/*
**
** Copyright 2017, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "scrypt_test"
#include <log/log.h>
#include <hardware/keymaster0.h>
#include <hardware/keymaster1.h>
#include <cstring>
#include <gtest/gtest.h>
#include "../cryptfs.h"
#include "../Keymaster.h"
#ifdef CONFIG_HW_DISK_ENCRYPTION
#include "cryptfs_hw.h"
#endif
#define min(a, b) ((a) < (b) ? (a) : (b))
/* Maximum allowed keymaster blob size. */
#define KEYMASTER_BLOB_SIZE 2048
/* Key Derivation Function algorithms */
#define KDF_PBKDF2 1
#define KDF_SCRYPT 2
/* Algorithms 3 & 4 deprecated before shipping outside of google, so removed */
#define KDF_SCRYPT_KEYMASTER 5
#define KEY_LEN_BYTES 16
#define DEFAULT_PASSWORD "default_password"
#define RSA_KEY_SIZE 2048
#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
#define RSA_EXPONENT 0x10001
#define KEYMASTER_CRYPTFS_RATE_LIMIT 1 // Maximum one try per second
static int keymaster_init(keymaster0_device_t **keymaster0_dev,
keymaster1_device_t **keymaster1_dev)
{
int rc;
const hw_module_t* mod;
rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
if (rc) {
ALOGE("could not find any keystore module");
goto err;
}
SLOGI("keymaster module name is %s", mod->name);
SLOGI("keymaster version is %d", mod->module_api_version);
*keymaster0_dev = NULL;
*keymaster1_dev = NULL;
if (mod->module_api_version == KEYMASTER_MODULE_API_VERSION_1_0) {
SLOGI("Found keymaster1 module, using keymaster1 API.");
rc = keymaster1_open(mod, keymaster1_dev);
} else {
SLOGI("Found keymaster0 module, using keymaster0 API.");
rc = keymaster0_open(mod, keymaster0_dev);
}
if (rc) {
ALOGE("could not open keymaster device in %s (%s)",
KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
goto err;
}
return 0;
err:
*keymaster0_dev = NULL;
*keymaster1_dev = NULL;
return rc;
}
/* Should we use keymaster? */
static int keymaster_check_compatibility_old()
{
keymaster0_device_t *keymaster0_dev = 0;
keymaster1_device_t *keymaster1_dev = 0;
int rc = 0;
if (keymaster_init(&keymaster0_dev, &keymaster1_dev)) {
SLOGE("Failed to init keymaster");
rc = -1;
goto out;
}
if (keymaster1_dev) {
rc = 1;
goto out;
}
if (!keymaster0_dev || !keymaster0_dev->common.module) {
rc = -1;
goto out;
}
// TODO(swillden): Check to see if there's any reason to require v0.3. I think v0.1 and v0.2
// should work.
if (keymaster0_dev->common.module->module_api_version
< KEYMASTER_MODULE_API_VERSION_0_3) {
rc = 0;
goto out;
}
if (!(keymaster0_dev->flags & KEYMASTER_SOFTWARE_ONLY) &&
(keymaster0_dev->flags & KEYMASTER_BLOBS_ARE_STANDALONE)) {
rc = 1;
}
out:
if (keymaster1_dev) {
keymaster1_close(keymaster1_dev);
}
if (keymaster0_dev) {
keymaster0_close(keymaster0_dev);
}
return rc;
}
/* Create a new keymaster key and store it in this footer */
static int keymaster_create_key_old(struct crypt_mnt_ftr *ftr)
{
uint8_t* key = 0;
keymaster0_device_t *keymaster0_dev = 0;
keymaster1_device_t *keymaster1_dev = 0;
if (ftr->keymaster_blob_size) {
SLOGI("Already have key");
return 0;
}
if (keymaster_init(&keymaster0_dev, &keymaster1_dev)) {
SLOGE("Failed to init keymaster");
return -1;
}
int rc = 0;
size_t key_size = 0;
if (keymaster1_dev) {
keymaster_key_param_t params[] = {
/* Algorithm & size specifications. Stick with RSA for now. Switch to AES later. */
keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_RSA),
keymaster_param_int(KM_TAG_KEY_SIZE, RSA_KEY_SIZE),
keymaster_param_long(KM_TAG_RSA_PUBLIC_EXPONENT, RSA_EXPONENT),
/* The only allowed purpose for this key is signing. */
keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_SIGN),
/* Padding & digest specifications. */
keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE),
keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE),
/* Require that the key be usable in standalone mode. File system isn't available. */
keymaster_param_enum(KM_TAG_BLOB_USAGE_REQUIREMENTS, KM_BLOB_STANDALONE),
/* No auth requirements, because cryptfs is not yet integrated with gatekeeper. */
keymaster_param_bool(KM_TAG_NO_AUTH_REQUIRED),
/* Rate-limit key usage attempts, to rate-limit brute force */
keymaster_param_int(KM_TAG_MIN_SECONDS_BETWEEN_OPS, KEYMASTER_CRYPTFS_RATE_LIMIT),
};
keymaster_key_param_set_t param_set = { params, sizeof(params)/sizeof(*params) };
keymaster_key_blob_t key_blob;
keymaster_error_t error = keymaster1_dev->generate_key(keymaster1_dev, ¶m_set,
&key_blob,
NULL /* characteristics */);
