/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <libgen.h>
#include <signal.h>
#include <sys/prctl.h>
#include <sys/utsname.h>
#include <time.h>
#include <unistd.h>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/logging.h>
#include <android-base/file.h>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/test_utils.h>
#if defined(__ANDROID__)
#include <android-base/properties.h>
#endif
#include "CallChainJoiner.h"
#include "command.h"
#include "environment.h"
#include "event_selection_set.h"
#include "event_type.h"
#include "IOEventLoop.h"
#include "OfflineUnwinder.h"
#include "perf_clock.h"
#include "read_apk.h"
#include "read_elf.h"
#include "record.h"
#include "record_file.h"
#include "thread_tree.h"
#include "tracing.h"
#include "utils.h"
#include "workload.h"
using namespace simpleperf;
static std::string default_measured_event_type = "cpu-cycles";
static std::unordered_map<std::string, uint64_t> branch_sampling_type_map = {
{"u", PERF_SAMPLE_BRANCH_USER},
{"k", PERF_SAMPLE_BRANCH_KERNEL},
{"any", PERF_SAMPLE_BRANCH_ANY},
{"any_call", PERF_SAMPLE_BRANCH_ANY_CALL},
{"any_ret", PERF_SAMPLE_BRANCH_ANY_RETURN},
{"ind_call", PERF_SAMPLE_BRANCH_IND_CALL},
};
static std::unordered_map<std::string, int> clockid_map = {
{"realtime", CLOCK_REALTIME},
{"monotonic", CLOCK_MONOTONIC},
{"monotonic_raw", CLOCK_MONOTONIC_RAW},
{"boottime", CLOCK_BOOTTIME},
};
// The max size of records dumped by kernel is 65535, and dump stack size
// should be a multiply of 8, so MAX_DUMP_STACK_SIZE is 65528.
constexpr uint32_t MAX_DUMP_STACK_SIZE = 65528;
// The max allowed pages in mapped buffer is decided by rlimit(RLIMIT_MEMLOCK).
// Here 1024 is a desired value for pages in mapped buffer. If mapped
// successfully, the buffer size = 1024 * 4K (page size) = 4M.
constexpr size_t DESIRED_PAGES_IN_MAPPED_BUFFER = 1024;
// Cache size used by CallChainJoiner to cache call chains in memory.
constexpr size_t DEFAULT_CALL_CHAIN_JOINER_CACHE_SIZE = 8 * 1024 * 1024;
class RecordCommand : public Command {
public:
RecordCommand()
: Command(
"record", "record sampling info in perf.data",
// clang-format off
"Usage: simpleperf record [options] [--] [command [command-args]]\n"
" Gather sampling information of running [command]. And -a/-p/-t option\n"
" can be used to change target of sampling information.\n"
" The default options are: -e cpu-cycles -f 4000 -o perf.data.\n"
"Select monitored threads:\n"
"-a System-wide collection.\n"
#if defined(__ANDROID__)
"--app package_name Profile the process of an Android application.\n"
" On non-rooted devices, the app must be debuggable,\n"
" because we use run-as to switch to the app's context.\n"
#endif
"-p pid1,pid2,... Record events on existing processes. Mutually exclusive\n"
" with -a.\n"
"-t tid1,tid2,... Record events on existing threads. Mutually exclusive with -a.\n"
"\n"
"Select monitored event types:\n"
"-e event1[:modifier1],event2[:modifier2],...\n"
" Select the event list to sample. Use `simpleperf list` to find\n"
" all possible event names. Modifiers can be added to define how\n"
" the event should be monitored.\n"
" Possible modifiers are:\n"
" u - monitor user space events only\n"
" k - monitor kernel space events only\n"
"--group event1[:modifier],event2[:modifier2],...\n"
" Similar to -e option. But events specified in the same --group\n"
" option are monitored as a group, and scheduled in and out at the\n"
" same time.\n"
"--trace-offcpu Generate samples when threads are scheduled off cpu.\n"
" Similar to \"-c 1 -e sched:sched_switch\".\n"
"\n"
"Select monitoring options:\n"
"-f freq Set event sample frequency. It means recording at most [freq]\n"
" samples every second. For non-tracepoint events, the default\n"
" option is -f 4000. A -f/-c option affects all event types\n"
