/* * drivers/ata/pata_arasan_cf.c * * Arasan Compact Flash host controller source file * * Copyright (C) 2011 ST Microelectronics * Viresh Kumar <viresh.kumar@st.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ /* * The Arasan CompactFlash Device Controller IP core has three basic modes of * operation: PC card ATA using I/O mode, PC card ATA using memory mode, PC card * ATA using true IDE modes. This driver supports only True IDE mode currently. * * Arasan CF Controller shares global irq register with Arasan XD Controller. * * Tested on arch/arm/mach-spear13xx */ #include <linux/ata.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/libata.h> #include <linux/module.h> #include <linux/pata_arasan_cf_data.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/workqueue.h> #define DRIVER_NAME "arasan_cf" #define TIMEOUT msecs_to_jiffies(3000) /* Registers */ /* CompactFlash Interface Status */ #define CFI_STS 0x000 #define STS_CHG (1) #define BIN_AUDIO_OUT (1 << 1) #define CARD_DETECT1 (1 << 2) #define CARD_DETECT2 (1 << 3) #define INP_ACK (1 << 4) #define CARD_READY (1 << 5) #define IO_READY (1 << 6) #define B16_IO_PORT_SEL (1 << 7) /* IRQ */ #define IRQ_STS 0x004 /* Interrupt Enable */ #define IRQ_EN 0x008 #define CARD_DETECT_IRQ (1) #define STATUS_CHNG_IRQ (1 << 1) #define MEM_MODE_IRQ (1 << 2) #define IO_MODE_IRQ (1 << 3) #define TRUE_IDE_MODE_IRQ (1 << 8) #define PIO_XFER_ERR_IRQ (1 << 9) #define BUF_AVAIL_IRQ (1 << 10) #define XFER_DONE_IRQ (1 << 11) #define IGNORED_IRQS (STATUS_CHNG_IRQ | MEM_MODE_IRQ | IO_MODE_IRQ |\ TRUE_IDE_MODE_IRQ) #define TRUE_IDE_IRQS (CARD_DETECT_IRQ | PIO_XFER_ERR_IRQ |\ BUF_AVAIL_IRQ | XFER_DONE_IRQ) /* Operation Mode */ #define OP_MODE 0x00C #define CARD_MODE_MASK (0x3) #define MEM_MODE (0x0) #define IO_MODE (0x1) #define TRUE_IDE_MODE (0x2) #define CARD_TYPE_MASK (1 << 2) #define CF_CARD (0) #define CF_PLUS_CARD (1 << 2) #define CARD_RESET (1 << 3) #define CFHOST_ENB (1 << 4) #define OUTPUTS_TRISTATE (1 << 5) #define ULTRA_DMA_ENB (1 << 8) #define MULTI_WORD_DMA_ENB (1 << 9) #define DRQ_BLOCK_SIZE_MASK (0x3 << 11) #define DRQ_BLOCK_SIZE_512 (0) #define DRQ_BLOCK_SIZE_1024 (1 << 11) #define DRQ_BLOCK_SIZE_2048 (2 << 11) #define DRQ_BLOCK_SIZE_4096 (3 << 11) /* CF Interface Clock Configuration */ #define CLK_CFG 0x010 #define CF_IF_CLK_MASK (0XF) /* CF Timing Mode Configuration */ #define TM_CFG 0x014 #define MEM_MODE_TIMING_MASK (0x3) #define MEM_MODE_TIMING_250NS (0x0) #define MEM_MODE_TIMING_120NS (0x1) #define MEM_MODE_TIMING_100NS (0x2) #define MEM_MODE_TIMING_80NS (0x3) #define IO_MODE_TIMING_MASK (0x3 << 2) #define IO_MODE_TIMING_250NS (0x0 << 2) #define IO_MODE_TIMING_120NS (0x1 << 2) #define IO_MODE_TIMING_100NS (0x2 << 2) #define IO_MODE_TIMING_80NS (0x3 << 2) #define TRUEIDE_PIO_TIMING_MASK (0x7 << 4) #define TRUEIDE_PIO_TIMING_SHIFT 4 #define TRUEIDE_MWORD_DMA_TIMING_MASK (0x7 << 7) #define TRUEIDE_MWORD_DMA_TIMING_SHIFT 7 #define ULTRA_DMA_TIMING_MASK (0x7 << 10) #define ULTRA_DMA_TIMING_SHIFT 10 /* CF Transfer Address */ #define XFER_ADDR 0x014 #define XFER_ADDR_MASK (0x7FF) #define MAX_XFER_COUNT 0x20000u /* Transfer Control */ #define XFER_CTR 0x01C #define XFER_COUNT_MASK (0x3FFFF) #define ADDR_INC_DISABLE (1 << 24) #define XFER_WIDTH_MASK (1 << 25) #define XFER_WIDTH_8B (0) #define XFER_WIDTH_16B (1 << 25) #define MEM_TYPE_MASK (1 << 26) #define MEM_TYPE_COMMON (0) #define MEM_TYPE_ATTRIBUTE (1 << 26) #define MEM_IO_XFER_MASK (1 << 27) #define MEM_XFER (0) #define IO_XFER (1 << 27) #define DMA_XFER_MODE (1 << 28) #define AHB_BUS_NORMAL_PIO_OPRTN (~(1 << 29)) #define XFER_DIR_MASK (1 << 30) #define XFER_READ (0) #define XFER_WRITE (1 << 30) #define XFER_START (1 << 31) /* Write Data Port */ #define WRITE_PORT 0x024 /* Read Data Port */ #define READ_PORT 0x028 /* ATA Data Port */ #define ATA_DATA_PORT 0x030 #define ATA_DATA_PORT_MASK (0xFFFF) /* ATA Error/Features */ #define ATA_ERR_FTR 0x034 /* ATA Sector Count */ #define ATA_SC 0x038 /* ATA Sector Number */ #define ATA_SN 0x03C /* ATA Cylinder Low */ #define ATA_CL 0x040 /* ATA Cylinder High */ #define ATA_CH 0x044 /* ATA Select Card/Head */ #define ATA_SH 0x048 /* ATA Status-Command */ #define ATA_STS_CMD 0x04C /* ATA Alternate Status/Device Control */ #define ATA_ASTS_DCTR 0x050 /* Extended Write Data Port 0x200-0x3FC */ #define EXT_WRITE_PORT 0x200 /* Extended Read Data Port 0x400-0x5FC */ #define EXT_READ_PORT 0x400 #define FIFO_SIZE 0x200u /* Global Interrupt Status */ #define GIRQ_STS 0x800 /* Global Interrupt Status enable */ #define GIRQ_STS_EN 0x804 /* Global Interrupt Signal enable */ #define GIRQ_SGN_EN 0x808 #define GIRQ_CF (1) #define GIRQ_XD (1 << 1) /* Compact Flash Controller Dev Structure */ struct arasan_cf_dev { /* pointer to ata_host structure */ struct ata_host *host; /* clk structure, only if HAVE_CLK is defined */ #ifdef CONFIG_HAVE_CLK struct clk *clk; #endif /* physical base address of controller */ dma_addr_t pbase; /* virtual base address of controller */ void __iomem *vbase; /* irq number*/ int irq; /* status to be updated to framework regarding DMA transfer */ u8 dma_status; /* Card is present or Not */ u8 card_present; /* dma specific */ /* Completion for transfer complete interrupt from controller */ struct completion cf_completion; /* Completion for DMA transfer complete. */ struct completion dma_completion; /* Dma channel allocated */ struct dma_chan *dma_chan; /* Mask for DMA transfers */ dma_cap_mask_t mask; /* dma channel private data */ void *dma_priv; /* DMA transfer work */ struct work_struct work; /* DMA delayed finish work */ struct delayed_work dwork; /* qc to be transferred using DMA */ struct ata_queued_cmd *qc; }; static struct scsi_host_template arasan_cf_sht = { ATA_BASE_SHT(DRIVER_NAME), .sg_tablesize = SG_NONE, .dma_boundary = 0xFFFFFFFFUL, }; static void cf_dumpregs(struct arasan_cf_dev *acdev) { struct device *dev = acdev->host->dev; dev_dbg(dev, ": =========== REGISTER DUMP ==========="); dev_dbg(dev, ": CFI_STS: %x", readl(acdev->vbase + CFI_STS)); dev_dbg(dev, ": IRQ_STS: %x", readl(acdev->vbase + IRQ_STS)); dev_dbg(dev, ": IRQ_EN: %x", readl(acdev->vbase + IRQ_EN)); dev_dbg(dev, ": OP_MODE: %x", readl(acdev->vbase + OP_MODE)); dev_dbg(dev, ": CLK_CFG: %x", readl(acdev->vbase + CLK_CFG)); dev_dbg(dev, ": TM_CFG: %x", readl(acdev->vbase + TM_CFG)); dev_dbg(dev, ": XFER_CTR: %x", readl(acdev->vbase + XFER_CTR)); dev_dbg(dev, ": GIRQ_STS: %x", readl(acdev->vbase + GIRQ_STS)); dev_dbg(dev, ": GIRQ_STS_EN: %x", readl(acdev->vbase + GIRQ_STS_EN)); dev_dbg(dev, ": GIRQ_SGN_EN: %x", readl(acdev->vbase + GIRQ_SGN_EN)); dev_dbg(dev, ": ====================================="); } /* Enable/Disable global interrupts shared between CF and XD ctrlr. */ static void cf_ginterrupt_enable(struct arasan_cf_dev *acdev, bool enable) { /* enable should be 0 or 1 */ writel(enable, acdev->vbase + GIRQ_STS_EN); writel(enable, acdev->vbase + GIRQ_SGN_EN); } /* Enable/Disable CF interrupts */ static inline void cf_interrupt_enable(struct arasan_cf_dev *acdev, u32 mask, bool enable) { u32 val = readl(acdev->vbase + IRQ_EN); /* clear & enable/disable irqs */ if (enable) { writel(mask, acdev->vbase + IRQ_STS); writel(val | mask, acdev->vbase + IRQ_EN); } else writel(val & ~mask, acdev->vbase + IRQ_EN); } static inline void cf_card_reset(struct arasan_cf_dev *acdev) { u32 val = readl(acdev->vbase + OP_MODE); writel(val | CARD_RESET, acdev->vbase + OP_MODE); udelay(200); writel(val & ~CARD_RESET, acdev->vbase + OP_MODE); } static inline void cf_ctrl_reset(struct arasan_cf_dev *acdev) { writel(readl(acdev->vbase + OP_MODE) & ~CFHOST_ENB, acdev->vbase + OP_MODE); writel(readl(acdev->vbase + OP_MODE) | CFHOST_ENB, acdev->vbase + OP_MODE); } static void cf_card_detect(struct arasan_cf_dev *acdev, bool hotplugged) { struct ata_port *ap = acdev->host->ports[0]; struct ata_eh_info *ehi = &ap->link.eh_info; u32 val = readl(acdev->vbase + CFI_STS); /* Both CD1 & CD2 should be low if card inserted completely */ if (!(val & (CARD_DETECT1 | CARD_DETECT2))) { if (acdev->card_present) return; acdev->card_present = 1; cf_card_reset(acdev); } else { if (!acdev->card_present) return; acdev->card_present = 0; } if (hotplugged) { ata_ehi_hotplugged(ehi); ata_port_freeze(ap); } } static int cf_init(struct arasan_cf_dev *acdev) { struct arasan_cf_pdata *pdata = dev_get_platdata(acdev->host->dev); unsigned long flags; int ret = 0; #ifdef CONFIG_HAVE_CLK ret = clk_enable(acdev->clk); if (ret) { dev_dbg(acdev->host->dev, "clock enable failed"); return ret; } #endif spin_lock_irqsave(&acdev->host->lock, flags); /* configure CF interface clock */ writel((pdata->cf_if_clk <= CF_IF_CLK_200M) ? pdata->cf_if_clk : CF_IF_CLK_166M, acdev->vbase + CLK_CFG); writel(TRUE_IDE_MODE | CFHOST_ENB, acdev->vbase + OP_MODE); cf_interrupt_enable(acdev, CARD_DETECT_IRQ, 1); cf_ginterrupt_enable(acdev, 1); spin_unlock_irqrestore(&acdev->host->lock, flags); return ret; } static void cf_exit(struct arasan_cf_dev *acdev) { unsigned long flags; spin_lock_irqsave(&acdev->host->lock, flags); cf_ginterrupt_enable(acdev, 0); cf_interrupt_enable(acdev, TRUE_IDE_IRQS, 0); cf_card_reset(acdev); writel(readl(acdev->vbase + OP_MODE) & ~CFHOST_ENB, acdev->vbase + OP_MODE); spin_unlock_irqrestore(&acdev->host->lock, flags); #ifdef CONFIG_HAVE_CLK clk_disable(acdev->clk); #endif } static void dma_callback(void *dev) { struct arasan_cf_dev *acdev = (struct arasan_cf_dev *) dev; complete(&acdev->dma_completion); } static bool filter(struct dma_chan *chan, void *slave) { chan->private = slave; return true; } static inline void dma_complete(struct arasan_cf_dev *acdev) { struct ata_queued_cmd *qc = acdev->qc; unsigned long flags; acdev->qc = NULL; ata_sff_interrupt(acdev->irq, acdev->host); spin_lock_irqsave(&acdev->host->lock, flags); if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) ata_ehi_push_desc(&qc->ap->link.eh_info, "DMA Failed: Timeout"); spin_unlock_irqrestore(&acdev->host->lock, flags); } static inline int wait4buf(struct arasan_cf_dev *acdev) { if (!wait_for_completion_timeout(&acdev->cf_completion, TIMEOUT)) { u32 rw = acdev->qc->tf.flags & ATA_TFLAG_WRITE; dev_err(acdev->host->dev, "%s TimeOut", rw ? "write" : "read"); return -ETIMEDOUT; } /* Check if PIO Error interrupt has occurred */ if (acdev->dma_status & ATA_DMA_ERR) return -EAGAIN; return 0; } static int dma_xfer(struct arasan_cf_dev *acdev, dma_addr_t src, dma_addr_t dest, u32 len) { struct dma_async_tx_descriptor *tx; struct dma_chan *chan = acdev->dma_chan; dma_cookie_t cookie; unsigned long flags = DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP | DMA_COMPL_SKIP_DEST_UNMAP; int ret = 0; tx = chan->device->device_prep_dma_memcpy(chan, dest, src, len, flags); if (!tx) { dev_err(acdev->host->dev, "device_prep_dma_memcpy failed\n"); return -EAGAIN; } tx->callback = dma_callback; tx->callback_param = acdev; cookie = tx->tx_submit(tx); ret = dma_submit_error(cookie); if (ret) { dev_err(acdev->host->dev, "dma_submit_error\n"); return ret; } chan->device->device_issue_pending(chan); /* Wait for DMA to complete */ if (!wait_for_completion_timeout(&acdev->dma_completion, TIMEOUT)) { chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); dev_err(acdev->host->dev, "wait_for_completion_timeout\n"); return -ETIMEDOUT; } return ret; } static int sg_xfer(struct arasan_cf_dev *acdev, struct scatterlist *sg) { dma_addr_t dest = 0, src = 0; u32 xfer_cnt, sglen, dma_len, xfer_ctr; u32 write = acdev->qc->tf.flags & ATA_TFLAG_WRITE; unsigned long flags; int ret = 0; sglen = sg_dma_len(sg); if (write) { src = sg_dma_address(sg); dest = acdev->pbase + EXT_WRITE_PORT; } else { dest = sg_dma_address(sg); src = acdev->pbase + EXT_READ_PORT; } /* * For each sg: * MAX_XFER_COUNT data will be transferred before we get transfer * complete interrupt. Between after FIFO_SIZE data * buffer available interrupt will be generated. At this time we will * fill FIFO again: max FIFO_SIZE data. */ while (sglen) { xfer_cnt = min(sglen, MAX_XFER_COUNT); spin_lock_irqsave(&acdev->host->lock, flags); xfer_ctr = readl(acdev->vbase + XFER_CTR) & ~XFER_COUNT_MASK; writel(xfer_ctr | xfer_cnt | XFER_START, acdev->vbase + XFER_CTR); spin_unlock_irqrestore(&acdev->host->lock, flags); /* continue dma xfers until current sg is completed */ while (xfer_cnt) { /* wait for read to complete */ if (!write) { ret = wait4buf(acdev); if (ret) goto fail; } /* read/write FIFO in chunk of FIFO_SIZE */ dma_len = min(xfer_cnt, FIFO_SIZE); ret = dma_xfer(acdev, src, dest, dma_len); if (ret) { dev_err(acdev->host->dev, "dma failed"); goto fail; } if (write) src += dma_len; else dest += dma_len; sglen -= dma_len; xfer_cnt -= dma_len; /* wait for write to complete */ if (write) { ret = wait4buf(acdev); if (ret) goto fail; } } } fail: spin_lock_irqsave(&acdev->host->lock, flags); writel(readl(acdev->vbase + XFER_CTR) & ~XFER_START, acdev->vbase + XFER_CTR); spin_unlock_irqrestore(&acdev->host->lock, flags); return ret; } /* * This routine uses External DMA controller to read/write data to FIFO of CF * controller. There are two xfer related interrupt supported by CF controller: * - buf_avail: This interrupt is generated as soon as we have buffer of 512 * bytes available for reading or empty buffer available for writing. * - xfer_done: This interrupt is generated on transfer of "xfer_size" amount of * data to/from FIFO. xfer_size is programmed in XFER_CTR register. * * Max buffer size = FIFO_SIZE = 512 Bytes. * Max xfer_size = MAX_XFER_COUNT = 256 KB. */ static void data_xfer(struct work_struct *work) { struct arasan_cf_dev *acdev = container_of(work, struct arasan_cf_dev, work); struct ata_queued_cmd *qc = acdev->qc; struct scatterlist *sg; unsigned long flags; u32 temp; int ret = 0; /* request dma channels */ /* dma_request_channel may sleep, so calling from process context */ acdev->dma_chan = dma_request_channel(acdev->mask, filter, acdev->dma_priv); if (!acdev->dma_chan) { dev_err(acdev->host->dev, "Unable to get dma_chan\n"); goto chan_request_fail; } for_each_sg(qc->sg, sg, qc->n_elem, temp) { ret = sg_xfer(acdev, sg); if (ret) break; } dma_release_channel(acdev->dma_chan); /* data xferred successfully */ if (!ret) { u32 status; spin_lock_irqsave(&acdev->host->lock, flags); status = ioread8(qc->ap->ioaddr.altstatus_addr); spin_unlock_irqrestore(&acdev->host->lock, flags); if (status & (ATA_BUSY | ATA_DRQ)) { ata_sff_queue_delayed_work(&acdev->dwork, 1); return; } goto sff_intr; } cf_dumpregs(acdev); chan_request_fail: spin_lock_irqsave(&acdev->host->lock, flags); /* error when transferring data to/from memory */ qc->err_mask |= AC_ERR_HOST_BUS; qc->ap->hsm_task_state = HSM_ST_ERR; cf_ctrl_reset(acdev); spin_unlock_irqrestore(qc->ap->lock, flags); sff_intr: dma_complete(acdev); } static void delayed_finish(struct work_struct *work) { struct arasan_cf_dev *acdev = container_of(work, struct arasan_cf_dev, dwork.work); struct ata_queued_cmd *qc = acdev->qc; unsigned long flags; u8 status; spin_lock_irqsave(&acdev->host->lock, flags); status = ioread8(qc->ap->ioaddr.altstatus_addr); spin_unlock_irqrestore(&acdev->host->lock, flags); if (status & (ATA_BUSY | ATA_DRQ)) ata_sff_queue_delayed_work(&acdev->dwork, 1); else dma_complete(acdev); } static irqreturn_t arasan_cf_interrupt(int irq, void *dev) { struct arasan_cf_dev *acdev = ((struct ata_host *)dev)->private_data; unsigned long flags; u32 irqsts; irqsts = readl(acdev->vbase + GIRQ_STS); if (!