/* * Rescue code, made to reside at the beginning of the * flash-memory. when it starts, it checks a partition * table at the first sector after the rescue sector. * the partition table was generated by the product builder * script and contains offsets, lengths, types and checksums * for each partition that this code should check. * * If any of the checksums fail, we assume the flash is so * corrupt that we can't use it to boot into the ftp flash * loader, and instead we initialize the serial port to * receive a flash-loader and new flash image. we dont include * any flash code here, but just accept a certain amount of * bytes from the serial port and jump into it. the downloaded * code is put in the cache. * * The partitiontable is designed so that it is transparent to * code execution - it has a relative branch opcode in the * beginning that jumps over it. each entry contains extra * data so we can add stuff later. * * Partition table format: * * Code transparency: * * 2 bytes [opcode 'nop'] * 2 bytes [opcode 'di'] * 4 bytes [opcode 'ba <offset>', 8-bit or 16-bit version] * 2 bytes [opcode 'nop', delay slot] * * Table validation (at +10): * * 2 bytes [magic/version word for partitiontable - 0xef, 0xbe] * 2 bytes [length of all entries plus the end marker] * 4 bytes [checksum for the partitiontable itself] * * Entries, each with the following format, last has offset -1: * * 4 bytes [offset in bytes, from start of flash] * 4 bytes [length in bytes of partition] * 4 bytes [checksum, simple longword sum] * 2 bytes [partition type] * 2 bytes [flags, only bit 0 used, ro/rw = 1/0] * 16 bytes [reserved for future use] * * End marker * * 4 bytes [-1] * * 10 bytes [0, padding] * * Bit 0 in flags signifies RW or RO. The rescue code only bothers * to check the checksum for RO partitions, since the others will * change their data without updating the checksums. A 1 in bit 0 * means RO, 0 means RW. That way, it is possible to set a partition * in RO mode initially, and later mark it as RW, since you can always * write 0's to the flash. * * During the wait for serial input, the status LED will flash so the * user knows something went wrong. * * Copyright (C) 1999-2007 Axis Communications AB */ #ifdef CONFIG_ETRAX_AXISFLASHMAP #define ASSEMBLER_MACROS_ONLY #include <arch/sv_addr_ag.h> ;; The partitiontable is looked for at the first sector after the boot ;; sector. Sector size is 65536 bytes in all flashes we use. #define PTABLE_START CONFIG_ETRAX_PTABLE_SECTOR #define PTABLE_MAGIC 0xbeef ;; The normal Etrax100 on-chip boot ROM does serial boot at 0x380000f0. ;; That is not where we put our downloaded serial boot-code. ;; The length is enough for downloading code that loads the rest ;; of itself (after having setup the DRAM etc). ;; It is the same length as the on-chip ROM loads, so the same ;; host loader can be used to load a rescued product as well as ;; one booted through the Etrax serial boot code. #define CODE_START 0x40000000 #define CODE_LENGTH 784 #ifdef CONFIG_ETRAX_RESCUE_SER0 #define SERXOFF R_SERIAL0_XOFF #define SERBAUD R_SERIAL0_BAUD #define SERRECC R_SERIAL0_REC_CTRL #define SERRDAT R_SERIAL0_REC_DATA #define SERSTAT R_SERIAL0_STATUS #endif #ifdef CONFIG_ETRAX_RESCUE_SER1 #define SERXOFF R_SERIAL1_XOFF #define SERBAUD R_SERIAL1_BAUD #define SERRECC R_SERIAL1_REC_CTRL #define SERRDAT R_SERIAL1_REC_DATA #define SERSTAT R_SERIAL1_STATUS #endif #ifdef CONFIG_ETRAX_RESCUE_SER2 #define SERXOFF R_SERIAL2_XOFF #define SERBAUD R_SERIAL2_BAUD #define SERRECC R_SERIAL2_REC_CTRL #define SERRDAT R_SERIAL2_REC_DATA #define SERSTAT R_SERIAL2_STATUS #endif #ifdef CONFIG_ETRAX_RESCUE_SER3 #define SERXOFF R_SERIAL3_XOFF #define SERBAUD R_SERIAL3_BAUD #define SERRECC R_SERIAL3_REC_CTRL #define SERRDAT R_SERIAL3_REC_DATA #define SERSTAT R_SERIAL3_STATUS #endif #define NOP_DI 0xf025050f #define RAM_INIT_MAGIC 0x56902387 .text ;; This is the entry point of the rescue code ;; 0x80000000 if loaded in flash (as it should be) ;; Since etrax actually starts at address 2 when booting from flash, we ;; put a nop (2 bytes) here first so we dont accidentally skip the di nop di jump in_cache ; enter cached area instead in_cache: ;; First put a jump test to give a possibility of upgrading the ;; rescue code without erasing/reflashing the sector. ;; We put a longword of -1 here and if it is not -1, we jump using ;; the value as jump target. Since we can always change 1's to 0's ;; without erasing the sector, it is possible to add new ;; code after this and altering the jumptarget in an upgrade. jtcd: move.d [jumptarget], $r0 cmp.d 0xffffffff, $r0 beq no_newjump