" following it until meeting another -f/-c option. For example,\n"
" for \"-f 1000 cpu-cycles -c 1 -e sched:sched_switch\", cpu-cycles\n"
" has sample freq 1000, sched:sched_switch event has sample period 1.\n"
"-c count Set event sample period. It means recording one sample when\n"
" [count] events happen. For tracepoint events, the default option\n"
" is -c 1.\n"
"--call-graph fp | dwarf[,<dump_stack_size>]\n"
" Enable call graph recording. Use frame pointer or dwarf debug\n"
" frame as the method to parse call graph in stack.\n"
" Default is dwarf,65528.\n"
"-g Same as '--call-graph dwarf'.\n"
"--clockid clock_id Generate timestamps of samples using selected clock.\n"
" Possible values are: realtime, monotonic,\n"
" monotonic_raw, boottime, perf. Default is perf.\n"
"--cpu cpu_item1,cpu_item2,...\n"
" Collect samples only on the selected cpus. cpu_item can be cpu\n"
" number like 1, or cpu range like 0-3.\n"
"--duration time_in_sec Monitor for time_in_sec seconds instead of running\n"
" [command]. Here time_in_sec may be any positive\n"
" floating point number.\n"
"-j branch_filter1,branch_filter2,...\n"
" Enable taken branch stack sampling. Each sample captures a series\n"
" of consecutive taken branches.\n"
" The following filters are defined:\n"
" any: any type of branch\n"
" any_call: any function call or system call\n"
" any_ret: any function return or system call return\n"
" ind_call: any indirect branch\n"
" u: only when the branch target is at the user level\n"
" k: only when the branch target is in the kernel\n"
" This option requires at least one branch type among any, any_call,\n"
" any_ret, ind_call.\n"
"-b Enable taken branch stack sampling. Same as '-j any'.\n"
"-m mmap_pages Set the size of the buffer used to receiving sample data from\n"
" the kernel. It should be a power of 2. If not set, the max\n"
" possible value <= 1024 will be used.\n"
"--no-inherit Don't record created child threads/processes.\n"
"\n"
"Dwarf unwinding options:\n"
"--no-post-unwind If `--call-graph dwarf` option is used, then the user's stack\n"
" will be recorded in perf.data and unwound after recording.\n"
" However, this takes a lot of disk space. Use this option to\n"
" unwind while recording.\n"
"--no-unwind If `--call-graph dwarf` option is used, then the user's stack\n"
" will be unwound by default. Use this option to disable the\n"
" unwinding of the user's stack.\n"
"--no-callchain-joiner If `--call-graph dwarf` option is used, then by default\n"
" callchain joiner is used to break the 64k stack limit\n"
" and build more complete call graphs. However, the built\n"
" call graphs may not be correct in all cases.\n"
"--callchain-joiner-min-matching-nodes count\n"
" When callchain joiner is used, set the matched nodes needed to join\n"
" callchains. The count should be >= 1. By default it is 1.\n"
"\n"
"Recording file options:\n"
"--no-dump-kernel-symbols Don't dump kernel symbols in perf.data. By default\n"
" kernel symbols will be dumped when needed.\n"
"--no-dump-symbols Don't dump symbols in perf.data. By default symbols are\n"
" dumped in perf.data, to support reporting in another\n"
" environment.\n"
"-o record_file_name Set record file name, default is perf.data.\n"
"--exit-with-parent Stop recording when the process starting\n"
" simpleperf dies.\n"
"--start_profiling_fd fd_no After starting profiling, write \"STARTED\" to\n"
" <fd_no>, then close <fd_no>.\n"
"--symfs <dir> Look for files with symbols relative to this directory.\n"
" This option is used to provide files with symbol table and\n"
" debug information, which are used for unwinding and dumping symbols.\n"
#if 0
// Below options are only used internally and shouldn't be visible to the public.
