/* * derived from linux/arch/arm/mach-versatile/core.c * linux/arch/arm/mach-bcmring/core.c * * Copyright (C) 1999 - 2003 ARM Limited * Copyright (C) 2000 Deep Blue Solutions Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Portions copyright Broadcom 2008 */ #include <linux/init.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/sysdev.h> #include <linux/interrupt.h> #include <linux/amba/bus.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/clkdev.h> #include <mach/csp/mm_addr.h> #include <mach/hardware.h> #include <linux/io.h> #include <asm/irq.h> #include <asm/hardware/arm_timer.h> #include <asm/mach-types.h> #include <asm/mach/arch.h> #include <asm/mach/flash.h> #include <asm/mach/irq.h> #include <asm/mach/time.h> #include <asm/mach/map.h> #include <cfg_global.h> #include "clock.h" #include <csp/secHw.h> #include <mach/csp/secHw_def.h> #include <mach/csp/chipcHw_inline.h> #include <mach/csp/tmrHw_reg.h> #define AMBA_DEVICE(name, initname, base, plat, size) \ static struct amba_device name##_device = { \ .dev = { \ .coherent_dma_mask = ~0, \ .init_name = initname, \ .platform_data = plat \ }, \ .res = { \ .start = MM_ADDR_IO_##base, \ .end = MM_ADDR_IO_##base + (size) - 1, \ .flags = IORESOURCE_MEM \ }, \ .dma_mask = ~0, \ .irq = { \ IRQ_##base \ } \ } AMBA_DEVICE(uartA, "uarta", UARTA, NULL, SZ_4K); AMBA_DEVICE(uartB, "uartb", UARTB, NULL, SZ_4K); static struct clk pll1_clk = { .name = "PLL1", .type = CLK_TYPE_PRIMARY | CLK_TYPE_PLL1, .rate_hz = 2000000000, .use_cnt = 7, }; static struct clk uart_clk = { .name = "UART", .type = CLK_TYPE_PROGRAMMABLE, .csp_id = chipcHw_CLOCK_UART, .rate_hz = HW_CFG_UART_CLK_HZ, .parent = &pll1_clk, }; static struct clk dummy_apb_pclk = { .name = "BUSCLK", .type = CLK_TYPE_PRIMARY, .mode = CLK_MODE_XTAL, }; static struct clk_lookup lookups[] = { { /* Bus clock */ .con_id = "apb_pclk", .clk = &dummy_apb_pclk, }, { /* UART0 */ .dev_id = "uarta", .clk = &uart_clk, }, { /* UART1 */ .dev_id = "uartb", .clk = &uart_clk, } }; static struct amba_device *amba_devs[] __initdata = { &uartA_device, &uartB_device, }; void __init bcmring_amba_init(void) { int i; u32 bus_clock; /* Linux is run initially in non-secure mode. Secure peripherals */ /* generate FIQ, and must be handled in secure mode. Until we have */ /* a linux security monitor implementation, keep everything in */ /* non-secure mode. */ chipcHw_busInterfaceClockEnable(chipcHw_REG_BUS_CLOCK_SPU); secHw_setUnsecure(secHw_BLK_MASK_CHIP_CONTROL | secHw_BLK_MASK_KEY_SCAN | secHw_BLK_MASK_TOUCH_SCREEN | secHw_BLK_MASK_UART0 | secHw_BLK_MASK_UART1 | secHw_BLK_MASK_WATCHDOG | secHw_BLK_MASK_SPUM | secHw_BLK_MASK_DDR2 | secHw_BLK_MASK_SPU | secHw_BLK_MASK_PKA | secHw_BLK_MASK_RNG | secHw_BLK_MASK_RTC | secHw_BLK_MASK_OTP | secHw_BLK_MASK_BOOT | secHw_BLK_MASK_MPU | secHw_BLK_MASK_TZCTRL | secHw_BLK_MASK_INTR); /* Only the devices attached to the AMBA bus are enabled just before the bus is */ /* scanned and the drivers are loaded. The clocks need to be on for the AMBA bus */ /* driver to access these blocks. The bus is probed, and the drivers are loaded. */ /* FIXME Need to remove enable of PIF once CLCD clock enable used properly in FPGA. */ bus_clock = chipcHw_REG_BUS_CLOCK_GE | chipcHw_REG_BUS_CLOCK_SDIO0 | chipcHw_REG_BUS_CLOCK_SDIO1; chipcHw_busInterfaceClockEnable(bus_clock); clkdev_add_table(lookups, ARRAY_SIZE(lookups)); for (i = 0; i < ARRAY_SIZE(amba_devs); i++) { struct amba_device *d = amba_devs[i]; amba_device_register(d, &iomem_resource); } } /* * Where is the timer (VA)? */ #define TIMER0_VA_BASE MM_IO_BASE_TMR #define TIMER1_VA_BASE (MM_IO_BASE_TMR + 0x20) #define TIMER2_VA_BASE (MM_IO_BASE_TMR + 0x40) #define TIMER3_VA_BASE (MM_IO_BASE_TMR + 0x60) /* Timer 0 - 25 MHz, Timer3 at bus clock rate, typically 150-166 MHz */ #if defined(CONFIG_ARCH_FPGA11107) /* fpga cpu/bus are currently 30 times slower so scale frequency as well to */ /* slow down Linux's sense of time */ #define TIMER0_FREQUENCY_MHZ (tmrHw_LOW_FREQUENCY_MHZ * 30) #define TIMER1_FREQUENCY_MHZ (tmrHw_LOW_FREQUENCY_MHZ * 30) #define TIMER3_FREQUENCY_MHZ (tmrHw_HIGH_FREQUENCY_MHZ * 30) #define TIMER3_FREQUENCY_KHZ (tmrHw_HIGH_FREQUENCY_HZ / 1000 * 30) #else #define TIMER0_FREQUENCY_MHZ tmrHw_LOW_FREQUENCY_MHZ #define TIMER1_FREQUENCY_MHZ tmrHw_LOW_FREQUENCY_MHZ #define TIMER3_FREQUENCY_MHZ tmrHw_HIGH_FREQUENCY_MHZ #define TIMER3_FREQUENCY_KHZ (tmrHw_HIGH_FREQUENCY_HZ / 1000) #endif #define TICKS_PER_uSEC TIMER0_FREQUENCY_MHZ /* * These are useconds