nop jump [$r0] jumptarget: .dword 0xffffffff ; can be overwritten later to insert new code no_newjump: #ifdef CONFIG_ETRAX_ETHERNET ;; Start MII clock to make sure it is running when tranceiver is reset move.d 0x3, $r0 ; enable = on, phy = mii_clk move.d $r0, [R_NETWORK_GEN_CONFIG] #endif ;; We need to setup the bus registers before we start using the DRAM #include "../../../arch-v10/lib/dram_init.S" ;; we now should go through the checksum-table and check the listed ;; partitions for errors. move.d PTABLE_START, $r3 move.d [$r3], $r0 cmp.d NOP_DI, $r0 ; make sure the nop/di is there... bne do_rescue nop ;; skip the code transparency block (10 bytes). addq 10, $r3 ;; check for correct magic move.w [$r3+], $r0 cmp.w PTABLE_MAGIC, $r0 bne do_rescue ; didn't recognize - trig rescue nop ;; check for correct ptable checksum movu.w [$r3+], $r2 ; ptable length move.d $r2, $r8 ; save for later, length of total ptable addq 28, $r8 ; account for the rest move.d [$r3+], $r4 ; ptable checksum move.d $r3, $r1 jsr checksum ; r1 source, r2 length, returns in r0 cmp.d $r0, $r4 bne do_rescue ; didn't match - trig rescue nop ;; ptable is ok. validate each entry. moveq -1, $r7 ploop: move.d [$r3+], $r1 ; partition offset (from ptable start) bne notfirst ; check if it is the partition containing ptable nop ; yes.. move.d $r8, $r1 ; for its checksum check, skip the ptable move.d [$r3+], $r2 ; partition length sub.d $r8, $r2 ; minus the ptable length ba bosse nop notfirst: cmp.d -1, $r1 ; the end of the ptable ? beq flash_ok ; if so, the flash is validated move.d [$r3+], $r2 ; partition length bosse: move.d [$r3+], $r5 ; checksum move.d [$r3+], $r4 ; type and flags addq 16, $r3 ; skip the reserved bytes btstq 16, $r4 ; check ro flag bpl ploop ; rw partition, skip validation nop btstq 17, $r4 ; check bootable flag bpl 1f nop move.d $r1, $r7 ; remember boot partition offset 1: add.d PTABLE_START, $r1 jsr checksum ; checksum the partition cmp.d $r0, $r5 beq ploop ; checksums matched, go to next entry nop ;; otherwise fall through to the rescue code. do_rescue: ;; setup port PA and PB default initial directions and data ;; (so we can flash LEDs, and so that DTR and others are set) move.b CONFIG_ETRAX_DEF_R_PORT_PA_DIR, $r0 move.b $r0, [R_PORT_PA_DIR] move.b CONFIG_ETRAX_DEF_R_PORT_PA_DATA, $r0 move.b $r0, [R_PORT_PA_DATA] move.b CONFIG_ETRAX_DEF_R_PORT_PB_DIR, $r0 move.b $r0, [R_PORT_PB_DIR] move.b CONFIG_ETRAX_DEF_R_PORT_PB_DATA, $r0 move.b $r0, [R_PORT_PB_DATA] ;; setup the serial port at 115200 baud moveq 0, $r0 move.d $r0, [SERXOFF] move.b 0x99, $r0 move.b $r0, [SERBAUD] ; 115.2kbaud for both transmit and receive move.b 0x40, $r0 ; rec enable move.b $r0, [SERRECC] moveq 0, $r1 ; "timer" to clock out a LED red flash move.d CODE_START, $r3 ; destination counter movu.w CODE_LENGTH, $r4; length wait_ser: addq 1, $r1 #ifndef CONFIG_ETRAX_NO_LEDS #ifdef CONFIG_ETRAX_PA_LEDS move.b CONFIG_ETRAX_DEF_R_PORT_PA_DATA, $r2 #endif #ifdef CONFIG_ETRAX_PB_LEDS move.b CONFIG_ETRAX_DEF_R_PORT_PB_DATA, $r2 #endif move.d (1 << CONFIG_ETRAX_LED1R) | (1 << CONFIG_ETRAX_LED2R), $r0 btstq 16, $r1 bpl 1f nop or.d $r0, $r2 ; set bit ba 2f nop 1: not $r0 ; clear bit and.d $r0, $r2 2: #ifdef CONFIG_ETRAX_PA_LEDS move.b $r2, [R_PORT_PA_DATA] #endif #ifdef CONFIG_ETRAX_PB_LEDS move.b $r2, [R_PORT_PB_DATA] #endif #ifdef CONFIG_ETRAX_90000000_LEDS move.b $r2, [0x90000000] #endif #endif ;; check if we got something on the serial port move.b [SERSTAT], $r0 btstq 0, $r0 ; data_avail bpl wait_ser nop ;; got something - copy the byte and loop move.b [SERRDAT], $r0 move.b $r0, [$r3+] subq 1, $r4 ; decrease length bne wait_ser nop ;; jump into downloaded code move.d RAM_INIT_MAGIC, $r8 ; Tell next product that DRAM is ; initialized jump CODE_START flash_ok: ;; check r7, which contains either -1 or the partition to boot from cmp.d -1, $r7 bne 1f nop move.d PTABLE_START, $r7; otherwise use the ptable start 1: move.d RAM_INIT_MAGIC, $r8 ; Tell next product that DRAM is ; initialized jump $r7 ; boot! ;; Helper subroutines ;; Will checksum by simple addition ;; r1 - source ;; r2 - length in bytes ;; result will be in r0 checksum: moveq 0, $r0 moveq CONFIG_ETRAX_FLASH1_SIZE, $r6 ;; If the first physical flash memory is exceeded wrap to the ;; second one btstq 26, $r1 ; Are we addressing first flash? bpl 1f nop clear.d $r6 1: test.d $r6 ; 0 = no wrapping beq 2f nop lslq 20, $r6 ; Convert MB to bytes sub.d $r1, $r6 2: addu.b [$r1+], $r0 subq 1, $r6 ; Flash memory left beq 3f subq 1, $r2 ; Length left bne 2b nop ret nop 3: move.d MEM_CSE1_START, $r1 ; wrap to second flash ba 2b nop #endif