wqe->send.r1[1] = 0; wqe->send.r1[2] = 0; wqe->send.len16 = len16; } /* CQE/AE status codes */ #define T4_ERR_SUCCESS 0x0 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */ /* STAG is offlimt, being 0, */ /* or STAG_key mismatch */ #define T4_ERR_PDID 0x2 /* PDID mismatch */ #define T4_ERR_QPID 0x3 /* QPID mismatch */ #define T4_ERR_ACCESS 0x4 /* Invalid access right */ #define T4_ERR_WRAP 0x5 /* Wrap error */ #define T4_ERR_BOUND 0x6 /* base and bounds voilation */ #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */ /* shared memory region */ #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */ /* shared memory region */ #define T4_ERR_ECC 0x9 /* ECC error detected */ #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */ /* reading PSTAG for a MW */ /* Invalidate */ #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */ /* software error */ #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */ #define T4_ERR_CRC 0x10 /* CRC error */ #define T4_ERR_MARKER 0x11 /* Marker error */ #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */ #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */ #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */ #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */ #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */ #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */ #define T4_ERR_MSN 0x18 /* MSN error */ #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */ #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */ /* or READ_REQ */ #define T4_ERR_MSN_GAP 0x1B #define T4_ERR_MSN_RANGE 0x1C #define T4_ERR_IRD_OVERFLOW 0x1D #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */ /* software error */ #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */ /* mismatch) */ /* * CQE defs */ struct t4_cqe { __be32 header; __be32 len; union { struct { __be32 stag; __be32 msn; } rcqe; struct { u32 nada1; u16 nada2; u16 cidx; } scqe; struct { __be32 wrid_hi; __be32 wrid_low; } gen; } u; __be64 reserved; __be64 bits_type_ts; }; /* macros for flit 0 of the cqe */ #define S_CQE_QPID 12 #define M_CQE_QPID 0xFFFFF #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID) #define V_CQE_QPID(x) ((x)<<S_CQE_QPID) #define S_CQE_SWCQE 11 #define M_CQE_SWCQE 0x1 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE) #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE) #define S_CQE_STATUS 5 #define M_CQE_STATUS 0x1F #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS) #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS) #define S_CQE_TYPE 4 #define M_CQE_TYPE 0x1 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE) #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE) #define S_CQE_OPCODE 0 #define M_CQE_OPCODE 0xF #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE) #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE) #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header))) #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header))) #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header))) #define SQ_TYPE(x) (CQE_TYPE((x))) #define RQ_TYPE(x) (!CQE_TYPE((x))) #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header))) #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header))) #define CQE_SEND_OPCODE(x)( \ (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \ (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \ (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \ (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV)) #define CQE_LEN(x) (be32_to_cpu((x)->len)) /* used for RQ completion processing */ #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag)) #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn)) /* used for SQ completion processing */ #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx) /* generic accessor macros */ #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi) #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low) /* macros for flit 3 of the cqe */ #define S_CQE_GENBIT 63 #define M_CQE_GENBIT 0x1 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT) #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT) #define S_CQE_OVFBIT 62 #define M_CQE_OVFBIT 0x1 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT) #define S_CQE_IQTYPE 60 #define M_CQE_IQTYPE 0x3 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE) #define M_CQE_TS 0x0fffffffffffffffULL #define G_CQE_TS(x) ((x) & M_CQE_TS) #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts))) #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts))) #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts))) struct t4_swsqe { u64 wr_id; struct t4_cqe cqe; int read_len; int opcode; int complete; int signaled; u16 idx; }; static inline pgprot_t t4_pgprot_wc(pgprot_t prot) { #if defined(__i386__) || defined(__x86_64__) return pgprot_writecombine(prot); #elif defined(CONFIG_PPC64) return __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE) & ~(pgprot_t)_PAGE_GUARDED); #else return pgprot_noncached(prot); #endif } static inline int t4_ocqp_supported(void) { #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64) return 1; #else return 0; #endif } enum { T4_SQ_ONCHIP = (1<<0), }; struct t4_sq { union t4_wr *queue; dma_addr_t dma_addr; DEFINE_DMA_UNMAP_ADDR(mapping); unsigned long phys_addr; struct