/*
** Copyright 2011, The Android Open-Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "echo_reference"
#include <errno.h>
#include <inttypes.h>
#include <pthread.h>
#include <stdlib.h>
#include <log/log.h>
#include <system/audio.h>
#include <audio_utils/resampler.h>
#include <audio_utils/echo_reference.h>
// echo reference state: bit field indicating if read, write or both are active.
enum state {
ECHOREF_IDLE = 0x00, // idle
ECHOREF_READING = 0x01, // reading is active
ECHOREF_WRITING = 0x02 // writing is active
};
struct echo_reference {
struct echo_reference_itfe itfe;
int status; // init status
uint32_t state; // active state: reading, writing or both
audio_format_t rd_format; // read sample format
uint32_t rd_channel_count; // read number of channels
uint32_t rd_sampling_rate; // read sampling rate in Hz
size_t rd_frame_size; // read frame size (bytes per sample)
audio_format_t wr_format; // write sample format
uint32_t wr_channel_count; // write number of channels
uint32_t wr_sampling_rate; // write sampling rate in Hz
size_t wr_frame_size; // write frame size (bytes per sample)
void *buffer; // main buffer
size_t buf_size; // main buffer size in frames
size_t frames_in; // number of frames in main buffer
void *wr_buf; // buffer for input conversions
size_t wr_buf_size; // size of conversion buffer in frames
size_t wr_frames_in; // number of frames in conversion buffer
size_t wr_curr_frame_size; // number of frames given to current write() function
void *wr_src_buf; // resampler input buf (either wr_buf or buffer used by write())
struct timespec wr_render_time; // latest render time indicated by write()
// default ALSA gettimeofday() format
int32_t playback_delay; // playback buffer delay indicated by last write()
int16_t prev_delta_sign; // sign of previous delay difference:
// 1: positive, -1: negative, 0: unknown
uint16_t delta_count; // number of consecutive delay differences with same sign
pthread_mutex_t lock; // mutex protecting read/write concurrency
pthread_cond_t cond; // condition signaled when data is ready to read
struct resampler_itfe *resampler; // input resampler
struct resampler_buffer_provider provider; // resampler buffer provider
};
int echo_reference_get_next_buffer(struct resampler_buffer_provider *buffer_provider,
struct resampler_buffer* buffer)
{
struct echo_reference *er;
if (buffer_provider == NULL) {
return -EINVAL;
}
er = (struct echo_reference *)((char *)buffer_provider -
offsetof(struct echo_reference, provider));
if (er->wr_src_buf == NULL || er->wr_frames_in == 0) {
buffer->raw = NULL;
buffer->frame_count = 0;
return -ENODATA;
}
buffer->frame_count = (buffer->frame_count > er->wr_frames_in) ?
er->wr_frames_in : buffer->frame_count;
// this is er->rd_channel_count here as we resample after stereo to mono conversion if any
buffer->i16 = (int16_t *)er->wr_src_buf + (er->wr_curr_frame_size - er->wr_frames_in) *
er->rd_channel_count;
return 0;
}
void echo_reference_release_buffer(struct resampler_buffer_provider *buffer_provider,
struct resampler_buffer* buffer)
{
struct echo_reference *er;
if (buffer_provider == NULL) {
return;
}
er = (struct echo_reference *)((char *)buffer_provider -
offsetof(struct echo_reference, provider));
er->wr_frames_in -= buffer->frame_count;
}
static void echo_reference_reset_l(struct echo_reference *er)
{
ALOGV("echo_reference_reset_l()");
free(er->buffer);
er->buffer = NULL;
er->buf_size = 0;
er->frames_in = 0;
free(er->wr_buf);
er->wr_buf = NULL;
er->wr_buf_size = 0;
er->wr_render_time.tv_sec = 0;
er->wr_render_time.tv_nsec = 0;
er->delta_count = 0;
er->prev_delta_sign = 0;
}
/* additional space in resampler buffer allowing for extra samples to be returned
* by speex resampler when sample rates ratio is not an integer.
