//
// Copyright (C) 2012 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "update_engine/payload_consumer/delta_performer.h"
#include <inttypes.h>
#include <sys/mount.h>
#include <algorithm>
#include <string>
#include <vector>
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <google/protobuf/repeated_field.h>
#include <gtest/gtest.h>
#include <openssl/pem.h>
#include "update_engine/common/constants.h"
#include "update_engine/common/fake_boot_control.h"
#include "update_engine/common/fake_hardware.h"
#include "update_engine/common/mock_prefs.h"
#include "update_engine/common/test_utils.h"
#include "update_engine/common/utils.h"
#include "update_engine/payload_consumer/mock_download_action.h"
#include "update_engine/payload_consumer/payload_constants.h"
#include "update_engine/payload_consumer/payload_verifier.h"
#include "update_engine/payload_generator/delta_diff_generator.h"
#include "update_engine/payload_generator/payload_signer.h"
#include "update_engine/update_metadata.pb.h"
namespace chromeos_update_engine {
using std::string;
using std::vector;
using test_utils::GetBuildArtifactsPath;
using test_utils::ScopedLoopMounter;
using test_utils::System;
using test_utils::kRandomString;
using testing::Return;
using testing::_;
extern const char* kUnittestPrivateKeyPath;
extern const char* kUnittestPublicKeyPath;
extern const char* kUnittestPrivateKey2Path;
extern const char* kUnittestPublicKey2Path;
static const uint32_t kDefaultKernelSize = 4096; // Something small for a test
static const uint8_t kNewData[] = {'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
'n', 'e', 'w', ' ', 'd', 'a', 't', 'a', '.'};
namespace {
struct DeltaState {
string a_img;
string b_img;
string result_img;
size_t image_size;
string delta_path;
uint64_t metadata_size;
string old_kernel;
brillo::Blob old_kernel_data;
string new_kernel;
brillo::Blob new_kernel_data;
string result_kernel;
brillo::Blob result_kernel_data;
size_t kernel_size;
// The InstallPlan referenced by the DeltaPerformer. This needs to outlive
// the DeltaPerformer.
InstallPlan install_plan;
// The in-memory copy of delta file.
brillo::Blob delta;
// Mock and fake instances used by the delta performer.
FakeBootControl fake_boot_control_;
FakeHardware fake_hardware_;
MockDownloadActionDelegate mock_delegate_;
};
enum SignatureTest {
kSignatureNone, // No payload signing.
kSignatureGenerator, // Sign the payload at generation time.
kSignatureGenerated, // Sign the payload after it's generated.
kSignatureGeneratedPlaceholder, // Insert placeholder signatures, then real.
kSignatureGeneratedPlaceholderMismatch, // Insert a wrong sized placeholder.
kSignatureGeneratedShell, // Sign the generated payload through shell cmds.
kSignatureGeneratedShellBadKey, // Sign with a bad key through shell cmds.
kSignatureGeneratedShellRotateCl1, // Rotate key, test client v1
kSignatureGeneratedShellRotateCl2, // Rotate key, test client v2
};
enum OperationHashTest {
kInvalidOperationData,
kValidOperationData,
};
} // namespace
class DeltaPerformerIntegrationTest : public ::testing::Test {
public:
static void SetSupportedVersion(DeltaPerformer* performer,
uint64_t minor_version) {
performer->supported_minor_version_ = minor_version;
}
};
static void CompareFilesByBlock(const string& a_file, const string& b_file,
size_t image_size) {
EXPECT_EQ(0U, image_size % kBlockSize);
brillo::Blob a_data, b_data;
EXPECT_TRUE(utils::ReadFile(a_file, &a_data)) << "file failed: " << a_file;
EXPECT_TRUE(utils::ReadFile(b_file, &b_data)) << "file failed: " << b_file;
EXPECT_GE(a_data.size(), image_size);
EXPECT_GE(b_data.size(), image_size);
for (size_t i = 0; i < image_size; i += kBlockSize) {
EXPECT_EQ(0U, i % kBlockSize);
brillo::Blob a_sub(&a_data[i], &a_data[i + kBlockSize]);
brillo::Blob b_sub(&b_data[i], &b_data[i + kBlockSize]);
EXPECT_TRUE(a_sub == b_sub) << "Block " << (i/kBlockSize) << " differs";
}
if (::testing::Test::HasNonfatalFailure()) {
LOG(INFO) << "Compared filesystems with size " << image_size
<< ", partition A " << a_file << " size: " << a_data.size()
<< ", partition B " << b_file << " size: " << b_data.size();
}
}
static bool WriteSparseFile(const string& path, off_t size) {