(irqsts & GIRQ_CF)) return IRQ_NONE; spin_lock_irqsave(&acdev->host->lock, flags); irqsts = readl(acdev->vbase + IRQ_STS); writel(irqsts, acdev->vbase + IRQ_STS); /* clear irqs */ writel(GIRQ_CF, acdev->vbase + GIRQ_STS); /* clear girqs */ /* handle only relevant interrupts */ irqsts &= ~IGNORED_IRQS; if (irqsts & CARD_DETECT_IRQ) { cf_card_detect(acdev, 1); spin_unlock_irqrestore(&acdev->host->lock, flags); return IRQ_HANDLED; } if (irqsts & PIO_XFER_ERR_IRQ) { acdev->dma_status = ATA_DMA_ERR; writel(readl(acdev->vbase + XFER_CTR) & ~XFER_START, acdev->vbase + XFER_CTR); spin_unlock_irqrestore(&acdev->host->lock, flags); complete(&acdev->cf_completion); dev_err(acdev->host->dev, "pio xfer err irq\n"); return IRQ_HANDLED; } spin_unlock_irqrestore(&acdev->host->lock, flags); if (irqsts & BUF_AVAIL_IRQ) { complete(&acdev->cf_completion); return IRQ_HANDLED; } if (irqsts & XFER_DONE_IRQ) { struct ata_queued_cmd *qc = acdev->qc; /* Send Complete only for write */ if (qc->tf.flags & ATA_TFLAG_WRITE) complete(&acdev->cf_completion); } return IRQ_HANDLED; } static void arasan_cf_freeze(struct ata_port *ap) { struct arasan_cf_dev *acdev = ap->host->private_data; /* stop transfer and reset controller */ writel(readl(acdev->vbase + XFER_CTR) & ~XFER_START, acdev->vbase + XFER_CTR); cf_ctrl_reset(acdev); acdev->dma_status = ATA_DMA_ERR; ata_sff_dma_pause(ap); ata_sff_freeze(ap); } void arasan_cf_error_handler(struct ata_port *ap) { struct arasan_cf_dev *acdev = ap->host->private_data; /* * DMA transfers using an external DMA controller may be scheduled. * Abort them before handling error. Refer data_xfer() for further * details. */ cancel_work_sync(&acdev->work); cancel_delayed_work_sync(&acdev->dwork); return ata_sff_error_handler(ap); } static void arasan_cf_dma_start(struct arasan_cf_dev *acdev) { u32 xfer_ctr = readl(acdev->vbase + XFER_CTR) & ~XFER_DIR_MASK; u32 write = acdev->qc->tf.flags & ATA_TFLAG_WRITE; xfer_ctr |= write ? XFER_WRITE : XFER_READ; writel(xfer_ctr, acdev->vbase + XFER_CTR); acdev->qc->ap->ops->sff_exec_command(acdev->qc->ap, &acdev->qc->tf); ata_sff_queue_work(&acdev->work); } unsigned int arasan_cf_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct arasan_cf_dev *acdev = ap->host->private_data; /* defer PIO handling to sff_qc_issue */ if (!ata_is_dma(qc->tf.protocol)) return ata_sff_qc_issue(qc); /* select the device */ ata_wait_idle(ap); ata_sff_dev_select(ap, qc->dev->devno); ata_wait_idle(ap); /* start the command */ switch (qc->tf.protocol) { case ATA_PROT_DMA: WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); ap->ops->sff_tf_load(ap, &qc->tf); acdev->dma_status = 0; acdev->qc = qc; arasan_cf_dma_start(acdev); ap->hsm_task_state = HSM_ST_LAST; break; default: WARN_ON(1); return AC_ERR_SYSTEM; } return 0; } static void arasan_cf_set_piomode(struct ata_port *ap, struct ata_device *adev) { struct arasan_cf_dev *acdev = ap->host->private_data; u8 pio = adev->pio_mode - XFER_PIO_0; unsigned long flags; u32 val; /* Arasan ctrl supports Mode0 -> Mode6 */ if (pio > 6) { dev_err(ap->dev, "Unknown PIO mode\n"); return; } spin_lock_irqsave(&acdev->host->lock, flags); val = readl(acdev->vbase + OP_MODE) & ~(ULTRA_DMA_ENB | MULTI_WORD_DMA_ENB | DRQ_BLOCK_SIZE_MASK); writel(val, acdev->vbase + OP_MODE); val = readl(acdev->vbase + TM_CFG) & ~TRUEIDE_PIO_TIMING_MASK; val |= pio << TRUEIDE_PIO_TIMING_SHIFT; writel(val, acdev->vbase + TM_CFG); cf_interrupt_enable(acdev, BUF_AVAIL_IRQ | XFER_DONE_IRQ, 0); cf_interrupt_enable(acdev, PIO_XFER_ERR_IRQ, 1); spin_unlock_irqrestore(&acdev->host->lock, flags); } static void arasan_cf_set_dmamode(struct ata_port *ap, struct ata_device *adev) { struct arasan_cf_dev *acdev = ap->host->private_data; u32 opmode, tmcfg, dma_mode = adev->dma_mode; unsigned long flags; spin_lock_irqsave(&acdev->host->lock, flags); opmode = readl(acdev->vbase + OP_MODE) & ~(MULTI_WORD_DMA_ENB | ULTRA_DMA_ENB); tmcfg = readl(acdev->vbase + TM_CFG); if ((dma_mode >= XFER_UDMA_0) && (dma_mode <= XFER_UDMA_6)) { opmode |= ULTRA_DMA_ENB; tmcfg &= ~ULTRA_DMA_TIMING_MASK; tmcfg |= (dma_mode - XFER_UDMA_0) << ULTRA_DMA_TIMING_SHIFT; } else if ((dma_mode >= XFER_MW_DMA_0) && (dma_mode <= XFER_MW_DMA_4)) { opmode |= MULTI_WORD_DMA_ENB; tmcfg &= ~TRUEIDE_MWORD_DMA_TIMING_MASK; tmcfg |= (dma_mode - XFER_MW_DMA_0) << TRUEIDE_MWORD_DMA_TIMING_SHIFT; } else { dev_err(ap->dev, "Unknown DMA mode\n"); spin_unlock_irqrestore(&acdev->host->lock, flags); return; } writel(opmode, acdev->vbase + OP_MODE); writel(tmcfg, acdev->vbase + TM_CFG); writel(DMA_XFER_MODE, acdev->vbase + XFER_CTR); cf_interrupt_enable(acdev, PIO_XFER_ERR_IRQ, 0); cf_interrupt_enable(acdev, BUF_AVAIL_IRQ | XFER_DONE_IRQ, 1); spin_unlock_irqrestore(&acdev->host->lock, flags); } static struct ata_port_operations arasan_cf_ops = { .inherits = &ata_sff_port_ops, .freeze = arasan_cf_freeze, .error_handler = arasan_cf_error_handler, .qc_issue = arasan_cf_qc_issue, .set_piomode = arasan_cf_set_piomode, .set_dmamode = arasan_cf_set_dmamode, }; static int __devinit arasan_cf_probe(struct platform_device *pdev) { struct arasan_cf_dev *acdev; struct arasan_cf_pdata *pdata = dev_get_platdata(&pdev->dev); struct ata_host *host; struct ata_port *ap; struct resource *res; irq_handler_t irq_handler = NULL; int ret = 0; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res), DRIVER_NAME)) { dev_warn(&pdev->dev, "Failed to get memory region resource\n"); return -ENOENT; } acdev = devm_kzalloc(&pdev->dev, sizeof(*acdev), GFP_KERNEL); if (!acdev) { dev_warn(&pdev->dev, "kzalloc fail\n"); return -ENOMEM; } /* if irq is 0, support only PIO */ acdev->irq = platform_get_irq(pdev, 0); if (acdev->irq) irq_handler = arasan_cf_interrupt; else pdata->quirk |= CF_BROKEN_MWDMA | CF_BROKEN_UDMA; acdev->pbase = res->start; acdev->vbase = devm_ioremap_nocache(&pdev->dev, res->start, resource_size(res)); if (!acdev->vbase) { dev_warn(&pdev->dev, "ioremap fail\n"); return -ENOMEM; } #ifdef CONFIG_HAVE_CLK acdev->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(acdev->clk)) { dev_warn(&pdev->dev, "Clock not found\n"); return PTR_ERR(acdev->clk); } #endif /* allocate host */ host = ata_host_alloc(&pdev->dev, 1); if (!host) { ret = -ENOMEM; dev_warn(&pdev->dev, "alloc host fail\n"); goto free_clk; } ap = host->ports[0]; host->private_data = acdev; acdev->host = host; ap->ops = &arasan_cf_ops; ap->pio_mask = ATA_PIO6; ap->mwdma_mask = ATA_MWDMA4; ap->udma_mask = ATA_UDMA6; init_completion(&acdev->cf_completion); init_completion(&acdev->dma_completion); INIT_WORK(&acdev->work, data_xfer); INIT_DELAYED_WORK(&acdev->dwork, delayed_finish); dma_cap_set(DMA_MEMCPY, acdev->mask); acdev->dma_priv = pdata->dma_priv; /* Handle platform specific quirks */ if (pdata->quirk) { if (pdata->quirk & CF_BROKEN_PIO) { ap->ops->set_piomode = NULL; ap->pio_mask = 0; } if (pdata->quirk & CF_BROKEN_MWDMA) ap->mwdma_mask = 0; if (pdata->quirk & CF_BROKEN_UDMA) ap->udma_mask = 0; } ap->flags |= ATA_FLAG_PIO_POLLING | ATA_FLAG_NO_ATAPI; ap->ioaddr.cmd_addr = acdev->vbase + ATA_DATA_PORT; ap->ioaddr.data_addr = acdev->vbase + ATA_DATA_PORT; ap->ioaddr.error_addr = acdev->vbase + ATA_ERR_FTR; ap->ioaddr.feature_addr = acdev->vbase + ATA_ERR_FTR; ap->ioaddr.nsect_addr = acdev->vbase + ATA_SC; ap->ioaddr.lbal_addr = acdev->vbase + ATA_SN; ap->ioaddr.lbam_addr = acdev->vbase + ATA_CL; ap->ioaddr.lbah_addr = acdev->vbase + ATA_CH; ap->ioaddr.device_addr = acdev->vbase + ATA_SH; ap->ioaddr.status_addr = acdev->vbase + ATA_STS_CMD; ap->ioaddr.command_addr = acdev->vbase + ATA_STS_CMD; ap->ioaddr.altstatus_addr = acdev->vbase + ATA_ASTS_DCTR; ap->ioaddr.ctl_addr = acdev->vbase + ATA_ASTS_DCTR; ata_port_desc(ap, "phy_addr %llx virt_addr %p", (unsigned long long) res->start, acdev->vbase); ret = cf_init(acdev); if (ret) goto free_clk; cf_card_detect(acdev, 0); return ata_host_activate(host, acdev->irq, irq_handler, 0, &arasan_cf_sht); free_clk: #ifdef CONFIG_HAVE_CLK clk_put(acdev->clk); #endif return ret; } static int __devexit arasan_cf_remove(struct platform_device *pdev) { struct ata_host *host = dev_get_drvdata(&pdev->dev); struct arasan_cf_dev *acdev = host->ports[0]->private_data; ata_host_detach(host); cf_exit(acdev); #ifdef CONFIG_HAVE_CLK clk_put(acdev->clk); #endif return 0; } #ifdef CONFIG_PM static int arasan_cf_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct ata_host *host = dev_get_drvdata(&pdev->dev); struct arasan_cf_dev *acdev = host->ports[0]->private_data; if (acdev->dma_chan) { acdev->dma_chan->device->device_control(acdev->dma_chan, DMA_TERMINATE_ALL, 0); dma_release_channel(acdev->dma_chan); } cf_exit(acdev); return ata_host_suspend(host, PMSG_SUSPEND); } static int arasan_cf_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct ata_host *host = dev_get_drvdata(&pdev->dev); struct arasan_cf_dev *acdev = host->ports[0]->private_data; cf_init(acdev); ata_host_resume(host); return 0; } static const struct dev_pm_ops arasan_cf_pm_ops = { .suspend = arasan_cf_suspend, .resume = arasan_cf_resume, }; #endif static struct platform_driver arasan_cf_driver = { .probe = arasan_cf_probe, .remove = __devexit_p(arasan_cf_remove), .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &arasan_cf_pm_ops, #endif }, }; static int __init arasan_cf_init(void) { return platform_driver_register(&arasan_cf_driver); } module_init(arasan_cf_init); static void __exit arasan_cf_exit(void) { platform_driver_unregister(&arasan_cf_driver); } module_exit(arasan_cf_exit); MODULE_AUTHOR("Viresh Kumar <viresh.kumar@st.com>"); MODULE_DESCRIPTION("Arasan ATA Compact Flash driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);