*/
#define RESAMPLER_HEADROOM_SAMPLES 10
static int echo_reference_write(struct echo_reference_itfe *echo_reference,
struct echo_reference_buffer *buffer)
{
struct echo_reference *er = (struct echo_reference *)echo_reference;
int status = 0;
if (er == NULL) {
return -EINVAL;
}
pthread_mutex_lock(&er->lock);
if (buffer == NULL) {
ALOGV("echo_reference_write() stop write");
er->state &= ~ECHOREF_WRITING;
echo_reference_reset_l(er);
goto exit;
}
ALOGV("echo_reference_write() START trying to write %zu frames", buffer->frame_count);
ALOGV("echo_reference_write() playbackTimestamp:[%d].[%d], er->playback_delay:[%" PRId32 "]",
(int)buffer->time_stamp.tv_sec,
(int)buffer->time_stamp.tv_nsec, er->playback_delay);
//ALOGV("echo_reference_write() %d frames", buffer->frame_count);
// discard writes until a valid time stamp is provided.
if ((buffer->time_stamp.tv_sec == 0) && (buffer->time_stamp.tv_nsec == 0) &&
(er->wr_render_time.tv_sec == 0) && (er->wr_render_time.tv_nsec == 0)) {
goto exit;
}
if ((er->state & ECHOREF_WRITING) == 0) {
ALOGV("echo_reference_write() start write");
if (er->resampler != NULL) {
er->resampler->reset(er->resampler);
}
er->state |= ECHOREF_WRITING;
}
if ((er->state & ECHOREF_READING) == 0) {
goto exit;
}
er->wr_render_time.tv_sec = buffer->time_stamp.tv_sec;
er->wr_render_time.tv_nsec = buffer->time_stamp.tv_nsec;
er->playback_delay = buffer->delay_ns;
// this will be used in the get_next_buffer, to support variable input buffer sizes
er->wr_curr_frame_size = buffer->frame_count;
void *srcBuf;
size_t inFrames;
// do stereo to mono and down sampling if necessary
if (er->rd_channel_count != er->wr_channel_count ||
er->rd_sampling_rate != er->wr_sampling_rate) {
size_t wrBufSize = buffer->frame_count;
inFrames = buffer->frame_count;
if (er->rd_sampling_rate != er->wr_sampling_rate) {
inFrames = (buffer->frame_count * er->rd_sampling_rate) / er->wr_sampling_rate +
RESAMPLER_HEADROOM_SAMPLES;
// wr_buf is not only used as resampler output but also for stereo to mono conversion
// output so buffer size is driven by both write and read sample rates
if (inFrames > wrBufSize) {
wrBufSize = inFrames;
}
}
if (er->wr_buf_size < wrBufSize) {
ALOGV("echo_reference_write() increasing write buffer size from %zu to %zu",
er->wr_buf_size, wrBufSize);
er->wr_buf_size = wrBufSize;
er->wr_buf = realloc(er->wr_buf, er->wr_buf_size * er->rd_frame_size);
}
if (er->rd_channel_count != er->wr_channel_count) {
// must be stereo to mono
int16_t *src16 = (int16_t *)buffer->raw;
int16_t *dst16 = (int16_t *)er->wr_buf;
size_t frames = buffer->frame_count;
while (frames--) {
*dst16++ = (int16_t)(((int32_t)*src16 + (int32_t)*(src16 + 1)) >> 1);
src16 += 2;
}
}
if (er->wr_sampling_rate != er->rd_sampling_rate) {
if (er->resampler == NULL) {
int rc;
ALOGV("echo_reference_write() new ReSampler(%d, %d)",
er->wr_sampling_rate, er->rd_sampling_rate);
er->provider.get_next_buffer = echo_reference_get_next_buffer;
er->provider.release_buffer = echo_reference_release_buffer;
rc = create_resampler(er->wr_sampling_rate,
er->rd_sampling_rate,
er->rd_channel_count,
RESAMPLER_QUALITY_DEFAULT,
&er->provider,
&er->resampler);
if (rc != 0) {
er->resampler = NULL;
ALOGV("echo_reference_write() failure to create resampler %d", rc);
status = -ENODEV;
goto exit;
}
}
// er->wr_src_buf and er->wr_frames_in are used by getNexBuffer() called by the
// resampler to get new frames
if (er->rd_channel_count != er->wr_channel_count) {
er->wr_src_buf = er->wr_buf;
} else {