NOT ticks. * */ #define mSEC_1 1000 #define mSEC_5 (mSEC_1 * 5) #define mSEC_10 (mSEC_1 * 10) #define mSEC_25 (mSEC_1 * 25) #define SEC_1 (mSEC_1 * 1000) /* * How long is the timer interval? */ #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10) #if TIMER_INTERVAL >= 0x100000 #define TIMER_RELOAD (TIMER_INTERVAL >> 8) #define TIMER_DIVISOR (TIMER_CTRL_DIV256) #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC) #elif TIMER_INTERVAL >= 0x10000 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */ #define TIMER_DIVISOR (TIMER_CTRL_DIV16) #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC) #else #define TIMER_RELOAD (TIMER_INTERVAL) #define TIMER_DIVISOR (TIMER_CTRL_DIV1) #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC) #endif static void timer_set_mode(enum clock_event_mode mode, struct clock_event_device *clk) { unsigned long ctrl; switch (mode) { case CLOCK_EVT_MODE_PERIODIC: writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD); ctrl = TIMER_CTRL_PERIODIC; ctrl |= TIMER_DIVISOR | TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE; break; case CLOCK_EVT_MODE_ONESHOT: /* period set, and timer enabled in 'next_event' hook */ ctrl = TIMER_CTRL_ONESHOT; ctrl |= TIMER_DIVISOR | TIMER_CTRL_32BIT | TIMER_CTRL_IE; break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: default: ctrl = 0; } writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL); } static int timer_set_next_event(unsigned long evt, struct clock_event_device *unused) { unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL); writel(evt, TIMER0_VA_BASE + TIMER_LOAD); writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL); return 0; } static struct clock_event_device timer0_clockevent = { .name = "timer0", .shift = 32, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = timer_set_mode, .set_next_event = timer_set_next_event, }; /* * IRQ handler for the timer */ static irqreturn_t bcmring_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &timer0_clockevent; writel(1, TIMER0_VA_BASE + TIMER_INTCLR); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction bcmring_timer_irq = { .name = "bcmring Timer Tick", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = bcmring_timer_interrupt, }; static cycle_t bcmring_get_cycles_timer1(struct clocksource *cs) { return ~readl(TIMER1_VA_BASE + TIMER_VALUE); } static cycle_t bcmring_get_cycles_timer3(struct clocksource *cs) { return ~readl(TIMER3_VA_BASE + TIMER_VALUE); } static struct clocksource clocksource_bcmring_timer1 = { .name = "timer1", .rating = 200, .read = bcmring_get_cycles_timer1, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct clocksource clocksource_bcmring_timer3 = { .name = "timer3", .rating = 100, .read = bcmring_get_cycles_timer3, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init bcmring_clocksource_init(void) { /* setup timer1 as free-running clocksource */ writel(0, TIMER1_VA_BASE + TIMER_CTRL); writel(0xffffffff, TIMER1_VA_BASE + TIMER_LOAD); writel(0xffffffff, TIMER1_VA_BASE + TIMER_VALUE); writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC, TIMER1_VA_BASE + TIMER_CTRL); clocksource_register_khz(&clocksource_bcmring_timer1, TIMER1_FREQUENCY_MHZ * 1000); /* setup timer3 as free-running clocksource */ writel(0, TIMER3_VA_BASE + TIMER_CTRL); writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD); writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE); writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC, TIMER3_VA_BASE + TIMER_CTRL); clocksource_register_khz(&clocksource_bcmring_timer3, TIMER3_FREQUENCY_KHZ); return 0; } /* * Set up timer interrupt, and return the current time in seconds. */ void __init bcmring_init_timer(void) { printk(KERN_INFO "bcmring_init_timer\n"); /* * Initialise to a known state (all timers off) */ writel(0, TIMER0_VA_BASE + TIMER_CTRL); writel(0, TIMER1_VA_BASE + TIMER_CTRL); writel(0, TIMER2_VA_BASE + TIMER_CTRL); writel(0, TIMER3_VA_BASE + TIMER_CTRL); /* * Make irqs happen for the system timer */ setup_irq(IRQ_TIMER0, &bcmring_timer_irq); bcmring_clocksource_init(); timer0_clockevent.mult = div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift); timer0_clockevent.max_delta_ns = clockevent_delta2ns(0xffffffff, &timer0_clockevent); timer0_clockevent.min_delta_ns = clockevent_delta2ns(0xf, &timer0_clockevent); timer0_clockevent.cpumask = cpumask_of(0); clockevents_register_device(&timer0_clockevent); } struct sys_timer bcmring_timer = { .init = bcmring_init_timer, };