int fd = open(path.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644);
TEST_AND_RETURN_FALSE_ERRNO(fd >= 0);
ScopedFdCloser fd_closer(&fd);
off_t rc = lseek(fd, size + 1, SEEK_SET);
TEST_AND_RETURN_FALSE_ERRNO(rc != static_cast<off_t>(-1));
int return_code = ftruncate(fd, size);
TEST_AND_RETURN_FALSE_ERRNO(return_code == 0);
return true;
}
static bool WriteByteAtOffset(const string& path, off_t offset) {
int fd = open(path.c_str(), O_CREAT | O_WRONLY, 0644);
TEST_AND_RETURN_FALSE_ERRNO(fd >= 0);
ScopedFdCloser fd_closer(&fd);
EXPECT_TRUE(utils::PWriteAll(fd, "\0", 1, offset));
return true;
}
static size_t GetSignatureSize(const string& private_key_path) {
const brillo::Blob data(1, 'x');
brillo::Blob hash;
EXPECT_TRUE(HashCalculator::RawHashOfData(data, &hash));
brillo::Blob signature;
EXPECT_TRUE(PayloadSigner::SignHash(hash,
private_key_path,
&signature));
return signature.size();
}
static bool InsertSignaturePlaceholder(int signature_size,
const string& payload_path,
uint64_t* out_metadata_size) {
vector<brillo::Blob> signatures;
signatures.push_back(brillo::Blob(signature_size, 0));
return PayloadSigner::AddSignatureToPayload(
payload_path,
signatures,
{},
payload_path,
out_metadata_size);
}
static void SignGeneratedPayload(const string& payload_path,
uint64_t* out_metadata_size) {
string private_key_path = GetBuildArtifactsPath(kUnittestPrivateKeyPath);
int signature_size = GetSignatureSize(private_key_path);
brillo::Blob hash;
ASSERT_TRUE(PayloadSigner::HashPayloadForSigning(
payload_path, {signature_size}, &hash, nullptr));
brillo::Blob signature;
ASSERT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature));
ASSERT_TRUE(PayloadSigner::AddSignatureToPayload(
payload_path, {signature}, {}, payload_path, out_metadata_size));
EXPECT_TRUE(PayloadSigner::VerifySignedPayload(
payload_path, GetBuildArtifactsPath(kUnittestPublicKeyPath)));
}
static void SignGeneratedShellPayload(SignatureTest signature_test,
const string& payload_path) {
string private_key_path = GetBuildArtifactsPath(kUnittestPrivateKeyPath);
if (signature_test == kSignatureGeneratedShellBadKey) {
ASSERT_TRUE(utils::MakeTempFile("key.XXXXXX",
&private_key_path,
nullptr));
} else {
ASSERT_TRUE(signature_test == kSignatureGeneratedShell ||
signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2);
}
ScopedPathUnlinker key_unlinker(private_key_path);
key_unlinker.set_should_remove(signature_test ==
kSignatureGeneratedShellBadKey);
// Generates a new private key that will not match the public key.
if (signature_test == kSignatureGeneratedShellBadKey) {
LOG(INFO) << "Generating a mismatched private key.";
// The code below executes the equivalent of:
// openssl genrsa -out <private_key_path> 2048
RSA* rsa = RSA_new();
BIGNUM* e = BN_new();
EXPECT_EQ(1, BN_set_word(e, RSA_F4));
EXPECT_EQ(1, RSA_generate_key_ex(rsa, 2048, e, nullptr));
BN_free(e);
FILE* fprikey = fopen(private_key_path.c_str(), "w");
EXPECT_NE(nullptr, fprikey);
EXPECT_EQ(1,
PEM_write_RSAPrivateKey(
fprikey, rsa, nullptr, nullptr, 0, nullptr, nullptr));
fclose(fprikey);
RSA_free(rsa);
}
int signature_size = GetSignatureSize(private_key_path);
string hash_file;
ASSERT_TRUE(utils::MakeTempFile("hash.XXXXXX", &hash_file, nullptr));
ScopedPathUnlinker hash_unlinker(hash_file);
string signature_size_string;
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2)
signature_size_string = base::StringPrintf("%d:%d",
signature_size, signature_size);
else
signature_size_string = base::StringPrintf("%d", signature_size);
string delta_generator_path = GetBuildArtifactsPath("delta_generator");
ASSERT_EQ(0,
System(base::StringPrintf(
"%s -in_file=%s -signature_size=%s -out_hash_file=%s",
delta_generator_path.c_str(),
payload_path.c_str(),
signature_size_string.c_str(),
hash_file.c_str())));
// Sign the hash
brillo::Blob hash, signature;
ASSERT_TRUE(utils::ReadFile(hash_file, &hash));
ASSERT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature));
string sig_file;
ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file, nullptr));
ScopedPathUnlinker sig_unlinker(sig_file);
ASSERT_TRUE(test_utils::WriteFileVector(sig_file, signature));
string sig_file2;
ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file2, nullptr));
ScopedPathUnlinker sig2_unlinker(sig_file2);
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2) {
ASSERT_TRUE(PayloadSigner::SignHash(
hash, GetBuildArtifactsPath(kUnittestPrivateKey2Path), &signature));
ASSERT_TRUE(test_utils::WriteFileVector(sig_file2, signature));
// Append second sig file to first path
sig_file += ":" + sig_file2;
}
ASSERT_EQ(0,
System(base::StringPrintf(
"%s -in_file=%s -signature_file=%s -out_file=%s",
delta_generator_path.c_str(),
payload_path.c_str(),
sig_file.c_str(),
payload_path.c_str())));
int verify_result = System(base::StringPrintf(
"%s -in_file=%s -public_key=%s -public_key_version=%d",
delta_generator_path.c_str(),
payload_path.c_str(),
(signature_test == kSignatureGeneratedShellRotateCl2
? GetBuildArtifactsPath(kUnittestPublicKey2Path)
: GetBuildArtifactsPath(kUnittestPublicKeyPath))
.c_str(),
signature_test == kSignatureGeneratedShellRotateCl2 ? 2 : 1));
if (signature_test == kSignatureGeneratedShellBadKey) {
ASSERT_NE(0, verify_result);
} else {
ASSERT_EQ(0, verify_result);
}
}
static void GenerateDeltaFile(bool full_kernel,
bool full_rootfs,
bool noop,
ssize_t chunk_size,
SignatureTest signature_test,
DeltaState *state,
uint32_t minor_version) {
EXPECT_TRUE(utils::MakeTempFile("a_img.XXXXXX", &state->a_img, nullptr));
EXPECT_TRUE(utils::MakeTempFile("b_img.XXXXXX", &state->b_img, nullptr));
// result_img is used in minor version 2. Instead of applying the update
// in-place on A, we apply it to a new image, result_img.
EXPECT_TRUE(
utils::MakeTempFile("result_img.XXXXXX", &state->result_img, nullptr));
EXPECT_TRUE(
base::CopyFile(GetBuildArtifactsPath().Append("gen/disk_ext2_4k.img"),
base::FilePath(state->a_img)));
state->image_size = utils::FileSize(state->a_img);
// Create ImageInfo A & B
ImageInfo old_image_info;
ImageInfo new_image_info;
if (!full_rootfs) {
old_image_info.set_channel("src-channel");
old_image_info.set_board("src-board");
old_image_info.set_version("src-version");
old_image_info.set_key("src-key");
old_image_info.set_build_channel("src-build-channel");
old_image_info.set_build_version("src-build-version");
}
new_image_info.set_channel("test-channel");
new_image_info.set_board("test-board");
new_image_info.set_version("test-version");
new_image_info.set_key("test-key");
new_image_info.set_build_channel("test-build-channel");
new_image_info.set_build_version("test-build-version");
// Make some changes to the A image.
{
string a_mnt;
ScopedLoopMounter b_mounter(state->a_img, &a_mnt, 0);
brillo::Blob hardtocompress;
while (hardtocompress.size() < 3 * kBlockSize) {
hardtocompress.insert(hardtocompress.end(),
std::begin(kRandomString), std::end(kRandomString));
}
EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress",
a_mnt.c_str()).c_str(),
hardtocompress.data(),
hardtocompress.size()));
brillo::Blob zeros(16 * 1024, 0);
EXPECT_EQ(static_cast<int>(zeros.size()),
base::WriteFile(base::FilePath(base::StringPrintf(
"%s/move-to-sparse", a_mnt.c_str())),
reinterpret_cast<const char*>(zeros.data()),
zeros.size()));
EXPECT_TRUE(
WriteSparseFile(base::StringPrintf("%s/move-from-sparse",
a_mnt.c_str()), 16 * 1024));
EXPECT_TRUE(WriteByteAtOffset(
base::StringPrintf("%s/move-semi-sparse", a_mnt.c_str()), 4096));
// Write 1 MiB of 0xff to try to catch the case where writing a bsdiff
// patch fails to zero out the final block.
brillo::Blob ones(1024 * 1024, 0xff);
EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/ones",
a_mnt.c_str()).c_str(),
ones.data(),
ones.size()));
}
if (noop) {
EXPECT_TRUE(base::CopyFile(base::FilePath(state->a_img),
base::FilePath(state->b_img)));
old_image_info = new_image_info;
} else {
if (minor_version == kSourceMinorPayloadVersion) {
// Create a result image with image_size bytes of garbage.
brillo::Blob ones(state->image_size, 0xff);
EXPECT_TRUE(utils::WriteFile(state->result_img.c_str(),
ones.data(),
ones.size()));
EXPECT_EQ(utils::FileSize(state->a_img),
utils::FileSize(state->result_img));
}
EXPECT_TRUE(
base::CopyFile(GetBuildArtifactsPath().Append("gen/disk_ext2_4k.img"),
base::FilePath(state->b_img)));
// Make some changes to the B image.