er->wr_src_buf = buffer->raw;
}
er->wr_frames_in = buffer->frame_count;
// inFrames is always more than we need here to get frames remaining from previous runs
// inFrames is updated by resample() with the number of frames produced
ALOGV("echo_reference_write() ReSampling(%d, %d)",
er->wr_sampling_rate, er->rd_sampling_rate);
er->resampler->resample_from_provider(er->resampler,
(int16_t *)er->wr_buf, &inFrames);
ALOGV_IF(er->wr_frames_in != 0,
"echo_reference_write() er->wr_frames_in not 0 (%d) after resampler",
er->wr_frames_in);
}
srcBuf = er->wr_buf;
} else {
inFrames = buffer->frame_count;
srcBuf = buffer->raw;
}
if (er->frames_in + inFrames > er->buf_size) {
ALOGV("echo_reference_write() increasing buffer size from %zu to %zu",
er->buf_size, er->frames_in + inFrames);
er->buf_size = er->frames_in + inFrames;
er->buffer = realloc(er->buffer, er->buf_size * er->rd_frame_size);
}
memcpy((char *)er->buffer + er->frames_in * er->rd_frame_size,
srcBuf,
inFrames * er->rd_frame_size);
er->frames_in += inFrames;
ALOGV("echo_reference_write() frames written:[%zu], frames total:[%zu] buffer size:[%zu]\n"
" er->wr_render_time:[%d].[%d], er->playback_delay:[%" PRId32 "]",
inFrames, er->frames_in, er->buf_size,
(int)er->wr_render_time.tv_sec, (int)er->wr_render_time.tv_nsec, er->playback_delay);
pthread_cond_signal(&er->cond);
exit:
pthread_mutex_unlock(&er->lock);
ALOGV("echo_reference_write() END");
return status;
}
// delay jump threshold to update ref buffer: 6 samples at 8kHz in nsecs
#define MIN_DELAY_DELTA_NS (375000*2)
// number of consecutive delta with same sign between expected and actual delay before adjusting
// the buffer
#define MIN_DELTA_NUM 4
static int echo_reference_read(struct echo_reference_itfe *echo_reference,
struct echo_reference_buffer *buffer)
{
struct echo_reference *er = (struct echo_reference *)echo_reference;
if (er == NULL) {
return -EINVAL;
}
pthread_mutex_lock(&er->lock);
if (buffer == NULL) {
ALOGV("echo_reference_read() stop read");
er->state &= ~ECHOREF_READING;
goto exit;
}
ALOGV("echo_reference_read() START, delayCapture:[%" PRId32 "], "
"er->frames_in:[%zu],buffer->frame_count:[%zu]",
buffer->delay_ns, er->frames_in, buffer->frame_count);
if ((er->state & ECHOREF_READING) == 0) {
ALOGV("echo_reference_read() start read");
echo_reference_reset_l(er);
er->state |= ECHOREF_READING;
}
if ((er->state & ECHOREF_WRITING) == 0) {
memset(buffer->raw, 0, er->rd_frame_size * buffer->frame_count);
buffer->delay_ns = 0;
goto exit;
}
// ALOGV("echo_reference_read() %d frames", buffer->frame_count);
// allow some time for new frames to arrive if not enough frames are ready for read
if (er->frames_in < buffer->frame_count) {
uint32_t timeoutMs = (uint32_t)((1000 * buffer->frame_count) / er->rd_sampling_rate / 2);
struct timespec ts = {0, 0};
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += timeoutMs/1000;
ts.tv_nsec += (timeoutMs%1000) * 1000000;
if (ts.tv_nsec >= 1000000000) {
ts.tv_nsec -= 1000000000;
ts.tv_sec += 1;
}
pthread_cond_timedwait(&er->cond, &er->lock, &ts);
ALOGV_IF((er->frames_in < buffer->frame_count),
"echo_reference_read() waited %d ms but still not enough frames"\
" er->frames_in: %d, buffer->frame_count = %d",
timeoutMs, er->frames_in, buffer->frame_count);
}
int64_t timeDiff;
struct timespec tmp;
if ((er->wr_render_time.tv_sec == 0 && er->wr_render_time.tv_nsec == 0) ||
(buffer->time_stamp.tv_sec == 0 && buffer->time_stamp.tv_nsec == 0)) {
ALOGV("echo_reference_read(): NEW:timestamp is zero---------setting timeDiff = 0, "\