"--in-app We are already running in the app's context.\n"
"--tracepoint-events file_name Read tracepoint events from [file_name] instead of tracefs.\n"
#endif
// clang-format on
),
system_wide_collection_(false),
branch_sampling_(0),
fp_callchain_sampling_(false),
dwarf_callchain_sampling_(false),
dump_stack_size_in_dwarf_sampling_(MAX_DUMP_STACK_SIZE),
unwind_dwarf_callchain_(true),
post_unwind_(true),
child_inherit_(true),
duration_in_sec_(0),
can_dump_kernel_symbols_(true),
dump_symbols_(true),
clockid_("perf"),
event_selection_set_(false),
mmap_page_range_(std::make_pair(1, DESIRED_PAGES_IN_MAPPED_BUFFER)),
record_filename_("perf.data"),
start_sampling_time_in_ns_(0),
sample_record_count_(0),
lost_record_count_(0),
start_profiling_fd_(-1),
in_app_context_(false),
trace_offcpu_(false),
exclude_kernel_callchain_(false),
allow_callchain_joiner_(true),
callchain_joiner_min_matching_nodes_(1u) {
// If we run `adb shell simpleperf record xxx` and stop profiling by ctrl-c, adb closes
// sockets connecting simpleperf. After that, simpleperf will receive SIGPIPE when writing
// to stdout/stderr, which is a problem when we use '--app' option. So ignore SIGPIPE to
// finish properly.
signal(SIGPIPE, SIG_IGN);
app_package_name_ = GetDefaultAppPackageName();
}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args);
bool PrepareRecording(Workload* workload);
bool DoRecording(Workload* workload);
bool PostProcessRecording(const std::vector<std::string>& args);
bool TraceOffCpu();
bool SetEventSelectionFlags();
bool CreateAndInitRecordFile();
std::unique_ptr<RecordFileWriter> CreateRecordFile(
const std::string& filename);
bool DumpKernelSymbol();
bool DumpTracingData();
bool DumpKernelAndModuleMmaps(const perf_event_attr& attr, uint64_t event_id);
bool DumpThreadCommAndMmaps(const perf_event_attr& attr, uint64_t event_id);
bool ProcessRecord(Record* record);
bool SaveRecordForPostUnwinding(Record* record);
bool SaveRecordAfterUnwinding(Record* record);
bool SaveRecordWithoutUnwinding(Record* record);
void UpdateRecordForEmbeddedElfPath(Record* record);
bool UnwindRecord(SampleRecord& r);
bool PostUnwindRecords();
bool JoinCallChains();
bool DumpAdditionalFeatures(const std::vector<std::string>& args);
bool DumpBuildIdFeature();
bool DumpFileFeature();
bool DumpMetaInfoFeature();
void CollectHitFileInfo(const SampleRecord& r);
std::unique_ptr<SampleSpeed> sample_speed_;
bool system_wide_collection_;
uint64_t branch_sampling_;
bool fp_callchain_sampling_;
bool dwarf_callchain_sampling_;
uint32_t dump_stack_size_in_dwarf_sampling_;
bool unwind_dwarf_callchain_;
bool post_unwind_;
std::unique_ptr<OfflineUnwinder> offline_unwinder_;
bool child_inherit_;
double duration_in_sec_;
bool can_dump_kernel_symbols_;
bool dump_symbols_;
std::string clockid_;
std::vector<int> cpus_;
EventSelectionSet event_selection_set_;
std::pair<size_t, size_t> mmap_page_range_;
ThreadTree thread_tree_;
std::string record_filename_;
std::unique_ptr<RecordFileWriter> record_file_writer_;
uint64_t start_sampling_time_in_ns_; // nanoseconds from machine starting
uint64_t sample_record_count_;
uint64_t lost_record_count_;
int start_profiling_fd_;
std::string app_package_name_;
bool in_app_context_;
bool trace_offcpu_;
bool exclude_kernel_callchain_;
// For CallChainJoiner
bool allow_callchain_joiner_;
size_t callchain_joiner_min_matching_nodes_;
std::unique_ptr<CallChainJoiner> callchain_joiner_;
};
bool RecordCommand::Run(const std::vector<std::string>& args) {
ScopedCurrentArch scoped_arch(GetMachineArch());
if (!CheckPerfEventLimit()) {
return false;
}
AllowMoreOpenedFiles();
std::vector<std::string> workload_args;
if (!ParseOptions(args, &workload_args)) {
return false;
}
ScopedTempFiles scoped_temp_files(android::base::Dirname(record_filename_));
if (!app_package_name_.empty() && !in_app_context_) {
// Some users want to profile non debuggable apps on rooted devices. If we use run-as,
// it will be impossible when using --app. So don't switch to app's context when we are
// root.