string b_mnt;
ScopedLoopMounter b_mounter(state->b_img, &b_mnt, 0);
base::FilePath mnt_path(b_mnt);
EXPECT_TRUE(base::CopyFile(mnt_path.Append("regular-small"),
mnt_path.Append("regular-small2")));
EXPECT_TRUE(base::DeleteFile(mnt_path.Append("regular-small"), false));
EXPECT_TRUE(base::Move(mnt_path.Append("regular-small2"),
mnt_path.Append("regular-small")));
EXPECT_TRUE(
test_utils::WriteFileString(mnt_path.Append("foo").value(), "foo"));
EXPECT_EQ(0, base::WriteFile(mnt_path.Append("emptyfile"), "", 0));
EXPECT_TRUE(
WriteSparseFile(mnt_path.Append("fullsparse").value(), 1024 * 1024));
EXPECT_TRUE(
WriteSparseFile(mnt_path.Append("move-to-sparse").value(), 16 * 1024));
brillo::Blob zeros(16 * 1024, 0);
EXPECT_EQ(static_cast<int>(zeros.size()),
base::WriteFile(mnt_path.Append("move-from-sparse"),
reinterpret_cast<const char*>(zeros.data()),
zeros.size()));
EXPECT_TRUE(
WriteByteAtOffset(mnt_path.Append("move-semi-sparse").value(), 4096));
EXPECT_TRUE(WriteByteAtOffset(mnt_path.Append("partsparse").value(), 4096));
EXPECT_TRUE(
base::CopyFile(mnt_path.Append("regular-16k"), mnt_path.Append("tmp")));
EXPECT_TRUE(base::Move(mnt_path.Append("tmp"),
mnt_path.Append("link-hard-regular-16k")));
EXPECT_TRUE(base::DeleteFile(mnt_path.Append("link-short_symlink"), false));
EXPECT_TRUE(test_utils::WriteFileString(
mnt_path.Append("link-short_symlink").value(), "foobar"));
brillo::Blob hardtocompress;
while (hardtocompress.size() < 3 * kBlockSize) {
hardtocompress.insert(hardtocompress.end(),
std::begin(kRandomString), std::end(kRandomString));
}
EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress",
b_mnt.c_str()).c_str(),
hardtocompress.data(),
hardtocompress.size()));
}
string old_kernel;
EXPECT_TRUE(utils::MakeTempFile("old_kernel.XXXXXX",
&state->old_kernel,
nullptr));
string new_kernel;
EXPECT_TRUE(utils::MakeTempFile("new_kernel.XXXXXX",
&state->new_kernel,
nullptr));
string result_kernel;
EXPECT_TRUE(utils::MakeTempFile("result_kernel.XXXXXX",
&state->result_kernel,
nullptr));
state->kernel_size = kDefaultKernelSize;
state->old_kernel_data.resize(kDefaultKernelSize);
state->new_kernel_data.resize(state->old_kernel_data.size());
state->result_kernel_data.resize(state->old_kernel_data.size());
test_utils::FillWithData(&state->old_kernel_data);
test_utils::FillWithData(&state->new_kernel_data);
test_utils::FillWithData(&state->result_kernel_data);
// change the new kernel data
std::copy(std::begin(kNewData), std::end(kNewData),
state->new_kernel_data.begin());
if (noop) {
state->old_kernel_data = state->new_kernel_data;
}
// Write kernels to disk
EXPECT_TRUE(utils::WriteFile(state->old_kernel.c_str(),
state->old_kernel_data.data(),
state->old_kernel_data.size()));
EXPECT_TRUE(utils::WriteFile(state->new_kernel.c_str(),
state->new_kernel_data.data(),
state->new_kernel_data.size()));
EXPECT_TRUE(utils::WriteFile(state->result_kernel.c_str(),
state->result_kernel_data.data(),
state->result_kernel_data.size()));
EXPECT_TRUE(utils::MakeTempFile("delta.XXXXXX",
&state->delta_path,
nullptr));
LOG(INFO) << "delta path: " << state->delta_path;
{
const string private_key =
signature_test == kSignatureGenerator
? GetBuildArtifactsPath(kUnittestPrivateKeyPath)
: "";
PayloadGenerationConfig payload_config;
payload_config.is_delta = !full_rootfs;
payload_config.hard_chunk_size = chunk_size;
payload_config.rootfs_partition_size = kRootFSPartitionSize;
payload_config.version.major = kChromeOSMajorPayloadVersion;
payload_config.version.minor = minor_version;
if (!full_rootfs) {
payload_config.source.partitions.emplace_back(kLegacyPartitionNameRoot);
payload_config.source.partitions.emplace_back(kLegacyPartitionNameKernel);
payload_config.source.partitions.front().path = state->a_img;
if (!full_kernel)
payload_config.source.partitions.back().path = state->old_kernel;
payload_config.source.image_info = old_image_info;
EXPECT_TRUE(payload_config.source.LoadImageSize());
for (PartitionConfig& part : payload_config.source.partitions)
EXPECT_TRUE(part.OpenFilesystem());
} else {
if (payload_config.hard_chunk_size == -1)
// Use 1 MiB chunk size for the full unittests.