"not updating delay this time");
timeDiff = 0;
} else {
if (buffer->time_stamp.tv_nsec < er->wr_render_time.tv_nsec) {
tmp.tv_sec = buffer->time_stamp.tv_sec - er->wr_render_time.tv_sec - 1;
tmp.tv_nsec = 1000000000 + buffer->time_stamp.tv_nsec - er->wr_render_time.tv_nsec;
} else {
tmp.tv_sec = buffer->time_stamp.tv_sec - er->wr_render_time.tv_sec;
tmp.tv_nsec = buffer->time_stamp.tv_nsec - er->wr_render_time.tv_nsec;
}
timeDiff = (((int64_t)tmp.tv_sec * 1000000000 + tmp.tv_nsec));
int64_t expectedDelayNs = er->playback_delay + buffer->delay_ns - timeDiff;
if (er->resampler != NULL) {
// Resampler already compensates part of the delay
int32_t rsmp_delay = er->resampler->delay_ns(er->resampler);
expectedDelayNs -= rsmp_delay;
}
ALOGV("echo_reference_read(): expectedDelayNs[%" PRId64 "] = "
"er->playback_delay[%" PRId32 "] + delayCapture[%" PRId32
"] - timeDiff[%" PRId64 "]",
expectedDelayNs, er->playback_delay, buffer->delay_ns, timeDiff);
if (expectedDelayNs > 0) {
int64_t delayNs = ((int64_t)er->frames_in * 1000000000) / er->rd_sampling_rate;
int64_t deltaNs = delayNs - expectedDelayNs;
ALOGV("echo_reference_read(): EchoPathDelayDeviation between reference and DMA [%"
PRId64 "]", deltaNs);
if (llabs(deltaNs) >= MIN_DELAY_DELTA_NS) {
// smooth the variation and update the reference buffer only
// if a deviation in the same direction is observed for more than MIN_DELTA_NUM
// consecutive reads.
int16_t delay_sign = (deltaNs >= 0) ? 1 : -1;
if (delay_sign == er->prev_delta_sign) {
er->delta_count++;
} else {
er->delta_count = 1;
}
er->prev_delta_sign = delay_sign;
if (er->delta_count > MIN_DELTA_NUM) {
size_t previousFrameIn = er->frames_in;
er->frames_in = (size_t)((expectedDelayNs * er->rd_sampling_rate)/1000000000);
int offset = er->frames_in - previousFrameIn;
ALOGV("echo_reference_read(): deltaNs ENOUGH and %s: "
"er->frames_in: %zu, previousFrameIn = %zu",
delay_sign ? "positive" : "negative", er->frames_in, previousFrameIn);
if (deltaNs < 0) {
// Less data available in the reference buffer than expected
if (er->frames_in > er->buf_size) {
er->buf_size = er->frames_in;
er->buffer = realloc(er->buffer, er->buf_size * er->rd_frame_size);
ALOGV("echo_reference_read(): increasing buffer size to %zu",
er->buf_size);
}
if (offset > 0) {
memset((char *)er->buffer + previousFrameIn * er->rd_frame_size,
0, offset * er->rd_frame_size);
ALOGV("echo_reference_read(): pushing ref buffer by [%d]", offset);
}
} else {
// More data available in the reference buffer than expected
offset = -offset;
if (offset > 0) {
memcpy(er->buffer, (char *)er->buffer + (offset * er->rd_frame_size),
er->frames_in * er->rd_frame_size);
ALOGV("echo_reference_read(): shifting ref buffer by [%zu]",
er->frames_in);
}
}
}
} else {
er->delta_count = 0;
er->prev_delta_sign = 0;
ALOGV("echo_reference_read(): Constant EchoPathDelay - difference "
"between reference and DMA %" PRId64, deltaNs);
}
} else {
ALOGV("echo_reference_read(): NEGATIVE expectedDelayNs[%" PRId64
"] = er->playback_delay[%" PRId32 "] + delayCapture[%" PRId32
"] - timeDiff[%" PRId64 "]",
expectedDelayNs, er->playback_delay, buffer->delay_ns, timeDiff);
}
}
if (er->frames_in < buffer->frame_count) {
if (buffer->frame_count > er->buf_size) {
er->buf_size = buffer->frame_count;
er->buffer = realloc(er->buffer, er->buf_size * er->rd_frame_size);
ALOGV("echo_reference_read(): increasing buffer size to %zu", er->buf_size);
}
// filling up the reference buffer with 0s to match the expected delay.
