/* * arch/arm/plat-spear/time.c * * Copyright (C) 2010 ST Microelectronics * Shiraz Hashim<shiraz.hashim@st.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/time.h> #include <linux/irq.h> #include <asm/mach/time.h> #include <mach/generic.h> #include <mach/hardware.h> #include <mach/irqs.h> /* * We would use TIMER0 and TIMER1 as clockevent and clocksource. * Timer0 and Timer1 both belong to same gpt block in cpu subbsystem. Further * they share same functional clock. Any change in one's functional clock will * also affect other timer. */ #define CLKEVT 0 /* gpt0, channel0 as clockevent */ #define CLKSRC 1 /* gpt0, channel1 as clocksource */ /* Register offsets, x is channel number */ #define CR(x) ((x) * 0x80 + 0x80) #define IR(x) ((x) * 0x80 + 0x84) #define LOAD(x) ((x) * 0x80 + 0x88) #define COUNT(x) ((x) * 0x80 + 0x8C) /* Reg bit definitions */ #define CTRL_INT_ENABLE 0x0100 #define CTRL_ENABLE 0x0020 #define CTRL_ONE_SHOT 0x0010 #define CTRL_PRESCALER1 0x0 #define CTRL_PRESCALER2 0x1 #define CTRL_PRESCALER4 0x2 #define CTRL_PRESCALER8 0x3 #define CTRL_PRESCALER16 0x4 #define CTRL_PRESCALER32 0x5 #define CTRL_PRESCALER64 0x6 #define CTRL_PRESCALER128 0x7 #define CTRL_PRESCALER256 0x8 #define INT_STATUS 0x1 /* * Minimum clocksource/clockevent timer range in seconds */ #define SPEAR_MIN_RANGE 4 static __iomem void *gpt_base; static struct clk *gpt_clk; static void clockevent_set_mode(enum clock_event_mode mode, struct clock_event_device *clk_event_dev); static int clockevent_next_event(unsigned long evt, struct clock_event_device *clk_event_dev); static cycle_t clocksource_read_cycles(struct clocksource *cs) { return (cycle_t) readw(gpt_base + COUNT(CLKSRC)); } static struct clocksource clksrc = { .name = "tmr1", .rating = 200, /* its a pretty decent clock */ .read = clocksource_read_cycles, .mask = 0xFFFF, /* 16 bits */ .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void spear_clocksource_init(void) { u32 tick_rate; u16 val; /* program the prescaler (/256)*/ writew(CTRL_PRESCALER256, gpt_base + CR(CLKSRC)); /* find out actual clock driving Timer */ tick_rate = clk_get_rate(gpt_clk); tick_rate >>= CTRL_PRESCALER256; writew(0xFFFF, gpt_base + LOAD(CLKSRC)); val = readw(gpt_base + CR(CLKSRC)); val &= ~CTRL_ONE_SHOT; /* autoreload mode */ val |= CTRL_ENABLE ; writew(val, gpt_base + CR(CLKSRC)); /* register the clocksource */ clocksource_register_hz(&clksrc, tick_rate); } static struct clock_event_device clkevt = { .name = "tmr0", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = clockevent_set_mode, .set_next_event = clockevent_next_event, .shift = 0, /* to be computed */ }; static void clockevent_set_mode(enum clock_event_mode mode, struct clock_event_device *clk_event_dev) { u32 period; u16 val; /* stop the timer */ val = readw(gpt_base + CR(CLKEVT)); val &= ~CTRL_ENABLE; writew(val, gpt_base + CR(CLKEVT)); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: period = clk_get_rate(gpt_clk) / HZ; period >>= CTRL_PRESCALER16; writew(period, gpt_base + LOAD(CLKEVT)); val = readw(gpt_base + CR(CLKEVT)); val &= ~CTRL_ONE_SHOT; val |= CTRL_ENABLE | CTRL_INT_ENABLE; writew(val, gpt_base + CR(CLKEVT)); break; case CLOCK_EVT_MODE_ONESHOT: val = readw(gpt_base + CR(CLKEVT)); val |= CTRL_ONE_SHOT; writew(val, gpt_base + CR(CLKEVT)); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; default: pr_err("Invalid mode requested\n"); break; } } static int clockevent_next_event(unsigned long cycles, struct clock_event_device *clk_event_dev) { u16 val; writew(cycles, gpt_base + LOAD(CLKEVT)); val = readw(gpt_base + CR(CLKEVT)); val |= CTRL_ENABLE | CTRL_INT_ENABLE; writew(val, gpt_base + CR(CLKEVT)); return 0; } static irqreturn_t spear_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &clkevt; writew(INT_STATUS, gpt_base + IR(CLKEVT)); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction spear_timer_irq = { .name = "timer", .flags = IRQF_DISABLED | IRQF_TIMER, .handler = spear_timer_interrupt }; static void __init spear_clockevent_init(void) { u32 tick_rate; /* program the prescaler */ writew(CTRL_PRESCALER16, gpt_base + CR(CLKEVT)); tick_rate = clk_get_rate(gpt_clk); tick_rate >>= CTRL_PRESCALER16; clockevents_calc_mult_shift(&clkevt, tick_rate, SPEAR_MIN_RANGE); clkevt.max_delta_ns = clockevent_delta2ns(0xfff0, &clkevt); clkevt.min_delta_ns = clockevent_delta2ns(3, &clkevt); clkevt.cpumask = cpumask_of(0); clockevents_register_device(&clkevt); setup_irq(SPEAR_GPT0_CHAN0_IRQ, &spear_timer_irq); } void __init spear_setup_timer(void) { int ret; if (!request_mem_region(SPEAR_GPT0_BASE, SZ_1K, "gpt0")) { pr_err("%s:cannot get IO addr\n", __func__); return; } gpt_base = (void __iomem *)ioremap(SPEAR_GPT0_BASE, SZ_1K); if (!gpt_base) { pr_err("%s:ioremap failed for gpt\n", __func__); goto err_mem; } gpt_clk = clk_get_sys("gpt0", NULL); if (!gpt_clk) { pr_err("%s:couldn't get clk for gpt\n", __func__); goto err_iomap; } ret = clk_enable(gpt_clk); if (ret < 0) { pr_err("%s:couldn't enable gpt clock\n", __func__); goto err_clk; } spear_clockevent_init(); spear_clocksource_init(); return; err_clk: clk_put(gpt_clk); err_iomap: iounmap(gpt_base); err_mem: release_mem_region(SPEAR_GPT0_BASE, SZ_1K); }