payload_config.hard_chunk_size = 1024 * 1024;
}
payload_config.target.partitions.emplace_back(kLegacyPartitionNameRoot);
payload_config.target.partitions.back().path = state->b_img;
payload_config.target.partitions.emplace_back(kLegacyPartitionNameKernel);
payload_config.target.partitions.back().path = state->new_kernel;
payload_config.target.image_info = new_image_info;
EXPECT_TRUE(payload_config.target.LoadImageSize());
for (PartitionConfig& part : payload_config.target.partitions)
EXPECT_TRUE(part.OpenFilesystem());
EXPECT_TRUE(payload_config.Validate());
EXPECT_TRUE(
GenerateUpdatePayloadFile(
payload_config,
state->delta_path,
private_key,
&state->metadata_size));
}
// Extend the "partitions" holding the file system a bit.
EXPECT_EQ(0, HANDLE_EINTR(truncate(state->a_img.c_str(),
state->image_size + 1024 * 1024)));
EXPECT_EQ(static_cast<off_t>(state->image_size + 1024 * 1024),
utils::FileSize(state->a_img));
EXPECT_EQ(0, HANDLE_EINTR(truncate(state->b_img.c_str(),
state->image_size + 1024 * 1024)));
EXPECT_EQ(static_cast<off_t>(state->image_size + 1024 * 1024),
utils::FileSize(state->b_img));
if (signature_test == kSignatureGeneratedPlaceholder ||
signature_test == kSignatureGeneratedPlaceholderMismatch) {
int signature_size =
GetSignatureSize(GetBuildArtifactsPath(kUnittestPrivateKeyPath));
LOG(INFO) << "Inserting placeholder signature.";
ASSERT_TRUE(InsertSignaturePlaceholder(signature_size, state->delta_path,
&state->metadata_size));
if (signature_test == kSignatureGeneratedPlaceholderMismatch) {
signature_size -= 1;
LOG(INFO) << "Inserting mismatched placeholder signature.";
ASSERT_FALSE(InsertSignaturePlaceholder(signature_size, state->delta_path,
&state->metadata_size));
return;
}
}
if (signature_test == kSignatureGenerated ||
signature_test == kSignatureGeneratedPlaceholder ||
signature_test == kSignatureGeneratedPlaceholderMismatch) {
// Generate the signed payload and update the metadata size in state to
// reflect the new size after adding the signature operation to the
// manifest.
LOG(INFO) << "Signing payload.";
SignGeneratedPayload(state->delta_path, &state->metadata_size);
} else if (signature_test == kSignatureGeneratedShell ||
signature_test == kSignatureGeneratedShellBadKey ||
signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2) {
SignGeneratedShellPayload(signature_test, state->delta_path);
}
}
static void ApplyDeltaFile(bool full_kernel, bool full_rootfs, bool noop,
SignatureTest signature_test, DeltaState* state,
bool hash_checks_mandatory,
OperationHashTest op_hash_test,
DeltaPerformer** performer,
uint32_t minor_version) {
// Check the metadata.
{
DeltaArchiveManifest manifest;
EXPECT_TRUE(PayloadSigner::LoadPayloadMetadata(state->delta_path,
nullptr,
&manifest,
nullptr,
&state->metadata_size,
nullptr));
LOG(INFO) << "Metadata size: " << state->metadata_size;
EXPECT_TRUE(utils::ReadFile(state->delta_path, &state->delta));
if (signature_test == kSignatureNone) {
EXPECT_FALSE(manifest.has_signatures_offset());
EXPECT_FALSE(manifest.has_signatures_size());
} else {
EXPECT_TRUE(manifest.has_signatures_offset());
EXPECT_TRUE(manifest.has_signatures_size());
Signatures sigs_message;
EXPECT_TRUE(sigs_message.ParseFromArray(
&state->delta[state->metadata_size + manifest.signatures_offset()],
manifest.signatures_size()));
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2)
EXPECT_EQ(2, sigs_message.signatures_size());
else
EXPECT_EQ(1, sigs_message.signatures_size());
const Signatures_Signature& signature = sigs_message.signatures(0);
EXPECT_EQ(1U, signature.version());
uint64_t expected_sig_data_length = 0;
vector<string> key_paths{GetBuildArtifactsPath(kUnittestPrivateKeyPath)};
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
signature_test == kSignatureGeneratedShellRotateCl2) {
key_paths.push_back(GetBuildArtifactsPath(kUnittestPrivateKey2Path));
}
EXPECT_TRUE(PayloadSigner::SignatureBlobLength(
key_paths,
&expected_sig_data_length));
EXPECT_EQ(expected_sig_data_length, manifest.signatures_size());
EXPECT_FALSE(signature.data().empty());
}
if (noop) {
EXPECT_EQ(0, manifest.install_operations_size());
EXPECT_EQ(1, manifest.kernel_install_operations_size());
}
if (full_kernel) {
EXPECT_FALSE(manifest.has_old_kernel_info());
} else {
EXPECT_EQ(state->old_kernel_data.size(),
manifest.old_kernel_info().size());
EXPECT_FALSE(manifest.old_kernel_info().hash().empty());