memset((char *)er->buffer + er->frames_in * er->rd_frame_size,
0, (buffer->frame_count - er->frames_in) * er->rd_frame_size);
er->frames_in = buffer->frame_count;
}
memcpy(buffer->raw,
(char *)er->buffer,
buffer->frame_count * er->rd_frame_size);
er->frames_in -= buffer->frame_count;
memcpy(er->buffer,
(char *)er->buffer + buffer->frame_count * er->rd_frame_size,
er->frames_in * er->rd_frame_size);
// As the reference buffer is now time aligned to the microphone signal there is a zero delay
buffer->delay_ns = 0;
ALOGV("echo_reference_read() END %zu frames, total frames in %zu",
buffer->frame_count, er->frames_in);
pthread_cond_signal(&er->cond);
exit:
pthread_mutex_unlock(&er->lock);
return 0;
}
int create_echo_reference(audio_format_t rdFormat,
uint32_t rdChannelCount,
uint32_t rdSamplingRate,
audio_format_t wrFormat,
uint32_t wrChannelCount,
uint32_t wrSamplingRate,
struct echo_reference_itfe **echo_reference)
{
struct echo_reference *er;
ALOGV("create_echo_reference()");
if (echo_reference == NULL) {
return -EINVAL;
}
*echo_reference = NULL;
if (rdFormat != AUDIO_FORMAT_PCM_16_BIT ||
rdFormat != wrFormat) {
ALOGW("create_echo_reference bad format rd %d, wr %d", rdFormat, wrFormat);
return -EINVAL;
}
if ((rdChannelCount != 1 && rdChannelCount != 2) ||
wrChannelCount != 2) {
ALOGW("create_echo_reference bad channel count rd %d, wr %d", rdChannelCount,
wrChannelCount);
return -EINVAL;
}
er = (struct echo_reference *)calloc(1, sizeof(struct echo_reference));
er->itfe.read = echo_reference_read;
er->itfe.write = echo_reference_write;
er->state = ECHOREF_IDLE;
er->rd_format = rdFormat;
er->rd_channel_count = rdChannelCount;
er->rd_sampling_rate = rdSamplingRate;
er->wr_format = wrFormat;
er->wr_channel_count = wrChannelCount;
er->wr_sampling_rate = wrSamplingRate;
er->rd_frame_size = audio_bytes_per_sample(rdFormat) * rdChannelCount;
er->wr_frame_size = audio_bytes_per_sample(wrFormat) * wrChannelCount;
*echo_reference = &er->itfe;
return 0;
}
void release_echo_reference(struct echo_reference_itfe *echo_reference) {
struct echo_reference *er = (struct echo_reference *)echo_reference;
if (er == NULL) {
return;
}
ALOGV("EchoReference dstor");
echo_reference_reset_l(er);
if (er->resampler != NULL) {
release_resampler(er->resampler);
}
free(er);
}