/* * arch/cris/arch-v32/drivers/nandflash.c * * Copyright (c) 2007 * * Derived from drivers/mtd/nand/spia.c * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <arch/memmap.h> #include <hwregs/reg_map.h> #include <hwregs/reg_rdwr.h> #include <hwregs/pio_defs.h> #include <pinmux.h> #include <asm/io.h> #define MANUAL_ALE_CLE_CONTROL 1 #define regf_ALE a0 #define regf_CLE a1 #define regf_NCE ce0_n #define CLE_BIT 10 #define ALE_BIT 11 #define CE_BIT 12 struct mtd_info_wrapper { struct mtd_info info; struct nand_chip chip; }; /* Bitmask for control pins */ #define PIN_BITMASK ((1 << CE_BIT) | (1 << CLE_BIT) | (1 << ALE_BIT)) static struct mtd_info *crisv32_mtd; /* * hardware specific access to control-lines */ static void crisv32_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { unsigned long flags; reg_pio_rw_dout dout; struct nand_chip *this = mtd->priv; local_irq_save(flags); /* control bits change */ if (ctrl & NAND_CTRL_CHANGE) { dout = REG_RD(pio, regi_pio, rw_dout); dout.regf_NCE = (ctrl & NAND_NCE) ? 0 : 1; #if !MANUAL_ALE_CLE_CONTROL if (ctrl & NAND_ALE) { /* A0 = ALE high */ this->IO_ADDR_W = (void __iomem *)REG_ADDR(pio, regi_pio, rw_io_access1); } else if (ctrl & NAND_CLE) { /* A1 = CLE high */ this->IO_ADDR_W = (void __iomem *)REG_ADDR(pio, regi_pio, rw_io_access2); } else { /* A1 = CLE and A0 = ALE low */ this->IO_ADDR_W = (void __iomem *)REG_ADDR(pio, regi_pio, rw_io_access0); } #else dout.regf_CLE = (ctrl & NAND_CLE) ? 1 : 0; dout.regf_ALE = (ctrl & NAND_ALE) ? 1 : 0; #endif REG_WR(pio, regi_pio, rw_dout, dout); } /* command to chip */ if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); local_irq_restore(flags); } /* * read device ready pin */ static int crisv32_device_ready(struct mtd_info *mtd) { reg_pio_r_din din = REG_RD(pio, regi_pio, r_din); return din.rdy; } /* * Main initialization routine */ struct mtd_info *__init crisv32_nand_flash_probe(void) { void __iomem *read_cs; void __iomem *write_cs; struct mtd_info_wrapper *wrapper; struct nand_chip *this; int err = 0; reg_pio_rw_man_ctrl man_ctrl = { .regf_NCE = regk_pio_yes, #if MANUAL_ALE_CLE_CONTROL .regf_ALE = regk_pio_yes, .regf_CLE = regk_pio_yes #endif }; reg_pio_rw_oe oe = { .regf_NCE = regk_pio_yes, #if MANUAL_ALE_CLE_CONTROL .regf_ALE = regk_pio_yes, .regf_CLE = regk_pio_yes #endif }; reg_pio_rw_dout dout = { .regf_NCE = 1 }; /* Allocate pio pins to pio */ crisv32_pinmux_alloc_fixed(pinmux_pio); /* Set up CE, ALE, CLE (ce0_n, a0, a1) for manual control and output */ REG_WR(pio, regi_pio, rw_man_ctrl, man_ctrl); REG_WR(pio, regi_pio, rw_dout, dout); REG_WR(pio, regi_pio, rw_oe, oe); /* Allocate memory for MTD device structure and private data */ wrapper = kzalloc(sizeof(struct mtd_info_wrapper), GFP_KERNEL); if (!wrapper) { printk(KERN_ERR "Unable to allocate CRISv32 NAND MTD " "device structure.\n"); err = -ENOMEM; return NULL; } read_cs = write_cs = (void __iomem *)REG_ADDR(pio, regi_pio, rw_io_access0); /* Get pointer to private data */ this = &wrapper->chip; crisv32_mtd = &wrapper->info; /* Link the private data with the MTD structure */ crisv32_mtd->priv = this; /* Set address of NAND IO lines */ this->IO_ADDR_R = read_cs; this->IO_ADDR_W = write_cs; this->cmd_ctrl = crisv32_hwcontrol; this->dev_ready = crisv32_device_ready; /* 20 us command delay time */ this->chip_delay = 20; this->ecc.mode = NAND_ECC_SOFT; /* Enable the following for a flash based bad block table */ /* this->options = NAND_USE_FLASH_BBT; */ /* Scan to find existence of the device */ if (nand_scan(crisv32_mtd, 1)) { err = -ENXIO; goto out_mtd; } return crisv32_mtd; out_mtd: kfree(wrapper); return NULL; }