/* process.c: FRV specific parts of process handling * * Copyright (C) 2003-5 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * - Derived from arch/m68k/kernel/process.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/module.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/elf.h> #include <linux/reboot.h> #include <linux/interrupt.h> #include <linux/pagemap.h> #include <asm/asm-offsets.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/setup.h> #include <asm/pgtable.h> #include <asm/tlb.h> #include <asm/gdb-stub.h> #include <asm/mb-regs.h> #include "local.h" asmlinkage void ret_from_fork(void); #include <asm/pgalloc.h> void (*pm_power_off)(void); EXPORT_SYMBOL(pm_power_off); struct task_struct *alloc_task_struct_node(int node) { struct task_struct *p = kmalloc_node(THREAD_SIZE, GFP_KERNEL, node); if (p) atomic_set((atomic_t *)(p+1), 1); return p; } void free_task_struct(struct task_struct *p) { if (atomic_dec_and_test((atomic_t *)(p+1))) kfree(p); } static void core_sleep_idle(void) { #ifdef LED_DEBUG_SLEEP /* Show that we're sleeping... */ __set_LEDS(0x55aa); #endif frv_cpu_core_sleep(); #ifdef LED_DEBUG_SLEEP /* ... and that we woke up */ __set_LEDS(0); #endif mb(); } void (*idle)(void) = core_sleep_idle; /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { /* endless idle loop with no priority at all */ while (1) { while (!need_resched()) { check_pgt_cache(); if (!frv_dma_inprogress && idle) idle(); } preempt_enable_no_resched(); schedule(); preempt_disable(); } } void machine_restart(char * __unused) { unsigned long reset_addr; #ifdef CONFIG_GDBSTUB gdbstub_exit(0); #endif if (PSR_IMPLE(__get_PSR()) == PSR_IMPLE_FR551) reset_addr = 0xfefff500; else reset_addr = 0xfeff0500; /* Software reset. */ asm volatile(" dcef @(gr0,gr0),1 ! membar !" " sti %1,@(%0,0) !" " nop ! nop ! nop ! nop ! nop ! " " nop ! nop ! nop ! nop ! nop ! " " nop ! nop ! nop ! nop ! nop ! " " nop ! nop ! nop ! nop ! nop ! " : : "r" (reset_addr), "r" (1) ); for (;;) ; } void machine_halt(void) { #ifdef CONFIG_GDBSTUB gdbstub_exit(0); #endif for (;;); } void machine_power_off(void) { #ifdef CONFIG_GDBSTUB gdbstub_exit(0); #endif for (;;); } void flush_thread(void) { #if 0 //ndef NO_FPU unsigned long zero = 0; #endif set_fs(USER_DS); } inline unsigned long user_stack(const struct pt_regs *regs) { while (regs->next_frame) regs = regs->next_frame; return user_mode(regs) ? regs->sp : 0; } asmlinkage int sys_fork(void) { #ifndef CONFIG_MMU /* fork almost works, enough to trick you into looking elsewhere:-( */ return -EINVAL; #else return do_fork(SIGCHLD, user_stack(__frame), __frame, 0, NULL, NULL); #endif } asmlinkage int sys_vfork(void) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, user_stack(__frame), __frame, 0, NULL, NULL); } /*****************************************************************************/ /* * clone a process * - tlsptr is retrieved by copy_thread() */ asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, int __user *parent_tidptr, int __user *child_tidptr, int __user *tlsptr) { if (!newsp) newsp = user_stack(__frame); return do_fork(clone_flags, newsp, __frame, 0, parent_tidptr, child_tidptr); } /* end sys_clone() */ /*****************************************************************************/ /* * This gets called before we allocate a new thread and copy * the current task into it. */ void prepare_to_copy(struct task_struct *tsk) { //unlazy_fpu(tsk); } /* end prepare_to_copy() */ /*****************************************************************************/ /* * set up the kernel stack and exception frames for a new process */ int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long