if (!IsRoot()) {
return RunInAppContext(app_package_name_, "record", args, workload_args.size(),
record_filename_, true);
}
}
std::unique_ptr<Workload> workload;
if (!workload_args.empty()) {
workload = Workload::CreateWorkload(workload_args);
if (workload == nullptr) {
return false;
}
}
if (!PrepareRecording(workload.get())) {
return false;
}
if (!DoRecording(workload.get())) {
return false;
}
return PostProcessRecording(args);
}
bool RecordCommand::PrepareRecording(Workload* workload) {
// 1. Prepare in other modules.
if (!InitPerfClock()) {
return false;
}
PrepareVdsoFile();
// 2. Add default event type.
if (event_selection_set_.empty()) {
size_t group_id;
if (!event_selection_set_.AddEventType(default_measured_event_type, &group_id)) {
return false;
}
if (sample_speed_) {
event_selection_set_.SetSampleSpeed(group_id, *sample_speed_);
}
}
// 3. Process options before opening perf event files.
exclude_kernel_callchain_ = event_selection_set_.ExcludeKernel();
if (trace_offcpu_ && !TraceOffCpu()) {
return false;
}
if (!SetEventSelectionFlags()) {
return false;
}
if (unwind_dwarf_callchain_) {
offline_unwinder_.reset(new OfflineUnwinder(false));
}
if (unwind_dwarf_callchain_ && allow_callchain_joiner_) {
callchain_joiner_.reset(new CallChainJoiner(DEFAULT_CALL_CHAIN_JOINER_CACHE_SIZE,
callchain_joiner_min_matching_nodes_,
false));
}
// 4. Add monitored targets.
bool need_to_check_targets = false;
if (system_wide_collection_) {
event_selection_set_.AddMonitoredThreads({-1});
} else if (!event_selection_set_.HasMonitoredTarget()) {
if (workload != nullptr) {
event_selection_set_.AddMonitoredProcesses({workload->GetPid()});
event_selection_set_.SetEnableOnExec(true);
if (event_selection_set_.HasInplaceSampler()) {
// Start worker early, because the worker process has to setup inplace-sampler server
// before we try to connect it.
if (!workload->Start()) {
return false;
}
}
} else if (!app_package_name_.empty()) {
// If app process is not created, wait for it. This allows simpleperf starts before
// app process. In this way, we can have a better support of app start-up time profiling.
std::set<pid_t> pids = WaitForAppProcesses(app_package_name_);
event_selection_set_.AddMonitoredProcesses(pids);
need_to_check_targets = true;
} else {
LOG(ERROR)
<< "No threads to monitor. Try `simpleperf help record` for help";
return false;
}
} else {
need_to_check_targets = true;
}
// 5. Open perf event files and create mapped buffers.
if (!event_selection_set_.OpenEventFiles(cpus_)) {
return false;
}
if (!event_selection_set_.MmapEventFiles(mmap_page_range_.first,
mmap_page_range_.second)) {
return false;
}
// 6. Create perf.data.
if (!CreateAndInitRecordFile()) {
return false;
}
// 7. Add read/signal/periodic Events.