}
EXPECT_EQ(manifest.new_image_info().channel(), "test-channel");
EXPECT_EQ(manifest.new_image_info().board(), "test-board");
EXPECT_EQ(manifest.new_image_info().version(), "test-version");
EXPECT_EQ(manifest.new_image_info().key(), "test-key");
EXPECT_EQ(manifest.new_image_info().build_channel(), "test-build-channel");
EXPECT_EQ(manifest.new_image_info().build_version(), "test-build-version");
if (!full_rootfs) {
if (noop) {
EXPECT_EQ(manifest.old_image_info().channel(), "test-channel");
EXPECT_EQ(manifest.old_image_info().board(), "test-board");
EXPECT_EQ(manifest.old_image_info().version(), "test-version");
EXPECT_EQ(manifest.old_image_info().key(), "test-key");
EXPECT_EQ(manifest.old_image_info().build_channel(),
"test-build-channel");
EXPECT_EQ(manifest.old_image_info().build_version(),
"test-build-version");
} else {
EXPECT_EQ(manifest.old_image_info().channel(), "src-channel");
EXPECT_EQ(manifest.old_image_info().board(), "src-board");
EXPECT_EQ(manifest.old_image_info().version(), "src-version");
EXPECT_EQ(manifest.old_image_info().key(), "src-key");
EXPECT_EQ(manifest.old_image_info().build_channel(),
"src-build-channel");
EXPECT_EQ(manifest.old_image_info().build_version(),
"src-build-version");
}
}
if (full_rootfs) {
EXPECT_FALSE(manifest.has_old_rootfs_info());
EXPECT_FALSE(manifest.has_old_image_info());
EXPECT_TRUE(manifest.has_new_image_info());
} else {
EXPECT_EQ(state->image_size, manifest.old_rootfs_info().size());
EXPECT_FALSE(manifest.old_rootfs_info().hash().empty());
}
EXPECT_EQ(state->new_kernel_data.size(), manifest.new_kernel_info().size());
EXPECT_EQ(state->image_size, manifest.new_rootfs_info().size());
EXPECT_FALSE(manifest.new_kernel_info().hash().empty());
EXPECT_FALSE(manifest.new_rootfs_info().hash().empty());
}
MockPrefs prefs;
EXPECT_CALL(prefs, SetInt64(kPrefsManifestMetadataSize,
state->metadata_size)).WillOnce(Return(true));
EXPECT_CALL(prefs, SetInt64(kPrefsManifestSignatureSize, 0))
.WillOnce(Return(true));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextOperation, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, GetInt64(kPrefsUpdateStateNextOperation, _))
.WillOnce(Return(false));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataOffset, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataLength, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSHA256Context, _))
.WillRepeatedly(Return(true));
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignedSHA256Context, _))
.WillRepeatedly(Return(true));
if (op_hash_test == kValidOperationData && signature_test != kSignatureNone) {
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignatureBlob, _))
.WillOnce(Return(true));
}
EXPECT_CALL(state->mock_delegate_, ShouldCancel(_))
.WillRepeatedly(Return(false));
// Update the A image in place.
InstallPlan* install_plan = &state->install_plan;
install_plan->hash_checks_mandatory = hash_checks_mandatory;
install_plan->payloads = {{.metadata_size = state->metadata_size,
.type = (full_kernel && full_rootfs)
? InstallPayloadType::kFull
: InstallPayloadType::kDelta}};
install_plan->source_slot = 0;
install_plan->target_slot = 1;
InstallPlan::Partition root_part;
root_part.name = kLegacyPartitionNameRoot;
InstallPlan::Partition kernel_part;
kernel_part.name = kLegacyPartitionNameKernel;
LOG(INFO) << "Setting payload metadata size in Omaha = "
<< state->metadata_size;
ASSERT_TRUE(PayloadSigner::GetMetadataSignature(
state->delta.data(),
state->metadata_size,
GetBuildArtifactsPath(kUnittestPrivateKeyPath),
&install_plan->payloads[0].metadata_signature));
EXPECT_FALSE(install_plan->payloads[0].metadata_signature.empty());
*performer = new DeltaPerformer(&prefs,
&state->fake_boot_control_,
&state->fake_hardware_,
&state->mock_delegate_,
install_plan,
&install_plan->payloads[0],
false /* is_interactive */);
string public_key_path = GetBuildArtifactsPath(kUnittestPublicKeyPath);
EXPECT_TRUE(utils::FileExists(public_key_path.c_str()));
(*performer)->set_public_key_path(public_key_path);
DeltaPerformerIntegrationTest::SetSupportedVersion(*performer, minor_version);
EXPECT_EQ(static_cast<off_t>(state->image_size),
HashCalculator::RawHashOfFile(
state->a_img,
state->image_size,
&root_part.source_hash));
EXPECT_TRUE(HashCalculator::RawHashOfData(
state->old_kernel_data,
&kernel_part.source_hash));
// The partitions should be empty before DeltaPerformer.
install_plan->partitions.clear();
// With minor version 2, we want the target to be the new image, result_img,
// but with version 1, we want to update A in place.
string target_root, target_kernel;
if (minor_version == kSourceMinorPayloadVersion) {
target_root = state->result_img;
target_kernel = state->result_kernel;
} else {
target_root = state->a_img;
target_kernel = state->old_kernel;
}
state->fake_boot_control_.SetPartitionDevice(
kLegacyPartitionNameRoot, install_plan->source_slot, state->a_img);
state->fake_boot_control_.SetPartitionDevice(
kLegacyPartitionNameKernel, install_plan->source_slot, state->old_kernel);
state->fake_boot_control_.SetPartitionDevice(
kLegacyPartitionNameRoot, install_plan->target_slot, target_root);
state->fake_boot_control_.SetPartitionDevice(
kLegacyPartitionNameKernel, install_plan->target_slot, target_kernel);
ErrorCode expected_error, actual_error;
bool continue_writing;
switch (op_hash_test) {
case kInvalidOperationData: {
// Muck with some random offset post the metadata size so that
// some operation hash will result in a mismatch.
int some_offset = state->metadata_size + 300;
LOG(INFO) << "Tampered value at offset: " << some_offset;
state->delta[some_offset]++;
expected_error = ErrorCode::kDownloadOperationHashMismatch;
continue_writing = false;
break;
}
case kValidOperationData:
default:
// no change.
expected_error = ErrorCode::kSuccess;
continue_writing = true;
break;
}
// Write at some number of bytes per operation. Arbitrarily chose 5.
const size_t kBytesPerWrite = 5;
for (size_t i = 0; i < state->delta.size(); i += kBytesPerWrite) {
size_t count = std::min(state->delta.size() - i, kBytesPerWrite);
bool write_succeeded = ((*performer)->Write(&state->delta[i],
count,
&actual_error));
// Normally write_succeeded should be true every time and
// actual_error should be ErrorCode::kSuccess. If so, continue the loop.
// But if we seeded an operation hash error above, then write_succeeded
// will be false. The failure may happen at any operation n. So, all
// Writes until n-1 should succeed and the nth operation will fail with
// actual_error. In this case, we should bail out of the loop because
// we cannot proceed applying the delta.
if (!write_succeeded) {
LOG(INFO) << "Write failed. Checking if it failed with expected error";
EXPECT_EQ(expected_error, actual_error);
if (!continue_writing) {
LOG(INFO) << "Cannot continue writing. Bailing out.";
break;
}
}
EXPECT_EQ(ErrorCode::kSuccess, actual_error);
}
// If we had continued all the way through, Close should succeed.
// Otherwise, it should fail. Check appropriately.
bool close_result = (*performer)->Close();
if (continue_writing)
EXPECT_EQ(0, close_result);
else
EXPECT_LE(0, close_result);
}
void VerifyPayloadResult(DeltaPerformer* performer,
DeltaState* state,
ErrorCode expected_result,
uint32_t minor_version) {
if (!performer) {
EXPECT_TRUE(!"Skipping payload verification since performer is null.");
return;
}
int expected_times = (expected_result == ErrorCode::kSuccess) ? 1 : 0;
EXPECT_CALL(state->mock_delegate_, DownloadComplete()).Times(expected_times);
LOG(INFO) << "Verifying payload for expected result " << expected_result;
brillo::Blob expected_hash;
HashCalculator::RawHashOfData(state->delta, &expected_hash);
EXPECT_EQ(expected_result,
performer->VerifyPayload(expected_hash, state->delta.size()));
LOG(INFO) << "Verified payload.";
if (expected_result != ErrorCode::kSuccess) {
// no need to verify new partition if VerifyPayload failed.