if (error != KM_ERROR_OK) {
SLOGE("Failed to generate keymaster1 key, error %d", error);
rc = -1;
goto out;
}
key = (uint8_t*)key_blob.key_material;
key_size = key_blob.key_material_size;
}
else if (keymaster0_dev) {
keymaster_rsa_keygen_params_t params;
memset(¶ms, '\0', sizeof(params));
params.public_exponent = RSA_EXPONENT;
params.modulus_size = RSA_KEY_SIZE;
if (keymaster0_dev->generate_keypair(keymaster0_dev, TYPE_RSA, ¶ms,
&key, &key_size)) {
SLOGE("Failed to generate keypair");
rc = -1;
goto out;
}
} else {
SLOGE("Cryptfs bug: keymaster_init succeeded but didn't initialize a device");
rc = -1;
goto out;
}
if (key_size > KEYMASTER_BLOB_SIZE) {
SLOGE("Keymaster key too large for crypto footer");
rc = -1;
goto out;
}
memcpy(ftr->keymaster_blob, key, key_size);
ftr->keymaster_blob_size = key_size;
out:
if (keymaster0_dev)
keymaster0_close(keymaster0_dev);
if (keymaster1_dev)
keymaster1_close(keymaster1_dev);
free(key);
return rc;
}
/* This signs the given object using the keymaster key. */
static int keymaster_sign_object_old(struct crypt_mnt_ftr *ftr,
const unsigned char *object,
const size_t object_size,
unsigned char **signature,
size_t *signature_size)
{
int rc = 0;
keymaster0_device_t *keymaster0_dev = 0;
keymaster1_device_t *keymaster1_dev = 0;
unsigned char to_sign[RSA_KEY_SIZE_BYTES];
size_t to_sign_size = sizeof(to_sign);
memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
if (keymaster_init(&keymaster0_dev, &keymaster1_dev)) {
SLOGE("Failed to init keymaster");
rc = -1;
goto out;
}
// To sign a message with RSA, the message must satisfy two
// constraints:
//
// 1. The message, when interpreted as a big-endian numeric value, must
// be strictly less than the public modulus of the RSA key. Note
// that because the most significant bit of the public modulus is
// guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
// key), an n-bit message with most significant bit 0 always
// satisfies this requirement.
//
// 2. The message must have the same length in bits as the public
// modulus of the RSA key. This requirement isn't mathematically
// necessary, but is necessary to ensure consistency in
// implementations.
switch (ftr->kdf_type) {
case KDF_SCRYPT_KEYMASTER:
// This ensures the most significant byte of the signed message
// is zero. We could have zero-padded to the left instead, but
// this approach is slightly more robust against changes in
// object size. However, it's still broken (but not unusably
// so) because we really should be using a proper deterministic
// RSA padding function, such as PKCS1.
memcpy(to_sign + 1, object, min(RSA_KEY_SIZE_BYTES - 1, object_size));
SLOGI("Signing safely-padded object");
break;
default:
SLOGE("Unknown KDF type %d", ftr->kdf_type);
rc = -1;
goto out;
}
if (keymaster0_dev) {
keymaster_rsa_sign_params_t params;
params.digest_type = DIGEST_NONE;
params.padding_type = PADDING_NONE;
rc = keymaster0_dev->sign_data(keymaster0_dev,
¶ms,
ftr->keymaster_blob,
ftr->keymaster_blob_size,
to_sign,
to_sign_size,
signature,
signature_size);
goto out;
} else if (keymaster1_dev) {
keymaster_key_blob_t key = { ftr->keymaster_blob, ftr->keymaster_blob_size };
keymaster_key_param_t params[] = {
keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE),
keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE),
};
keymaster_key_param_set_t param_set = { params, sizeof(params)/sizeof(*params) };
keymaster_operation_handle_t op_handle;
keymaster_error_t error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key,
¶m_set, NULL /* out_params */,
&op_handle);
if (error == KM_ERROR_KEY_RATE_LIMIT_EXCEEDED) {
// Key usage has been rate-limited. Wait a bit and try again.
sleep(KEYMASTER_CRYPTFS_RATE_LIMIT);
error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key,
¶m_set, NULL /* out_params */,
&op_handle);
}
if (error != KM_ERROR_OK) {
SLOGE("Error starting keymaster signature transaction: %d", error);
rc = -1;
goto out;
}
keymaster_blob_t input = { to_sign, to_sign_size };
size_t input_consumed;
error = keymaster1_dev->update(keymaster1_dev, op_handle, NULL /* in_params */,
&input, &input_consumed, NULL /* out_params */,
NULL /* output */);
if (error != KM_ERROR_OK) {
SLOGE("Error sending data to keymaster signature transaction: %d", error);
rc = -1;
goto out;
}
if (input_consumed != to_sign_size) {
// This should never happen. If it does, it's a bug in the keymaster implementation.
