/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include <linux/string.h> #include <linux/smp.h> #include <linux/module.h> #include <linux/uaccess.h> #include <asm/fixmap.h> #include <asm/kmap_types.h> #include <asm/tlbflush.h> #include <hv/hypervisor.h> #include <arch/chip.h> #if !CHIP_HAS_COHERENT_LOCAL_CACHE() /* Defined in memcpy.S */ extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n); extern unsigned long __copy_to_user_inatomic_asm( void __user *to, const void *from, unsigned long n); extern unsigned long __copy_from_user_inatomic_asm( void *to, const void __user *from, unsigned long n); extern unsigned long __copy_from_user_zeroing_asm( void *to, const void __user *from, unsigned long n); typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long); /* Size above which to consider TLB games for performance */ #define LARGE_COPY_CUTOFF 2048 /* Communicate to the simulator what we are trying to do. */ #define sim_allow_multiple_caching(b) \ __insn_mtspr(SPR_SIM_CONTROL, \ SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS)) /* * Copy memory by briefly enabling incoherent cacheline-at-a-time mode. * * We set up our own source and destination PTEs that we fully control. * This is the only way to guarantee that we don't race with another * thread that is modifying the PTE; we can't afford to try the * copy_{to,from}_user() technique of catching the interrupt, since * we must run with interrupts disabled to avoid the risk of some * other code seeing the incoherent data in our cache. (Recall that * our cache is indexed by PA, so even if the other code doesn't use * our kmap_atomic virtual addresses, they'll still hit in cache using * the normal VAs that aren't supposed to hit in cache.) */ static void memcpy_multicache(void *dest, const void *source, pte_t dst_pte, pte_t src_pte, int len) { int idx; unsigned long flags, newsrc, newdst; pmd_t *pmdp; pte_t *ptep; int type0, type1; int cpu = get_cpu(); /* * Disable interrupts so that we don't recurse into memcpy() * in an interrupt handler, nor accidentally reference * the PA of the source from an interrupt routine. Also * notify the simulator that we're playing games so we don't * generate spurious coherency warnings. */ local_irq_save(flags); sim_allow_multiple_caching(1); /* Set up the new dest mapping */ type0 = kmap_atomic_idx_push(); idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + type0; newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1)); pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst); ptep = pte_offset_kernel(pmdp, newdst); if (pte_val(*ptep) != pte_val(dst_pte)) { set_pte(ptep, dst_pte); local_flush_tlb_page(NULL, newdst, PAGE_SIZE); } /* Set up the new source mapping */ type1 = kmap_atomic_idx_push(); idx += (type0 - type1); src_pte = hv_pte_set_nc(src_pte); src_pte = hv_pte_clear_writable(src_pte); /* be paranoid */ newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1)); pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc); ptep = pte_offset_kernel(pmdp, newsrc); __set_pte(ptep, src_pte); /* set_pte() would be confused by this */ local_flush_tlb_page(NULL, newsrc, PAGE_SIZE); /* Actually move the data. */ __memcpy_asm((void *)newdst, (const void *)newsrc, len); /* * Remap the source as locally-cached and not OLOC'ed so that * we can inval without also invaling the remote cpu's cache. * This also avoids known errata with inv'ing cacheable oloc data. */ src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3); src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */ __set_pte(ptep, src_pte); /* set_pte() would be confused by this */ local_flush_tlb_page(NULL, newsrc, PAGE_SIZE); /* * Do the actual invalidation, covering the full L2 cache line * at the end since __memcpy_asm() is somewhat aggressive. */ __inv_buffer((void *)newsrc, len); /* * We're done: notify the simulator that all is back to normal, * and re-enable interrupts and pre-emption. */ kmap_atomic_idx_pop(); kmap_atomic_idx_pop(); sim_allow_multiple_caching(0); local_irq_restore(flags); put_cpu(); } /* * Identify large copies from remotely-cached memory, and copy them * via memcpy_multicache() if they look good, otherwise fall back * to the particular kind of copying passed as the memcpy_t function. */ static unsigned long fast_copy(void *dest, const void *source, int len, memcpy_t func) { /* * Check if it's big enough to bother with. We may end up doing a * small copy via TLB manipulation if we're near a page boundary, * but presumably we'll make it up when we hit the second page. */ while (len >= LARGE_COPY_CUTOFF) { int copy_size, bytes_left_on_page; pte_t *src_ptep, *dst_ptep; pte_t src_pte, dst_pte; struct page *src_page, *dst_page; /* Is the source page oloc'ed to a remote cpu? */ retry_source: src_ptep = virt_to_pte(current->mm, (unsigned long)source); if (src_ptep == NULL) break; src_pte = *src_ptep; if (!hv_pte_get_present(src_pte) || !hv_pte_get_readable(src_pte) || hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3) break; if (get_remote_cache_cpu(src_pte) == smp_processor_id()) break; src_page = pfn_to_page(hv_pte_get_pfn(src_pte)); get_page(src_page); if (pte_val(src_pte) != pte_val(*src_ptep)) { put_page(src_page); goto retry_source; } if (pte_huge(src_pte)) { /* Adjust the PTE to correspond to a small page */ int pfn = hv_pte_get_pfn(src_pte); pfn += (((unsigned long)source & (HPAGE_SIZE-1)) >> PAGE_SHIFT); src_pte = pfn_pte(pfn, src_pte); src_pte = pte_mksmall(src_pte); } /* Is the destination page writable? */ retry_dest: dst_ptep = virt_to_pte(current->mm, (unsigned long)dest); if (dst_ptep == NULL) { put_page(src_page); break; } dst_pte = *dst_ptep; if (!hv_pte_get_present(dst_pte) || !hv_pte_get_writable(dst_pte)) { put_page(src_page); break; } dst_page = pfn_to_page(hv_pte_get_pfn(dst_pte)); if (dst_page == src_page) { /* * Source and dest are on the same page; this * potentially exposes us to incoherence if any * part of src and dest overlap on a cache line. * Just give up rather than trying to be precise. */ put_page(src_page); break; } get_page(dst_page); if (pte_val(dst_pte) != pte_val(*dst_ptep)) { put_page(dst_page); goto retry_dest; } if (pte_huge(dst_pte)) { /* Adjust the PTE to correspond to a small page */ int pfn = hv_pte_get_pfn(dst_pte); pfn += (((unsigned long)dest & (HPAGE_SIZE-1)) >> PAGE_SHIFT); dst_pte = pfn_pte(pfn, dst_pte); dst_pte = pte_mksmall(dst_pte); } /* All looks good: create a cachable PTE and copy from it */ copy_size = len; bytes_left_on_page = PAGE_SIZE - (((int)source) & (PAGE_SIZE-1)); if (copy_size > bytes_left_on_page) copy_size = bytes_left_on_page; bytes_left_on_page = PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1)); if (copy_size > bytes_left_on_page) copy_size = bytes_left_on_page; memcpy_multicache(dest, source, dst_pte, src_pte, copy_size); /* Release the pages */ put_page(dst_page); put_page(src_page); /* Continue on the next page */ dest += copy_size; source += copy_size; len -= copy_size; } return func(dest, source, len); } void *memcpy(void *to, const void *from, __kernel_size_t n) { if (n < LARGE_COPY_CUTOFF) return (void *)__memcpy_asm(to, from, n); else return (void *)fast_copy(to, from, n, __memcpy_asm); } unsigned long __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) { if (n < LARGE_COPY_CUTOFF) return __copy_to_user_inatomic_asm(to, from, n); else return fast_copy(to, from, n, __copy_to_user_inatomic_asm); } unsigned long __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) { if (n < LARGE_COPY_CUTOFF) return __copy_from_user_inatomic_asm(to, from, n); else return fast_copy(to, from, n, __copy_from_user_inatomic_asm); } unsigned long __copy_from_user_zeroing(void *to, const void __user *from, unsigned long n) { if (n < LARGE_COPY_CUTOFF) return __copy_from_user_zeroing_asm(to, from, n); else return fast_copy(to, from, n, __copy_from_user_zeroing_asm); } #endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */