/* * Cryptographic API. * * Support for OMAP AES HW acceleration. * * Copyright (c) 2010 Nokia Corporation * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/err.h> #include <linux/module.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/crypto.h> #include <linux/interrupt.h> #include <crypto/scatterwalk.h> #include <crypto/aes.h> #include <plat/cpu.h> #include <plat/dma.h> /* OMAP TRM gives bitfields as start:end, where start is the higher bit number. For example 7:0 */ #define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end)) #define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end)) #define AES_REG_KEY(x) (0x1C - ((x ^ 0x01) * 0x04)) #define AES_REG_IV(x) (0x20 + ((x) * 0x04)) #define AES_REG_CTRL 0x30 #define AES_REG_CTRL_CTR_WIDTH (1 << 7) #define AES_REG_CTRL_CTR (1 << 6) #define AES_REG_CTRL_CBC (1 << 5) #define AES_REG_CTRL_KEY_SIZE (3 << 3) #define AES_REG_CTRL_DIRECTION (1 << 2) #define AES_REG_CTRL_INPUT_READY (1 << 1) #define AES_REG_CTRL_OUTPUT_READY (1 << 0) #define AES_REG_DATA 0x34 #define AES_REG_DATA_N(x) (0x34 + ((x) * 0x04)) #define AES_REG_REV 0x44 #define AES_REG_REV_MAJOR 0xF0 #define AES_REG_REV_MINOR 0x0F #define AES_REG_MASK 0x48 #define AES_REG_MASK_SIDLE (1 << 6) #define AES_REG_MASK_START (1 << 5) #define AES_REG_MASK_DMA_OUT_EN (1 << 3) #define AES_REG_MASK_DMA_IN_EN (1 << 2) #define AES_REG_MASK_SOFTRESET (1 << 1) #define AES_REG_AUTOIDLE (1 << 0) #define AES_REG_SYSSTATUS 0x4C #define AES_REG_SYSSTATUS_RESETDONE (1 << 0) #define DEFAULT_TIMEOUT (5*HZ) #define FLAGS_MODE_MASK 0x000f #define FLAGS_ENCRYPT BIT(0) #define FLAGS_CBC BIT(1) #define FLAGS_GIV BIT(2) #define FLAGS_INIT BIT(4) #define FLAGS_FAST BIT(5) #define FLAGS_BUSY BIT(6) struct omap_aes_ctx { struct omap_aes_dev *dd; int keylen; u32 key[AES_KEYSIZE_256 / sizeof(u32)]; unsigned long flags; }; struct omap_aes_reqctx { unsigned long mode; }; #define OMAP_AES_QUEUE_LENGTH 1 #define OMAP_AES_CACHE_SIZE 0 struct omap_aes_dev { struct list_head list; unsigned long phys_base; void __iomem *io_base; struct clk *iclk; struct omap_aes_ctx *ctx; struct device *dev; unsigned long flags; int err; spinlock_t lock; struct crypto_queue queue; struct tasklet_struct done_task; struct tasklet_struct queue_task; struct ablkcipher_request *req; size_t total; struct scatterlist *in_sg; size_t in_offset; struct scatterlist *out_sg; size_t out_offset; size_t buflen; void *buf_in; size_t dma_size; int dma_in; int dma_lch_in; dma_addr_t dma_addr_in; void *buf_out; int dma_out; int dma_lch_out; dma_addr_t dma_addr_out; }; /* keep registered devices data here */ static LIST_HEAD(dev_list); static DEFINE_SPINLOCK(list_lock); static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset) { return __raw_readl(dd->io_base + offset); } static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset, u32 value) { __raw_writel(value, dd->io_base + offset); } static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset, u32 value, u32 mask) { u32 val; val = omap_aes_read(dd, offset); val &= ~mask; val |= value; omap_aes_write(dd, offset, val); } static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) omap_aes_write(dd, offset, *value); } static int omap_aes_wait(struct omap_aes_dev *dd, u32 offset, u32 bit) { unsigned long timeout = jiffies + DEFAULT_TIMEOUT; while (!(omap_aes_read(dd, offset) & bit)) { if (time_is_before_jiffies(timeout)) { dev_err(dd->dev, "omap-aes timeout\n"); return -ETIMEDOUT; } } return 0; } static int omap_aes_hw_init(struct omap_aes_dev *dd) { /* * clocks are enabled when request starts and disabled when finished. * It may be long delays between requests. * Device might go to off mode to save power. */ clk_enable(dd->iclk); if (!