SLOGE("Keymaster update() did not consume all data.");
keymaster1_dev->abort(keymaster1_dev, op_handle);
rc = -1;
goto out;
}
keymaster_blob_t tmp_sig;
error = keymaster1_dev->finish(keymaster1_dev, op_handle, NULL /* in_params */,
NULL /* verify signature */, NULL /* out_params */,
&tmp_sig);
if (error != KM_ERROR_OK) {
SLOGE("Error finishing keymaster signature transaction: %d", error);
rc = -1;
goto out;
}
*signature = (uint8_t*)tmp_sig.data;
*signature_size = tmp_sig.data_length;
} else {
SLOGE("Cryptfs bug: keymaster_init succeded but didn't initialize a device.");
rc = -1;
goto out;
}
out:
if (keymaster1_dev)
keymaster1_close(keymaster1_dev);
if (keymaster0_dev)
keymaster0_close(keymaster0_dev);
return rc;
}
/* Should we use keymaster? */
static int keymaster_check_compatibility_new()
{
return keymaster_compatibility_cryptfs_scrypt();
}
#if 0
/* Create a new keymaster key and store it in this footer */
static int keymaster_create_key_new(struct crypt_mnt_ftr *ftr)
{
if (ftr->keymaster_blob_size) {
SLOGI("Already have key");
return 0;
}
int rc = keymaster_create_key_for_cryptfs_scrypt(RSA_KEY_SIZE, RSA_EXPONENT,
KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE,
&ftr->keymaster_blob_size);
if (rc) {
if (ftr->keymaster_blob_size > KEYMASTER_BLOB_SIZE) {
SLOGE("Keymaster key blob to large)");
ftr->keymaster_blob_size = 0;
}
SLOGE("Failed to generate keypair");
return -1;
}
return 0;
}
#endif
/* This signs the given object using the keymaster key. */
static int keymaster_sign_object_new(struct crypt_mnt_ftr *ftr,
const unsigned char *object,
const size_t object_size,
unsigned char **signature,
size_t *signature_size)
{
unsigned char to_sign[RSA_KEY_SIZE_BYTES];
size_t to_sign_size = sizeof(to_sign);
memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
// To sign a message with RSA, the message must satisfy two
// constraints:
//
// 1. The message, when interpreted as a big-endian numeric value, must
// be strictly less than the public modulus of the RSA key. Note
// that because the most significant bit of the public modulus is
// guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
// key), an n-bit message with most significant bit 0 always
// satisfies this requirement.
//
// 2. The message must have the same length in bits as the public
// modulus of the RSA key. This requirement isn't mathematically
// necessary, but is necessary to ensure consistency in
// implementations.
switch (ftr->kdf_type) {
case KDF_SCRYPT_KEYMASTER:
// This ensures the most significant byte of the signed message
// is zero. We could have zero-padded to the left instead, but
// this approach is slightly more robust against changes in
// object size. However, it's still broken (but not unusably
// so) because we really should be using a proper deterministic
// RSA padding function, such as PKCS1.
memcpy(to_sign + 1, object, min(RSA_KEY_SIZE_BYTES - 1, object_size));
SLOGI("Signing safely-padded object");
break;
default:
SLOGE("Unknown KDF type %d", ftr->kdf_type);
return -1;
}
if (keymaster_sign_object_for_cryptfs_scrypt(
ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign,
to_sign_size, signature, signature_size) != KeymasterSignResult::ok)
return -1;
return 0;
}
namespace android {
class CryptFsTest : public testing::Test {
protected:
virtual void SetUp() {
}
virtual void TearDown() {
}
};
TEST_F(CryptFsTest, ScryptHidlizationEquivalenceTest) {
crypt_mnt_ftr ftr;
ftr.kdf_type = KDF_SCRYPT_KEYMASTER;
ftr.keymaster_blob_size = 0;
ASSERT_EQ(0, keymaster_create_key_old(&ftr));
uint8_t *sig1 = nullptr;
uint8_t *sig2 = nullptr;
size_t sig_size1 = 123456789;
size_t sig_size2 = 123456789;
uint8_t object[] = "the object";
ASSERT_EQ(1, keymaster_check_compatibility_old());
ASSERT_EQ(1, keymaster_check_compatibility_new());
ASSERT_EQ(0, keymaster_sign_object_old(&ftr, object, 10, &sig1, &sig_size1));
ASSERT_EQ(0, keymaster_sign_object_new(&ftr, object, 10, &sig2, &sig_size2));
ASSERT_EQ(sig_size1, sig_size2);
ASSERT_NE(nullptr, sig1);
ASSERT_NE(nullptr, sig2);
EXPECT_EQ(0, memcmp(sig1, sig2, sig_size1));
free(sig1);
free(sig2);
}
}