/* * arch/cris/arch-v32/drivers/nandflash.c * * Copyright (c) 2004 * * Derived from drivers/mtd/nand/spia.c * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <arch/memmap.h> #include <hwregs/reg_map.h> #include <hwregs/reg_rdwr.h> #include <hwregs/gio_defs.h> #include <hwregs/bif_core_defs.h> #include <asm/io.h> #define CE_BIT 4 #define CLE_BIT 5 #define ALE_BIT 6 #define BY_BIT 7 struct mtd_info_wrapper { struct mtd_info info; struct nand_chip chip; }; /* Bitmask for control pins */ #define PIN_BITMASK ((1 << CE_BIT) | (1 << CLE_BIT) | (1 << ALE_BIT)) /* Bitmask for mtd nand control bits */ #define CTRL_BITMASK (NAND_NCE | NAND_CLE | NAND_ALE) static struct mtd_info *crisv32_mtd; /* * hardware specific access to control-lines */ static void crisv32_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { unsigned long flags; reg_gio_rw_pa_dout dout; struct nand_chip *this = mtd->priv; local_irq_save(flags); /* control bits change */ if (ctrl & NAND_CTRL_CHANGE) { dout = REG_RD(gio, regi_gio, rw_pa_dout); dout.data &= ~PIN_BITMASK; #if (CE_BIT == 4 && NAND_NCE == 1 && \ CLE_BIT == 5 && NAND_CLE == 2 && \ ALE_BIT == 6 && NAND_ALE == 4) /* Pins in same order as control bits, but shifted. * Optimize for this case; works for 2.6.18 */ dout.data |= ((ctrl & CTRL_BITMASK) ^ NAND_NCE) << CE_BIT; #else /* the slow way */ if (!(ctrl & NAND_NCE)) dout.data |= (1 << CE_BIT); if (ctrl & NAND_CLE) dout.data |= (1 << CLE_BIT); if (ctrl & NAND_ALE) dout.data |= (1 << ALE_BIT); #endif REG_WR(gio, regi_gio, rw_pa_dout, dout); } /* command to chip */ if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); local_irq_restore(flags); } /* * read device ready pin */ static int crisv32_device_ready(struct mtd_info *mtd) { reg_gio_r_pa_din din = REG_RD(gio, regi_gio, r_pa_din); return ((din.data & (1 << BY_BIT)) >> BY_BIT); } /* * Main initialization routine */ struct mtd_info *__init crisv32_nand_flash_probe(void) { void __iomem *read_cs; void __iomem *write_cs; reg_bif_core_rw_grp3_cfg bif_cfg = REG_RD(bif_core, regi_bif_core, rw_grp3_cfg); reg_gio_rw_pa_oe pa_oe = REG_RD(gio, regi_gio, rw_pa_oe); struct mtd_info_wrapper *wrapper; struct nand_chip *this; int err = 0; /* Allocate memory for MTD device structure and private data */ wrapper = kzalloc(sizeof(struct mtd_info_wrapper), GFP_KERNEL); if (!wrapper) { printk(KERN_ERR "Unable to allocate CRISv32 NAND MTD " "device structure.\n"); err = -ENOMEM; return NULL; } read_cs = ioremap(MEM_CSP0_START | MEM_NON_CACHEABLE, 8192); write_cs = ioremap(MEM_CSP1_START | MEM_NON_CACHEABLE, 8192); if (!read_cs || !write_cs) { printk(KERN_ERR "CRISv32 NAND ioremap failed\n"); err = -EIO; goto out_mtd; } /* Get pointer to private data */ this = &wrapper->chip; crisv32_mtd = &wrapper->info; pa_oe.oe |= 1 << CE_BIT; pa_oe.oe |= 1 << ALE_BIT; pa_oe.oe |= 1 << CLE_BIT; pa_oe.oe &= ~(1 << BY_BIT); REG_WR(gio, regi_gio, rw_pa_oe, pa_oe); bif_cfg.gated_csp0 = regk_bif_core_rd; bif_cfg.gated_csp1 = regk_bif_core_wr; REG_WR(bif_core, regi_bif_core, rw_grp3_cfg, bif_cfg); /* Link the private data with the MTD structure */ crisv32_mtd->priv = this; /* Set address of NAND IO lines */ this->IO_ADDR_R = read_cs; this->IO_ADDR_W = write_cs; this->cmd_ctrl = crisv32_hwcontrol; this->dev_ready = crisv32_device_ready; /* 20 us command delay time */ this->chip_delay = 20; this->ecc.mode = NAND_ECC_SOFT; /* Enable the following for a flash based bad block table */ /* this->options = NAND_USE_FLASH_BBT; */ /* Scan to find existence of the device */ if (nand_scan(crisv32_mtd, 1)) { err = -ENXIO; goto out_ior; } return crisv32_mtd; out_ior: iounmap((void *)read_cs); iounmap((void *)write_cs); out_mtd: kfree(wrapper); return NULL; }