return;
}
brillo::Blob updated_kernel_partition;
if (minor_version == kSourceMinorPayloadVersion) {
CompareFilesByBlock(state->result_kernel, state->new_kernel,
state->kernel_size);
CompareFilesByBlock(state->result_img, state->b_img,
state->image_size);
EXPECT_TRUE(utils::ReadFile(state->result_kernel,
&updated_kernel_partition));
} else {
CompareFilesByBlock(state->old_kernel, state->new_kernel,
state->kernel_size);
CompareFilesByBlock(state->a_img, state->b_img,
state->image_size);
EXPECT_TRUE(utils::ReadFile(state->old_kernel, &updated_kernel_partition));
}
ASSERT_GE(updated_kernel_partition.size(), arraysize(kNewData));
EXPECT_TRUE(std::equal(std::begin(kNewData), std::end(kNewData),
updated_kernel_partition.begin()));
const auto& partitions = state->install_plan.partitions;
EXPECT_EQ(2U, partitions.size());
EXPECT_EQ(kLegacyPartitionNameRoot, partitions[0].name);
EXPECT_EQ(kLegacyPartitionNameKernel, partitions[1].name);
EXPECT_EQ(kDefaultKernelSize, partitions[1].target_size);
brillo::Blob expected_new_kernel_hash;
EXPECT_TRUE(HashCalculator::RawHashOfData(state->new_kernel_data,
&expected_new_kernel_hash));
EXPECT_EQ(expected_new_kernel_hash, partitions[1].target_hash);
EXPECT_EQ(state->image_size, partitions[0].target_size);
brillo::Blob expected_new_rootfs_hash;
EXPECT_EQ(static_cast<off_t>(state->image_size),
HashCalculator::RawHashOfFile(state->b_img,
state->image_size,
&expected_new_rootfs_hash));
EXPECT_EQ(expected_new_rootfs_hash, partitions[0].target_hash);
}
void VerifyPayload(DeltaPerformer* performer,
DeltaState* state,
SignatureTest signature_test,
uint32_t minor_version) {
ErrorCode expected_result = ErrorCode::kSuccess;
switch (signature_test) {
case kSignatureNone:
expected_result = ErrorCode::kSignedDeltaPayloadExpectedError;
break;
case kSignatureGeneratedShellBadKey:
expected_result = ErrorCode::kDownloadPayloadPubKeyVerificationError;
break;
default: break; // appease gcc
}
VerifyPayloadResult(performer, state, expected_result, minor_version);
}
void DoSmallImageTest(bool full_kernel, bool full_rootfs, bool noop,
ssize_t chunk_size,
SignatureTest signature_test,
bool hash_checks_mandatory, uint32_t minor_version) {
DeltaState state;
DeltaPerformer *performer = nullptr;
GenerateDeltaFile(full_kernel, full_rootfs, noop, chunk_size,
signature_test, &state, minor_version);
ScopedPathUnlinker a_img_unlinker(state.a_img);
ScopedPathUnlinker b_img_unlinker(state.b_img);
ScopedPathUnlinker new_img_unlinker(state.result_img);
ScopedPathUnlinker delta_unlinker(state.delta_path);
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
ScopedPathUnlinker result_kernel_unlinker(state.result_kernel);
ApplyDeltaFile(full_kernel, full_rootfs, noop, signature_test,
&state, hash_checks_mandatory, kValidOperationData,
&performer, minor_version);
VerifyPayload(performer, &state, signature_test, minor_version);
delete performer;
}
void DoOperationHashMismatchTest(OperationHashTest op_hash_test,
bool hash_checks_mandatory) {
DeltaState state;
uint64_t minor_version = kFullPayloadMinorVersion;
GenerateDeltaFile(true, true, false, -1, kSignatureGenerated, &state,
minor_version);
ScopedPathUnlinker a_img_unlinker(state.a_img);
ScopedPathUnlinker b_img_unlinker(state.b_img);
ScopedPathUnlinker delta_unlinker(state.delta_path);
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
DeltaPerformer *performer = nullptr;
ApplyDeltaFile(true, true, false, kSignatureGenerated, &state,
hash_checks_mandatory, op_hash_test, &performer,
minor_version);
delete performer;
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGenerator,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignaturePlaceholderTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedPlaceholder,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignaturePlaceholderMismatchTest) {
DeltaState state;
GenerateDeltaFile(false, false, false, -1,
kSignatureGeneratedPlaceholderMismatch, &state,
kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageChunksTest) {
DoSmallImageTest(false, false, false, kBlockSize, kSignatureGenerator,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootFullKernelSmallImageTest) {
DoSmallImageTest(true, false, false, -1, kSignatureGenerator,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootFullSmallImageTest) {
DoSmallImageTest(true, true, false, -1, kSignatureGenerator,
true, kFullPayloadMinorVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootNoopSmallImageTest) {
DoSmallImageTest(false, false, true, -1, kSignatureGenerator,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignNoneTest) {
DoSmallImageTest(false, false, false, -1, kSignatureNone,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGenerated,
true, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShell,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellBadKeyTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellBadKey,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellRotateCl1Test) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl1,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellRotateCl2Test) {
DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl2,
false, kInPlaceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSourceOpsTest) {
DoSmallImageTest(false, false, false, -1, kSignatureGenerator,
false, kSourceMinorPayloadVersion);
}
TEST(DeltaPerformerIntegrationTest, RunAsRootMandatoryOperationHashMismatchTest) {
DoOperationHashMismatchTest(kInvalidOperationData, true);
}
} // namespace chromeos_update_engine