t4_swsqe *sw_sq; struct t4_swsqe *oldest_read; u64 udb; size_t memsize; u32 qid; u16 in_use; u16 size; u16 cidx; u16 pidx; u16 wq_pidx; u16 flags; }; struct t4_swrqe { u64 wr_id; }; struct t4_rq { union t4_recv_wr *queue; dma_addr_t dma_addr; DEFINE_DMA_UNMAP_ADDR(mapping); struct t4_swrqe *sw_rq; u64 udb; size_t memsize; u32 qid; u32 msn; u32 rqt_hwaddr; u16 rqt_size; u16 in_use; u16 size; u16 cidx; u16 pidx; u16 wq_pidx; }; struct t4_wq { struct t4_sq sq; struct t4_rq rq; void __iomem *db; void __iomem *gts; struct c4iw_rdev *rdev; }; static inline int t4_rqes_posted(struct t4_wq *wq) { return wq->rq.in_use; } static inline int t4_rq_empty(struct t4_wq *wq) { return wq->rq.in_use == 0; } static inline int t4_rq_full(struct t4_wq *wq) { return wq->rq.in_use == (wq->rq.size - 1); } static inline u32 t4_rq_avail(struct t4_wq *wq) { return wq->rq.size - 1 - wq->rq.in_use; } static inline void t4_rq_produce(struct t4_wq *wq, u8 len16) { wq->rq.in_use++; if (++wq->rq.pidx == wq->rq.size) wq->rq.pidx = 0; wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE); if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS) wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS; } static inline void t4_rq_consume(struct t4_wq *wq) { wq->rq.in_use--; wq->rq.msn++; if (++wq->rq.cidx == wq->rq.size) wq->rq.cidx = 0; } static inline int t4_sq_onchip(struct t4_sq *sq) { return sq->flags & T4_SQ_ONCHIP; } static inline int t4_sq_empty(struct t4_wq *wq) { return wq->sq.in_use == 0; } static inline int t4_sq_full(struct t4_wq *wq) { return wq->sq.in_use == (wq->sq.size - 1); } static inline u32 t4_sq_avail(struct t4_wq *wq) { return wq->sq.size - 1 - wq->sq.in_use; } static inline void t4_sq_produce(struct t4_wq *wq, u8 len16) { wq->sq.in_use++; if (++wq->sq.pidx == wq->sq.size) wq->sq.pidx = 0; wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE); if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS) wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS; } static inline void t4_sq_consume(struct t4_wq *wq) { wq->sq.in_use--; if (++wq->sq.cidx == wq->sq.size) wq->sq.cidx = 0; } static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc) { wmb(); writel(QID(wq->sq.qid) | PIDX(inc), wq->db); } static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc) { wmb(); writel(QID(wq->rq.qid) | PIDX(inc), wq->db); } static inline int t4_wq_in_error(struct t4_wq *wq) { return wq->rq.queue[wq->rq.size].status.qp_err; } static inline void t4_set_wq_in_error(struct t4_wq *wq) { wq->rq.queue[wq->rq.size].status.qp_err = 1; } static inline void t4_disable_wq_db(struct t4_wq *wq) { wq->rq.queue[wq->rq.size].status.db_off = 1; } static inline void t4_enable_wq_db(struct t4_wq *wq) { wq->rq.queue[wq->rq.size].status.db_off = 0; } static inline int t4_wq_db_enabled(struct t4_wq *wq) { return !wq->rq.queue[wq->rq.size].status.db_off; } struct t4_cq { struct t4_cqe *queue; dma_addr_t dma_addr; DEFINE_DMA_UNMAP_ADDR(mapping); struct t4_cqe *sw_queue; void __iomem *gts; struct c4iw_rdev *rdev; u64 ugts; size_t memsize; __be64 bits_type_ts; u32 cqid; u16 size; /* including status page */ u16 cidx; u16 sw_pidx; u16 sw_cidx; u16 sw_in_use; u16 cidx_inc; u8 gen; u8 error; }; static inline int t4_arm_cq(struct t4_cq *cq, int se) { u32 val; while (cq->cidx_inc > CIDXINC_MASK) { val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) | INGRESSQID(cq->cqid); writel(val, cq->gts); cq->cidx_inc -= CIDXINC_MASK; } val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) | INGRESSQID(cq->cqid); writel(val, cq->gts); cq->cidx_inc = 0; return 0; } static inline void t4_swcq_produce(struct t4_cq *cq) { cq->sw_in_use++; if (++cq->sw_pidx == cq->size) cq->sw_pidx = 0; } static inline void t4_swcq_consume(struct t4_cq *cq) { cq->sw_in_use--; if (++cq->sw_cidx == cq->size) cq->sw_cidx = 0; } static inline void t4_hwcq_consume(struct t4_cq *cq) { cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts; if (++cq->cidx_inc == (cq->size >> 4)) { u32 val; val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) | INGRESSQID(cq->cqid); writel(val, cq->gts); cq->cidx_inc = 0; } if (++cq->cidx == cq->size) { cq->cidx = 0; cq->gen ^= 1; } } static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe) { return (CQE_GENBIT(cqe) == cq->gen); } static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe) { int ret; u16 prev_cidx; if (cq->cidx == 0) prev_cidx = cq->size - 1; else prev_cidx = cq->cidx - 1; if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) { ret = -EOVERFLOW; cq->error = 1; printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid); } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) { *cqe = &cq->queue[cq->cidx]; ret = 0; } else ret = -ENODATA; return ret; } static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq) { if (cq->sw_in_use) return &cq->sw_queue[cq->sw_cidx]; return NULL; } static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe) { int ret = 0; if (cq->error) ret = -ENODATA; else if (cq->sw_in_use) *cqe = &cq->sw_queue[cq->sw_cidx]; else ret = t4_next_hw_cqe(cq, cqe); return ret; } static inline int t4_cq_in_error(struct t4_cq *cq) { return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err; } static inline void t4_set_cq_in_error(struct t4_cq *cq) { ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1; } #endif