(dd->flags & FLAGS_INIT)) { /* is it necessary to reset before every operation? */ omap_aes_write_mask(dd, AES_REG_MASK, AES_REG_MASK_SOFTRESET, AES_REG_MASK_SOFTRESET); /* * prevent OCP bus error (SRESP) in case an access to the module * is performed while the module is coming out of soft reset */ __asm__ __volatile__("nop"); __asm__ __volatile__("nop"); if (omap_aes_wait(dd, AES_REG_SYSSTATUS, AES_REG_SYSSTATUS_RESETDONE)) return -ETIMEDOUT; dd->flags |= FLAGS_INIT; dd->err = 0; } return 0; } static int omap_aes_write_ctrl(struct omap_aes_dev *dd) { unsigned int key32; int i, err; u32 val, mask; err = omap_aes_hw_init(dd); if (err) return err; val = 0; if (dd->dma_lch_out >= 0) val |= AES_REG_MASK_DMA_OUT_EN; if (dd->dma_lch_in >= 0) val |= AES_REG_MASK_DMA_IN_EN; mask = AES_REG_MASK_DMA_IN_EN | AES_REG_MASK_DMA_OUT_EN; omap_aes_write_mask(dd, AES_REG_MASK, val, mask); key32 = dd->ctx->keylen / sizeof(u32); /* it seems a key should always be set even if it has not changed */ for (i = 0; i < key32; i++) { omap_aes_write(dd, AES_REG_KEY(i), __le32_to_cpu(dd->ctx->key[i])); } if ((dd->flags & FLAGS_CBC) && dd->req->info) omap_aes_write_n(dd, AES_REG_IV(0), dd->req->info, 4); val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3); if (dd->flags & FLAGS_CBC) val |= AES_REG_CTRL_CBC; if (dd->flags & FLAGS_ENCRYPT) val |= AES_REG_CTRL_DIRECTION; mask = AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION | AES_REG_CTRL_KEY_SIZE; omap_aes_write_mask(dd, AES_REG_CTRL, val, mask); /* IN */ omap_set_dma_dest_params(dd->dma_lch_in, 0, OMAP_DMA_AMODE_CONSTANT, dd->phys_base + AES_REG_DATA, 0, 4); omap_set_dma_dest_burst_mode(dd->dma_lch_in, OMAP_DMA_DATA_BURST_4); omap_set_dma_src_burst_mode(dd->dma_lch_in, OMAP_DMA_DATA_BURST_4); /* OUT */ omap_set_dma_src_params(dd->dma_lch_out, 0, OMAP_DMA_AMODE_CONSTANT, dd->phys_base + AES_REG_DATA, 0, 4); omap_set_dma_src_burst_mode(dd->dma_lch_out, OMAP_DMA_DATA_BURST_4); omap_set_dma_dest_burst_mode(dd->dma_lch_out, OMAP_DMA_DATA_BURST_4); return 0; } static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx) { struct omap_aes_dev *dd = NULL, *tmp; spin_lock_bh(&list_lock); if (!ctx->dd) { list_for_each_entry(tmp, &dev_list, list) { /* FIXME: take fist available aes core */ dd = tmp; break; } ctx->dd = dd; } else { /* already found before */ dd = ctx->dd; } spin_unlock_bh(&list_lock); return dd; } static void omap_aes_dma_callback(int lch, u16 ch_status, void *data) { struct omap_aes_dev *dd = data; if (ch_status != OMAP_DMA_BLOCK_IRQ) { pr_err("omap-aes DMA error status: 0x%hx\n", ch_status); dd->err = -EIO; dd->flags &= ~FLAGS_INIT; /* request to re-initialize */ } else if (lch == dd->dma_lch_in) { return; } /* dma_lch_out - completed */ tasklet_schedule(&dd->done_task); } static int omap_aes_dma_init(struct omap_aes_dev *dd) { int err = -ENOMEM; dd->dma_lch_out = -1; dd->dma_lch_in = -1; dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE); dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE); dd->buflen = PAGE_SIZE << OMAP_AES_CACHE_SIZE; dd->buflen &= ~(AES_BLOCK_SIZE - 1); if (!dd->buf_in || !dd->buf_out) { dev_err(dd->dev, "unable to alloc pages.\n"); goto err_alloc; } /* MAP here */ dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, dd->dma_addr_in)) { dev_err(dd->dev, "dma %d bytes error\n", dd->buflen); err = -EINVAL; goto err_map_in; } dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen, DMA_FROM_DEVICE); if (dma_mapping_error(dd->dev, dd->dma_addr_out)) { dev_err(dd->dev, "dma %d bytes error\n", dd->buflen); err = -EINVAL; goto err_map_out; } err = omap_request_dma(dd->dma_in, "omap-aes-rx", omap_aes_dma_callback, dd, &dd->dma_lch_in); if (err) { dev_err(dd->dev, "Unable to request DMA channel\n"); goto err_dma_in; } err = omap_request_dma(dd->dma_out, "omap-aes-tx", omap_aes_dma_callback, dd, &dd->dma_lch_out); if (err) { dev_err(dd->dev, "Unable to request DMA channel\n"); goto err_dma_out; } return 0; err_dma_out: omap_free_dma(dd->dma_lch_in); err_dma_in: dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen, DMA_FROM_DEVICE); err_map_out: dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE); err_map_in: free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE); free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE); err_alloc: if (err) pr_err("error: %d\n", err); return err; } static void omap_aes_dma_cleanup(struct omap_aes_dev *dd) { omap_free_dma(dd->dma_lch_out); omap_free_dma(dd->dma_lch_in); dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen, DMA_FROM_DEVICE); dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE); free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE); free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE); } static void sg_copy_buf(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out) { struct scatter_walk walk; if (!nbytes) return; scatterwalk_start(&walk, sg); scatterwalk_advance(&walk, start); scatterwalk_copychunks(buf, &walk, nbytes, out); scatterwalk_done(&walk, out, 0); } static int sg_copy(struct scatterlist **sg, size_t *offset, void *buf, size_t buflen, size_t total, int out) { unsigned int count, off = 0; while (buflen && total) { count = min((*sg)->length - *offset, total); count = min(count, buflen); if (!count) return off; /* * buflen and total are AES_BLOCK_SIZE size aligned, * so count should be also aligned */ sg_copy_buf(buf + off, *sg, *offset, count, out); off += count; buflen -= count; *offset += count; total -= count; if (*offset == (*sg)->length) { *sg = sg_next(*sg); if (*sg) *offset = 0; else total = 0; } } return off; } static int omap_aes_crypt_dma(struct crypto_tfm *tfm, dma_addr_t dma_addr_in, dma_addr_t dma_addr_out, int length) { struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm); struct omap_aes_dev *dd = ctx->dd; int len32; pr_debug("len: %d\n", length); dd->dma_size = length; if (!(dd->flags & FLAGS_FAST)) dma_sync_single_for_device(dd->dev, dma_addr_in, length, DMA_TO_DEVICE); len32 = DIV_ROUND_UP(length, sizeof(u32)); /* IN */ omap_set_dma_transfer_params(dd->dma_lch_in, OMAP_DMA_DATA_TYPE_S32, len32, 1, OMAP_DMA_SYNC_PACKET, dd->dma_in, OMAP_DMA_DST_SYNC); omap_set_dma_src_params(dd->dma_lch_in, 0, OMAP_DMA_AMODE_POST_INC, dma_addr_in, 0, 0); /* OUT */ omap_set_dma_transfer_params(dd->dma_lch_out, OMAP_DMA_DATA_TYPE_S32, len32, 1, OMAP_DMA_SYNC_PACKET, dd->dma_out, OMAP_DMA_SRC_SYNC); omap_set_dma_dest_params(dd->dma_lch_out, 0, OMAP_DMA_AMODE_POST_INC, dma_addr_out, 0, 0); omap_start_dma(dd->dma_lch_in); omap_start_dma(dd->dma_lch_out); /* start DMA or disable idle mode */ omap_aes_write_mask(dd, AES_REG_MASK, AES_REG_MASK_START, AES_REG_MASK_START); return 0; } static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm( crypto_ablkcipher_reqtfm(dd->req)); int err, fast = 0, in, out; size_t count; dma_addr_t addr_in, addr_out; pr_debug("total: %d\n", dd->total); if (sg_is_last(dd->in_sg) && sg_is_last(dd->out_sg)) { /* check for alignment */ in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)); out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)); fast = in && out; } if (fast) { count = min(dd->total, sg_dma_len(dd->in_sg)); count = min(count, sg_dma_len(dd->out_sg)); if (count != dd->total) { pr_err("request length != buffer length\n"); return -EINVAL; } pr_debug("fast\n"); err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); if (!err) { dev_err(dd->dev, "dma_map_sg() error\n"); return -EINVAL; } err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE); if (!err) { dev_err(dd->dev, "dma_map_sg() error\n"); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); return -EINVAL; } addr_in = sg_dma_address(dd->in_sg); addr_out = sg_dma_address(dd->out_sg); dd->flags |= FLAGS_FAST; } else { /* use cache buffers */ count = sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in, dd->buflen, dd->total, 0); addr_in = dd->dma_addr_in; addr_out = dd->dma_addr_out; dd->flags &= ~FLAGS_FAST; } dd->total -= count; err = omap_aes_crypt_dma(tfm, addr_in, addr_out, count); if (err) { dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE); } return err; } static void omap_aes_finish_req(struct omap_aes_dev *dd, int err) { struct ablkcipher_request *req = dd->req; pr_debug("err: %d\n", err); clk_disable(dd->iclk); dd->flags &= ~FLAGS_BUSY; req->base.complete(&req->base, err); } static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd) { int err = 0; size_t count; pr_debug("total: %d\n", dd->total); omap_aes_write_mask(dd, AES_REG_MASK, 0, AES_REG_MASK_START); omap_stop_dma(dd->dma_lch_in); omap_stop_dma(dd->dma_lch_out); if (dd->flags & FLAGS_FAST) { dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE); dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE); } else { dma_sync_single_for_device(dd->dev, dd->dma_addr_out, dd->dma_size, DMA_FROM_DEVICE); /* copy data */ count = sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out, dd->buflen, dd->dma_size, 1); if (count != dd->dma_size) { err = -EINVAL; pr_err("not all data converted: %u\n", count); } } return err; } static int omap_aes_handle_queue(struct omap_aes_dev *dd, struct ablkcipher_request *req) { struct crypto_async_request *async_req, *backlog; struct omap_aes_ctx *ctx; struct omap_aes_reqctx *rctx; unsigned long flags; int err, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ablkcipher_enqueue_request(&dd->queue, req); if (dd->flags & FLAGS_BUSY) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); /* assign new request to device */ dd->req = req; dd->total = req->nbytes; dd->in_offset = 0; dd->in_sg = req->src; dd->out_offset = 0; dd->out_sg = req->dst; rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); rctx->mode &= FLAGS_MODE_MASK; dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; dd->ctx = ctx; ctx->dd = dd; err = omap_aes_write_ctrl(dd); if (!err) err = omap_aes_crypt_dma_start(dd); if (err) { /* aes_task will not finish it, so do it here */ omap_aes_finish_req(dd, err); tasklet_schedule(&dd->queue_task); } return ret; /* return ret, which is enqueue return value */ } static void omap_aes_done_task(unsigned long data) { struct omap_aes_dev *dd = (struct omap_aes_dev *)data; int err; pr_debug("enter\n"); err = omap_aes_crypt_dma_stop(dd); err = dd->err ? : err; if (dd->total && !err) { err = omap_aes_crypt_dma_start(dd); if (!err) return; /* DMA started. Not fininishing. */ } omap_aes_finish_req(dd, err); omap_aes_handle_queue(dd, NULL); pr_debug("exit\n"); } static void omap_aes_queue_task(unsigned long data) { struct omap_aes_dev *dd = (struct omap_aes_dev *)data; omap_aes_handle_queue(dd, NULL); } static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct omap_aes_dev *dd; pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes, !!(mode & FLAGS_ENCRYPT), !!(mode & FLAGS_CBC)); if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) { pr_err("request size is not exact amount of AES blocks\n"); return -EINVAL; } dd = omap_aes_find_dev(ctx); if (!dd) return -ENODEV; rctx->mode = mode; return omap_aes_handle_queue(dd, req); } /* ********************** ALG API ************************************ */ static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; pr_debug("enter, keylen: %d\n", keylen); memcpy(ctx->key, key, keylen); ctx->keylen = keylen; return 0; } static int omap_aes_ecb_encrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_ENCRYPT); } static int omap_aes_ecb_decrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, 0); } static int omap_aes_cbc_encrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); } static int omap_aes_cbc_decrypt(struct ablkcipher_request *req) { return omap_aes_crypt(req, FLAGS_CBC); } static int omap_aes_cra_init(struct crypto_tfm *tfm) { pr_debug("enter\n"); tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx); return 0; } static void omap_aes_cra_exit(struct crypto_tfm *tfm) { pr_debug("enter\n"); } /* ********************** ALGS ************************************ */ static struct crypto_alg algs[] = { { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-omap", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = omap_aes_cra_init, .cra_exit = omap_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = omap_aes_setkey, .encrypt = omap_aes_ecb_encrypt, .decrypt = omap_aes_ecb_decrypt, } }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-omap", .cra_priority = 100, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = omap_aes_cra_init, .cra_exit = omap_aes_cra_exit, .cra_u.ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = omap_aes_setkey, .encrypt = omap_aes_cbc_encrypt, .decrypt = omap_aes_cbc_decrypt, } } }; static int omap_aes_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct omap_aes_dev *dd; struct resource *res; int err = -ENOMEM, i, j; u32 reg; dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL); if (dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); goto err_data; } dd->dev = dev; platform_set_drvdata(pdev, dd); spin_lock_init(&dd->lock); crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH); /* Get the base address */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "invalid resource type\n"); err = -ENODEV; goto err_res; } dd->phys_base = res->start; /* Get the DMA */ res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (!res) dev_info(dev, "no DMA info\n"); else dd->dma_out = res->start; /* Get the DMA */ res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (!res) dev_info(dev, "no DMA info\n"); else dd->dma_in = res->start; /* Initializing the clock */ dd->iclk = clk_get(dev, "ick"); if (IS_ERR(dd->iclk)) { dev_err(dev, "clock intialization failed.\n"); err = PTR_ERR(dd->iclk); goto err_res; } dd->io_base = ioremap(dd->phys_base, SZ_4K); if (!dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto err_io; } clk_enable(dd->iclk); reg = omap_aes_read(dd, AES_REG_REV); dev_info(dev, "OMAP AES hw accel rev: %u.%u\n", (reg & AES_REG_REV_MAJOR) >> 4, reg & AES_REG_REV_MINOR); clk_disable(dd->iclk); tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd); tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd); err = omap_aes_dma_init(dd); if (err) goto err_dma; INIT_LIST_HEAD(&dd->list); spin_lock(&list_lock); list_add_tail(&dd->list, &dev_list); spin_unlock(&list_lock); for (i = 0; i < ARRAY_SIZE(algs); i++) { pr_debug("i: %d\n", i); INIT_LIST_HEAD(&algs[i].cra_list); err = crypto_register_alg(&algs[i]); if (err) goto err_algs; } pr_info("probe() done\n"); return 0; err_algs: for (j = 0; j < i; j++) crypto_unregister_alg(&algs[j]); omap_aes_dma_cleanup(dd); err_dma: tasklet_kill(&dd->done_task); tasklet_kill(&dd->queue_task); iounmap(dd->io_base); err_io: clk_put(dd->iclk); err_res: kfree(dd); dd = NULL; err_data: dev_err(dev, "initialization failed.\n"); return err; } static int omap_aes_remove(struct platform_device *pdev) { struct omap_aes_dev *dd = platform_get_drvdata(pdev); int i; if (!dd) return -ENODEV; spin_lock(&list_lock); list_del(&dd->list); spin_unlock(&list_lock); for (i = 0; i < ARRAY_SIZE(algs); i++) crypto_unregister_alg(&algs[i]); tasklet_kill(&dd->done_task); tasklet_kill(&dd->queue_task); omap_aes_dma_cleanup(dd); iounmap(dd->io_base); clk_put(dd->iclk); kfree(dd); dd = NULL; return 0; } static struct platform_driver omap_aes_driver = { .probe = omap_aes_probe, .remove = omap_aes_remove, .driver = { .name = "omap-aes", .owner = THIS_MODULE, }, }; static int __init omap_aes_mod_init(void) { pr_info("loading %s driver\n", "omap-aes"); if (!cpu_class_is_omap2() || omap_type() != OMAP2_DEVICE_TYPE_SEC) { pr_err("Unsupported cpu\n"); return -ENODEV; } return platform_driver_register(&omap_aes_driver); } static void __exit omap_aes_mod_exit(void) { platform_driver_unregister(&omap_aes_driver); } module_init(omap_aes_mod_init); module_exit(omap_aes_mod_exit); MODULE_DESCRIPTION("OMAP AES hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Dmitry Kasatkin");