topstk, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs0, *childregs, *regs0; regs0 = __kernel_frame0_ptr; childregs0 = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE - FRV_FRAME0_SIZE); childregs = childregs0; /* set up the userspace frame (the only place that the USP is stored) */ *childregs0 = *regs0; childregs0->gr8 = 0; childregs0->sp = usp; childregs0->next_frame = NULL; /* set up the return kernel frame if called from kernel_thread() */ if (regs != regs0) { childregs--; *childregs = *regs; childregs->sp = (unsigned long) childregs0; childregs->next_frame = childregs0; childregs->gr15 = (unsigned long) task_thread_info(p); childregs->gr29 = (unsigned long) p; } p->set_child_tid = p->clear_child_tid = NULL; p->thread.frame = childregs; p->thread.curr = p; p->thread.sp = (unsigned long) childregs; p->thread.fp = 0; p->thread.lr = 0; p->thread.pc = (unsigned long) ret_from_fork; p->thread.frame0 = childregs0; /* the new TLS pointer is passed in as arg #5 to sys_clone() */ if (clone_flags & CLONE_SETTLS) childregs->gr29 = childregs->gr12; save_user_regs(p->thread.user); return 0; } /* end copy_thread() */ /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(const char __user *name, const char __user *const __user *argv, const char __user *const __user *envp) { int error; char * filename; filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) return error; error = do_execve(filename, argv, envp, __frame); putname(filename); return error; } unsigned long get_wchan(struct task_struct *p) { struct pt_regs *regs0; unsigned long fp, pc; unsigned long stack_limit; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; stack_limit = (unsigned long) (p + 1); fp = p->thread.fp; regs0 = p->thread.frame0; do { if (fp < stack_limit || fp >= (unsigned long) regs0 || fp & 3) return 0; pc = ((unsigned long *) fp)[2]; /* FIXME: This depends on the order of these functions. */ if (!in_sched_functions(pc)) return pc; fp = *(unsigned long *) fp; } while (count++ < 16); return 0; } unsigned long thread_saved_pc(struct task_struct *tsk) { /* Check whether the thread is blocked in resume() */ if (in_sched_functions(tsk->thread.pc)) return ((unsigned long *)tsk->thread.fp)[2]; else return tsk->thread.pc; } int elf_check_arch(const struct elf32_hdr *hdr) { unsigned long hsr0 = __get_HSR(0); unsigned long psr = __get_PSR(); if (hdr->e_machine != EM_FRV) return 0; switch (hdr->e_flags & EF_FRV_GPR_MASK) { case EF_FRV_GPR64: if ((hsr0 & HSR0_GRN) == HSR0_GRN_32) return 0; case EF_FRV_GPR32: case 0: break; default: return 0; } switch (hdr->e_flags & EF_FRV_FPR_MASK) { case EF_FRV_FPR64: if ((hsr0 & HSR0_FRN) == HSR0_FRN_32) return 0; case EF_FRV_FPR32: case EF_FRV_FPR_NONE: case 0: break; default: return 0; } if ((hdr->e_flags & EF_FRV_MULADD) == EF_FRV_MULADD) if (PSR_IMPLE(psr) != PSR_IMPLE_FR405 && PSR_IMPLE(psr) != PSR_IMPLE_FR451) return 0; switch (hdr->e_flags & EF_FRV_CPU_MASK) { case EF_FRV_CPU_GENERIC: break; case EF_FRV_CPU_FR300: case EF_FRV_CPU_SIMPLE: case EF_FRV_CPU_TOMCAT: default: return 0; case EF_FRV_CPU_FR400: if (PSR_IMPLE(psr) != PSR_IMPLE_FR401 && PSR_IMPLE(psr) != PSR_IMPLE_FR405 && PSR_IMPLE(psr) != PSR_IMPLE_FR451 && PSR_IMPLE(psr) != PSR_IMPLE_FR551) return 0; break; case EF_FRV_CPU_FR450: if (PSR_IMPLE(psr) != PSR_IMPLE_FR451) return 0; break; case EF_FRV_CPU_FR500: if (PSR_IMPLE(psr) != PSR_IMPLE_FR501) return 0; break; case EF_FRV_CPU_FR550: if (PSR_IMPLE(psr) != PSR_IMPLE_FR551) return 0; break; } return 1; } int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs) { memcpy(fpregs, ¤t->thread.user->f, sizeof(current->thread.user->f)); return 1; }