/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Keith Packard <keithp@keithp.com> * */ #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/slab.h> #include "drmP.h" #include "drm.h" #include "intel_drv.h" #include "intel_ringbuffer.h" #include "i915_drm.h" #include "i915_drv.h" #define DRM_I915_RING_DEBUG 1 #if defined(CONFIG_DEBUG_FS) enum { ACTIVE_LIST, FLUSHING_LIST, INACTIVE_LIST, PINNED_LIST, DEFERRED_FREE_LIST, }; static const char *yesno(int v) { return v ? "yes" : "no"; } static int i915_capabilities(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; const struct intel_device_info *info = INTEL_INFO(dev); seq_printf(m, "gen: %d\n", info->gen); #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x)) B(is_mobile); B(is_i85x); B(is_i915g); B(is_i945gm); B(is_g33); B(need_gfx_hws); B(is_g4x); B(is_pineview); B(is_broadwater); B(is_crestline); B(has_fbc); B(has_pipe_cxsr); B(has_hotplug); B(cursor_needs_physical); B(has_overlay); B(overlay_needs_physical); B(supports_tv); B(has_bsd_ring); B(has_blt_ring); #undef B return 0; } static const char *get_pin_flag(struct drm_i915_gem_object *obj) { if (obj->user_pin_count > 0) return "P"; else if (obj->pin_count > 0) return "p"; else return " "; } static const char *get_tiling_flag(struct drm_i915_gem_object *obj) { switch (obj->tiling_mode) { default: case I915_TILING_NONE: return " "; case I915_TILING_X: return "X"; case I915_TILING_Y: return "Y"; } } static const char *agp_type_str(int type) { switch (type) { case 0: return " uncached"; case 1: return " snooped"; default: return ""; } } static void describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) { seq_printf(m, "%p: %s%s %8zd %04x %04x %d %d%s%s%s", &obj->base, get_pin_flag(obj), get_tiling_flag(obj), obj->base.size, obj->base.read_domains, obj->base.write_domain, obj->last_rendering_seqno, obj->last_fenced_seqno, agp_type_str(obj->agp_type == AGP_USER_CACHED_MEMORY), obj->dirty ? " dirty" : "", obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); if (obj->base.name) seq_printf(m, " (name: %d)", obj->base.name); if (obj->fence_reg != I915_FENCE_REG_NONE) seq_printf(m, " (fence: %d)", obj->fence_reg); if (obj->gtt_space != NULL) seq_printf(m, " (gtt offset: %08x, size: %08x)", obj->gtt_offset, (unsigned int)obj->gtt_space->size); if (obj->pin_mappable || obj->fault_mappable) { char s[3], *t = s; if (obj->pin_mappable) *t++ = 'p'; if (obj->fault_mappable) *t++ = 'f'; *t = '\0'; seq_printf(m, " (%s mappable)", s); } if (obj->ring != NULL) seq_printf(m, " (%s)", obj->ring->name); } static int i915_gem_object_list_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; uintptr_t list = (uintptr_t) node->info_ent->data; struct list_head *head; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; switch (list) { case ACTIVE_LIST: seq_printf(m, "Active:\n"); head = &dev_priv->mm.active_list; break; case INACTIVE_LIST: seq_printf(m, "Inactive:\n"); head = &dev_priv->mm.inactive_list; break; case PINNED_LIST: seq_printf(m, "Pinned:\n"); head = &dev_priv->mm.pinned_list; break; case FLUSHING_LIST: seq_printf(m, "Flushing:\n"); head = &dev_priv->mm.flushing_list; break; case DEFERRED_FREE_LIST: seq_printf(m, "Deferred free:\n"); head = &dev_priv->mm.deferred_free_list; break; default: mutex_unlock(&dev->struct_mutex); return -EINVAL; } total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, head, mm_list) { seq_printf(m, " "); describe_obj(m, obj); seq_printf(m, "\n"); total_obj_size += obj->base.size; total_gtt_size += obj->gtt_space->size; count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } #define count_objects(list, member) do { \ list_for_each_entry(obj, list, member) { \ size += obj->gtt_space->size; \ ++count; \ if (obj->map_and_fenceable) { \ mappable_size += obj->gtt_space->size; \ ++mappable_count; \ } \ } \ } while(0) static int i915_gem_object_info(struct seq_file *m, void* data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 count, mappable_count; size_t size, mappable_size; struct drm_i915_gem_object *obj; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "%u objects, %zu bytes\n", dev_priv->mm.object_count, dev_priv->mm.object_memory); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.gtt_list, gtt_list); seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.active_list, mm_list); count_objects(&dev_priv->mm.flushing_list, mm_list); seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.pinned_list, mm_list); seq_printf(m, " %u [%u] pinned objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.inactive_list, mm_list); seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.deferred_free_list, mm_list); seq_printf(m, " %u [%u] freed objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { if (obj->fault_mappable) { size += obj->gtt_space->size; ++count; } if (obj->pin_mappable) { mappable_size += obj->gtt_space->size; ++mappable_count; } } seq_printf(m, "%u pinned mappable objects, %zu bytes\n", mappable_count, mappable_size); seq_printf(m, "%u fault mappable objects, %zu bytes\n", count, size); seq_printf(m, "%zu [%zu] gtt total\n", dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_gtt_info(struct seq_file *m, void* data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { seq_printf(m, " "); describe_obj(m, obj); seq_printf(m, "\n"); total_obj_size += obj->base.size; total_gtt_size += obj->gtt_space->size; count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } static int i915_gem_pageflip_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; unsigned long flags; struct intel_crtc *crtc; list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) { const char pipe = pipe_name(crtc->pipe); const char plane = plane_name(crtc->plane); struct intel_unpin_work *work; spin_lock_irqsave(&dev->event_lock, flags); work = crtc->unpin_work; if (work == NULL) { seq_printf(m, "No flip due on pipe %c (plane %c)\n", pipe, plane); } else { if (!work->pending) { seq_printf(m, "Flip queued on pipe %c (plane %c)\n", pipe, plane); } else { seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", pipe, plane); } if (work->enable_stall_check) seq_printf(m, "Stall check enabled, "); else seq_printf(m, "Stall check waiting for page flip ioctl, "); seq_printf(m, "%d prepares\n", work->pending); if (work->old_fb_obj) { struct drm_i915_gem_object *obj = work->old_fb_obj; if (obj) seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset); } if (work->pending_flip_obj) { struct drm_i915_gem_object *obj = work->pending_flip_obj; if (obj) seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset); } } spin_unlock_irqrestore(&dev->event_lock, flags); } return 0; } static int i915_gem_request_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_request *gem_request; int ret, count; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; count = 0; if (!list_empty(&dev_priv->ring[RCS].request_list)) { seq_printf(m, "Render requests:\n"); list_for_each_entry(gem_request, &dev_priv->ring[RCS].request_list, list) { seq_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } if (!list_empty(&dev_priv->ring[VCS].request_list)) { seq_printf(m, "BSD requests:\n"); list_for_each_entry(gem_request, &dev_priv->ring[VCS].request_list, list) { seq_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } if (!list_empty(&dev_priv->ring[BCS].request_list)) { seq_printf(m, "BLT requests:\n"); list_for_each_entry(gem_request, &dev_priv->ring[BCS].request_list, list) { seq_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } mutex_unlock(&dev->struct_mutex); if (count == 0) seq_printf(m, "No requests\n"); return 0; } static void i915_ring_seqno_info(struct seq_file *m, struct intel_ring_buffer *ring) { if (ring->get_seqno) { seq_printf(m, "Current sequence (%s): %d\n", ring->name, ring->get_seqno(ring)); seq_printf(m, "Waiter sequence (%s): %d\n", ring->name, ring->waiting_seqno); seq_printf(m, "IRQ sequence (%s): %d\n", ring->name, ring->irq_seqno); } } static int i915_gem_seqno_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; for (i = 0; i < I915_NUM_RINGS; i++) i915_ring_seqno_info(m, &dev_priv->ring[i]); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_interrupt_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret, i, pipe; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (!HAS_PCH_SPLIT(dev)) { seq_printf(m, "Interrupt enable: %08x\n", I915_READ(IER)); seq_printf(m, "Interrupt identity: %08x\n", I915_READ(IIR)); seq_printf(m, "Interrupt mask: %08x\n", I915_READ(IMR)); for_each_pipe(pipe) seq_printf(m, "Pipe %c stat: %08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); } else { seq_printf(m, "North Display Interrupt enable: %08x\n", I915_READ(DEIER)); seq_printf(m, "North Display Interrupt identity: %08x\n", I915_READ(DEIIR)); seq_printf(m, "North Display Interrupt mask: %08x\n", I915_READ(DEIMR)); seq_printf(m, "South Display Interrupt enable: %08x\n", I915_READ(SDEIER)); seq_printf(m, "South Display Interrupt identity: %08x\n", I915_READ(SDEIIR)); seq_printf(m, "South Display Interrupt mask: %08x\n", I915_READ(SDEIMR)); seq_printf(m, "Graphics Interrupt enable: %08x\n", I915_READ(GTIER)); seq_printf(m, "Graphics Interrupt identity: %08x\n", I915_READ(GTIIR)); seq_printf(m, "Graphics Interrupt mask: %08x\n", I915_READ(GTIMR)); } seq_printf(m, "Interrupts received: %d\n", atomic_read(&dev_priv->irq_received)); for (i = 0; i < I915_NUM_RINGS; i++) { if (IS_GEN6(dev)) { seq_printf(m, "Graphics Interrupt mask (%s): %08x\n", dev_priv->ring[i].name, I915_READ_IMR(&dev_priv->ring[i])); } i915_ring_seqno_info(m, &dev_priv->ring[i]); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_fence_regs_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int i, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start); seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; seq_printf(m, "Fenced object[%2d] = ", i); if (obj == NULL) seq_printf(m, "unused"); else describe_obj(m, obj); seq_printf(m, "\n"); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_hws_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; const volatile u32 __iomem *hws; int i; ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; hws = (volatile u32 __iomem *)ring->status_page.page_addr; if (hws == NULL) return 0; for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); } return 0; } static void i915_dump_object(struct seq_file *m, struct io_mapping *mapping, struct drm_i915_gem_object *obj) { int page, page_count, i; page_count = obj->base.size / PAGE_SIZE; for (page = 0; page < page_count; page++) { u32 *mem = io_mapping_map_wc(mapping, obj->gtt_offset + page * PAGE_SIZE); for (i = 0; i < PAGE_SIZE; i += 4) seq_printf(m, "%08x : %08x\n", i, mem[i / 4]); io_mapping_unmap(mem); } } static int i915_batchbuffer_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) { if (obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) { seq_printf(m, "--- gtt_offset = 0x%08x\n", obj->gtt_offset); i915_dump_object(m, dev_priv->mm.gtt_mapping, obj); } } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_ringbuffer_data(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; if (!ring->obj) { seq_printf(m, "No ringbuffer setup\n"); } else { const u8 __iomem *virt = ring->virtual_start; uint32_t off; for (off = 0; off < ring->size; off += 4) { uint32_t *ptr = (uint32_t *)(virt + off); seq_printf(m, "%08x : %08x\n", off, *ptr); } } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_ringbuffer_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; if (ring->size == 0) return 0; seq_printf(m, "Ring %s:\n", ring->name); seq_printf(m, " Head : %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR); seq_printf(m, " Tail : %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR); seq_printf(m, " Size : %08x\n", ring->size); seq_printf(m, " Active : %08x\n", intel_ring_get_active_head(ring)); seq_printf(m, " NOPID : %08x\n", I915_READ_NOPID(ring)); if (IS_GEN6(dev)) { seq_printf(m, " Sync 0 : %08x\n", I915_READ_SYNC_0(ring)); seq_printf(m, " Sync 1 : %08x\n", I915_READ_SYNC_1(ring)); } seq_printf(m, " Control : %08x\n", I915_READ_CTL(ring)); seq_printf(m, " Start : %08x\n", I915_READ_START(ring)); return 0; } static const char *ring_str(int ring) { switch (ring) { case RING_RENDER: return " render"; case RING_BSD: return " bsd"; case RING_BLT: return " blt"; default: return ""; } } static const char *pin_flag(int pinned) { if (pinned > 0) return " P"; else if (pinned < 0) return " p"; else return ""; } static const char *tiling_flag(int tiling) { switch (tiling) { default: case I915_TILING_NONE: return ""; case I915_TILING_X: return " X"; case I915_TILING_Y: return " Y"; } } static const char *dirty_flag(int dirty) { return dirty ? " dirty" : ""; } static const char *purgeable_flag(int purgeable) { return purgeable ? " purgeable" : ""; } static void print_error_buffers(struct seq_file *m, const char *name, struct drm_i915_error_buffer *err, int count) { seq_printf(m, "%s [%d]:\n", name, count); while (count--) { seq_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s", err->gtt_offset, err->size, err->read_domains, err->write_domain, err->seqno, pin_flag(err->pinned), tiling_flag(err->tiling), dirty_flag(err->dirty), purgeable_flag(err->purgeable), ring_str(err->ring), agp_type_str(err->agp_type)); if (err->name) seq_printf(m, " (name: %d)", err->name); if (err->fence_reg != I915_FENCE_REG_NONE) seq_printf(m, " (fence: %d)", err->fence_reg); seq_printf(m, "\n"); err++; } } static int i915_error_state(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_error_state *error; unsigned long flags; int i, page, offset, elt; spin_lock_irqsave(&dev_priv->error_lock, flags); if (!dev_priv->first_error) { seq_printf(m, "no error state collected\n"); goto out; } error = dev_priv->first_error; seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec, error->time.tv_usec); seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device); seq_printf(m, "EIR: 0x%08x\n", error->eir); seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er); if (INTEL_INFO(dev)->gen >= 6) { seq_printf(m, "ERROR: 0x%08x\n", error->error); seq_printf(m, "Blitter command stream:\n"); seq_printf(m, " ACTHD: 0x%08x\n", error->bcs_acthd); seq_printf(m, " IPEIR: 0x%08x\n", error->bcs_ipeir); seq_printf(m, " IPEHR: 0x%08x\n", error->bcs_ipehr); seq_printf(m, " INSTDONE: 0x%08x\n", error->bcs_instdone); seq_printf(m, " seqno: 0x%08x\n", error->bcs_seqno); seq_printf(m, "Video (BSD) command stream:\n"); seq_printf(m, " ACTHD: 0x%08x\n", error->vcs_acthd); seq_printf(m, " IPEIR: 0x%08x\n", error->vcs_ipeir); seq_printf(m, " IPEHR: 0x%08x\n", error->vcs_ipehr); seq_printf(m, " INSTDONE: 0x%08x\n", error->vcs_instdone); seq_printf(m, " seqno: 0x%08x\n", error->vcs_seqno); } seq_printf(m, "Render command stream:\n"); seq_printf(m, " ACTHD: 0x%08x\n", error->acthd); seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir); seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr); seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone); if (INTEL_INFO(dev)->gen >= 4) { seq_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1); seq_printf(m, " INSTPS: 0x%08x\n", error->instps); } seq_printf(m, " INSTPM: 0x%08x\n", error->instpm); seq_printf(m, " seqno: 0x%08x\n", error->seqno); for (i = 0; i < 16; i++) seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]); if (error->active_bo) print_error_buffers(m, "Active", error->active_bo, error->active_bo_count); if (error->pinned_bo) print_error_buffers(m, "Pinned", error->pinned_bo, error->pinned_bo_count); for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++) { if (error->batchbuffer[i]) { struct drm_i915_error_object *obj = error->batchbuffer[i]; seq_printf(m, "%s --- gtt_offset = 0x%08x\n", dev_priv->ring[i].name, obj->gtt_offset); offset = 0; for (page = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } } for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++) { if (error->ringbuffer[i]) { struct drm_i915_error_object *obj = error->ringbuffer[i]; seq_printf(m, "%s --- ringbuffer = 0x%08x\n", dev_priv->ring[i].name, obj->gtt_offset); offset = 0; for (page = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } } if (error->overlay) intel_overlay_print_error_state(m, error->overlay); if (error->display) intel_display_print_error_state(m, dev, error->display); out: spin_unlock_irqrestore(&dev_priv->error_lock, flags); return 0; } static int i915_rstdby_delays(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u16 crstanddelay = I915_READ16(CRSTANDVID); seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f)); return 0; } static int i915_cur_delayinfo(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (IS_GEN5(dev)) { u16 rgvswctl = I915_READ16(MEMSWCTL); u16 rgvstat = I915_READ16(MEMSTAT_ILK); seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); seq_printf(m, "Current P-state: %d\n", (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); } else if (IS_GEN6(dev)) { u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); u32 rpstat; u32 rpupei, rpcurup, rpprevup; u32 rpdownei, rpcurdown, rpprevdown; int max_freq; /* RPSTAT1 is in the GT power well */ __gen6_gt_force_wake_get(dev_priv); rpstat = I915_READ(GEN6_RPSTAT1); rpupei = I915_READ(GEN6_RP_CUR_UP_EI); rpcurup = I915_READ(GEN6_RP_CUR_UP); rpprevup = I915_READ(GEN6_RP_PREV_UP); rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI); rpcurdown = I915_READ(GEN6_RP_CUR_DOWN); rpprevdown = I915_READ(GEN6_RP_PREV_DOWN); seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); seq_printf(m, "Render p-state ratio: %d\n", (gt_perf_status & 0xff00) >> 8); seq_printf(m, "Render p-state VID: %d\n", gt_perf_status & 0xff); seq_printf(m, "Render p-state limit: %d\n", rp_state_limits & 0xff); seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT) * 50); seq_printf(m, "RP CUR UP EI: %dus\n", rpupei & GEN6_CURICONT_MASK); seq_printf(m, "RP CUR UP: %dus\n", rpcurup & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP PREV UP: %dus\n", rpprevup & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei & GEN6_CURIAVG_MASK); seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown & GEN6_CURBSYTAVG_MASK); max_freq = (rp_state_cap & 0xff0000) >> 16; seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", max_freq * 50); max_freq = (rp_state_cap & 0xff00) >> 8; seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", max_freq * 50); max_freq = rp_state_cap & 0xff; seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", max_freq * 50); __gen6_gt_force_wake_put(dev_priv); } else { seq_printf(m, "no P-state info available\n"); } return 0; } static int i915_delayfreq_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 delayfreq; int i; for (i = 0; i < 16; i++) { delayfreq = I915_READ(PXVFREQ_BASE + i * 4); seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq, (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT); } return 0; } static inline int MAP_TO_MV(int map) { return 1250 - (map * 25); } static int i915_inttoext_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 inttoext; int i; for (i = 1; i <= 32; i++) { inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4); seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext); } return 0; } static int i915_drpc_info(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 rgvmodectl = I915_READ(MEMMODECTL); u32 rstdbyctl = I915_READ(RSTDBYCTL); u16 crstandvid = I915_READ16(CRSTANDVID); seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ? "yes" : "no"); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no"); seq_printf(m, "SW control enabled: %s\n", rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no"); seq_printf(m, "Gated voltage change: %s\n", rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no"); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes"); seq_printf(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_printf(m, "on\n"); break; case RSX_STATUS_RC1: seq_printf(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_printf(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_printf(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_printf(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_printf(m, "RC3 (RC6+)\n"); break; default: seq_printf(m, "unknown\n"); break; } return 0; } static int i915_fbc_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!I915_HAS_FBC(dev)) { seq_printf(m, "FBC unsupported on this chipset\n"); return 0; } if (intel_fbc_enabled(dev)) { seq_printf(m, "FBC enabled\n"); } else { seq_printf(m, "FBC disabled: "); switch (dev_priv->no_fbc_reason) { case FBC_NO_OUTPUT: seq_printf(m, "no outputs"); break; case FBC_STOLEN_TOO_SMALL: seq_printf(m, "not enough stolen memory"); break; case FBC_UNSUPPORTED_MODE: seq_printf(m, "mode not supported"); break; case FBC_MODE_TOO_LARGE: seq_printf(m, "mode too large"); break; case FBC_BAD_PLANE: seq_printf(m, "FBC unsupported on plane"); break; case FBC_NOT_TILED: seq_printf(m, "scanout buffer not tiled"); break; case FBC_MULTIPLE_PIPES: seq_printf(m, "multiple pipes are enabled"); break; default: seq_printf(m, "unknown reason"); } seq_printf(m, "\n"); } return 0; } static int i915_sr_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; bool sr_enabled = false; if (HAS_PCH_SPLIT(dev)) sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev)) sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; else if (IS_I915GM(dev)) sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; else if (IS_PINEVIEW(dev)) sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; seq_printf(m, "self-refresh: %s\n", sr_enabled ? "enabled" : "disabled"); return 0; } static int i915_emon_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long temp, chipset, gfx; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; temp = i915_mch_val(dev_priv); chipset = i915_chipset_val(dev_priv); gfx = i915_gfx_val(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "GMCH temp: %ld\n", temp); seq_printf(m, "Chipset power: %ld\n", chipset); seq_printf(m, "GFX power: %ld\n", gfx); seq_printf(m, "Total power: %ld\n", chipset + gfx); return 0; } static int i915_gfxec(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4)); return 0; } static int i915_opregion(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_opregion *opregion = &dev_priv->opregion; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (opregion->header) seq_write(m, opregion->header, OPREGION_SIZE); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_framebuffer_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_fbdev *ifbdev; struct intel_framebuffer *fb; int ret; ret = mutex_lock_interruptible(&dev->mode_config.mutex); if (ret) return ret; ifbdev = dev_priv->fbdev; fb = to_intel_framebuffer(ifbdev->helper.fb); seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel); describe_obj(m, fb->obj); seq_printf(m, "\n"); list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) { if (&fb->base == ifbdev->helper.fb) continue; seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel); describe_obj(m, fb->obj); seq_printf(m, "\n"); } mutex_unlock(&dev->mode_config.mutex); return 0; } static int i915_wedged_open(struct inode *inode, struct file *filp) { filp->private_data = inode->i_private; return 0; } static ssize_t i915_wedged_read(struct file *filp, char __user *ubuf, size_t max, loff_t *ppos) { struct drm_device *dev = filp->private_data; drm_i915_private_t *dev_priv = dev->dev_private; char buf[80]; int len; len = snprintf(buf, sizeof (buf), "wedged : %d\n", atomic_read(&dev_priv->mm.wedged)); if (len > sizeof (buf)) len = sizeof (buf); return simple_read_from_buffer(ubuf, max, ppos, buf, len); } static ssize_t i915_wedged_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct drm_device *dev = filp->private_data; char buf[20]; int val = 1; if (cnt > 0) { if (cnt > sizeof (buf) - 1) return -EINVAL; if (copy_from_user(buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; val = simple_strtoul(buf, NULL, 0); } DRM_INFO("Manually setting wedged to %d\n", val); i915_handle_error(dev, val); return cnt; } static const struct file_operations i915_wedged_fops = { .owner = THIS_MODULE, .open = i915_wedged_open, .read = i915_wedged_read, .write = i915_wedged_write, .llseek = default_llseek, }; /* As the drm_debugfs_init() routines are called before dev->dev_private is * allocated we need to hook into the minor for release. */ static int drm_add_fake_info_node(struct drm_minor *minor, struct dentry *ent, const void *key) { struct drm_info_node *node; node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL); if (node == NULL) { debugfs_remove(ent); return -ENOMEM; } node->minor = minor; node->dent = ent; node->info_ent = (void *) key; list_add(&node->list, &minor->debugfs_nodes.list); return 0; } static int i915_wedged_create(struct dentry *root, struct drm_minor *minor) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file("i915_wedged", S_IRUGO | S_IWUSR, root, dev, &i915_wedged_fops); if (IS_ERR(ent)) return PTR_ERR(ent); return drm_add_fake_info_node(minor, ent, &i915_wedged_fops); } static struct drm_info_list i915_debugfs_list[] = { {"i915_capabilities", i915_capabilities, 0}, {"i915_gem_objects", i915_gem_object_info, 0}, {"i915_gem_gtt", i915_gem_gtt_info, 0}, {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST}, {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST}, {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST}, {"i915_gem_pinned", i915_gem_object_list_info, 0, (void *) PINNED_LIST}, {"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *) DEFERRED_FREE_LIST}, {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, {"i915_gem_request", i915_gem_request_info, 0}, {"i915_gem_seqno", i915_gem_seqno_info, 0}, {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, {"i915_gem_interrupt", i915_interrupt_info, 0}, {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, {"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS}, {"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS}, {"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS}, {"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS}, {"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS}, {"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS}, {"i915_batchbuffers", i915_batchbuffer_info, 0}, {"i915_error_state", i915_error_state, 0}, {"i915_rstdby_delays", i915_rstdby_delays, 0}, {"i915_cur_delayinfo", i915_cur_delayinfo, 0}, {"i915_delayfreq_table", i915_delayfreq_table, 0}, {"i915_inttoext_table", i915_inttoext_table, 0}, {"i915_drpc_info", i915_drpc_info, 0}, {"i915_emon_status", i915_emon_status, 0}, {"i915_gfxec", i915_gfxec, 0}, {"i915_fbc_status", i915_fbc_status, 0}, {"i915_sr_status", i915_sr_status, 0}, {"i915_opregion", i915_opregion, 0}, {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, }; #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) int i915_debugfs_init(struct drm_minor *minor) { int ret; ret = i915_wedged_create(minor->debugfs_root, minor); if (ret) return ret; return drm_debugfs_create_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor->debugfs_root, minor); } void i915_debugfs_cleanup(struct drm_minor *minor) { drm_debugfs_remove_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops, 1, minor); } #endif /* CONFIG_DEBUG_FS */