auto callback =
std::bind(&RecordCommand::ProcessRecord, this, std::placeholders::_1);
if (!event_selection_set_.PrepareToReadMmapEventData(callback)) {
return false;
}
if (need_to_check_targets && !event_selection_set_.StopWhenNoMoreTargets()) {
return false;
}
IOEventLoop* loop = event_selection_set_.GetIOEventLoop();
if (!loop->AddSignalEvents({SIGCHLD, SIGINT, SIGTERM},
[loop]() { return loop->ExitLoop(); })) {
return false;
}
// Only add an event for SIGHUP if we didn't inherit SIG_IGN (e.g. from nohup).
if (!SignalIsIgnored(SIGHUP)) {
if (!loop->AddSignalEvent(SIGHUP, [loop]() { return loop->ExitLoop(); })) {
return false;
}
}
if (duration_in_sec_ != 0) {
if (!loop->AddPeriodicEvent(SecondToTimeval(duration_in_sec_),
[loop]() { return loop->ExitLoop(); })) {
return false;
}
}
return true;
}
bool RecordCommand::DoRecording(Workload* workload) {
// Write records in mapped buffers of perf_event_files to output file while workload is running.
start_sampling_time_in_ns_ = GetPerfClock();
LOG(VERBOSE) << "start_sampling_time is " << start_sampling_time_in_ns_ << " ns";
if (workload != nullptr && !workload->IsStarted() && !workload->Start()) {
return false;
}
if (start_profiling_fd_ != -1) {
if (!android::base::WriteStringToFd("STARTED", start_profiling_fd_)) {
PLOG(ERROR) << "failed to write to start_profiling_fd_";
}
close(start_profiling_fd_);
}
if (!event_selection_set_.GetIOEventLoop()->RunLoop()) {
return false;
}
if (!event_selection_set_.FinishReadMmapEventData()) {
return false;
}
return true;
}
bool RecordCommand::PostProcessRecording(const std::vector<std::string>& args) {
// 1. Post unwind dwarf callchain.
if (unwind_dwarf_callchain_ && post_unwind_) {
if (!PostUnwindRecords()) {
return false;
}
}
// 2. Optionally join Callchains.
if (callchain_joiner_) {
JoinCallChains();
}
// 3. Dump additional features, and close record file.
if (!DumpAdditionalFeatures(args)) {
return false;
}
if (!record_file_writer_->Close()) {
return false;
}
// 4. Show brief record result.
LOG(INFO) << "Samples recorded: " << sample_record_count_
<< ". Samples lost: " << lost_record_count_ << ".";
if (sample_record_count_ + lost_record_count_ != 0) {
double lost_percent = static_cast<double>(lost_record_count_) /
(lost_record_count_ + sample_record_count_);
constexpr double LOST_PERCENT_WARNING_BAR = 0.1;
if (lost_percent >= LOST_PERCENT_WARNING_BAR) {
LOG(WARNING) << "Lost " << (lost_percent * 100) << "% of samples, "
<< "consider increasing mmap_pages(-m), "
<< "or decreasing sample frequency(-f), "
<< "or increasing sample period(-c).";
}
}
if (callchain_joiner_) {
callchain_joiner_->DumpStat();
}
return true;
}
bool RecordCommand::ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args) {
std::vector<size_t> wait_setting_speed_event_groups_;
size_t i;
for (i = 0; i < args.size() && !args[i].empty() && args[i][0] == '-'; ++i) {
if (args[i] == "-a") {
system_wide_collection_ = true;
} else if (args[i] == "--app") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
app_package_name_ = args[i];
} else if (args[i] == "-b") {
branch_sampling_ = branch_sampling_type_map["any"];
} else if (args[i] == "-c" || args[i] == "-f") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
char* endptr;
uint64_t value = strtoull(args[i].c_str(), &endptr, 0);
if (*endptr != '\0' || value == 0) {
LOG(ERROR) << "Invalid option for " << args[i-1] << ": '" << args[i] << "'";
return false;
}
if (args[i-1] == "-c") {
sample_speed_.reset(new SampleSpeed(0, value));
} else {
sample_speed_.reset(new SampleSpeed(value, 0));
}
for (auto group_id : wait_setting_speed_event_groups_) {
event_selection_set_.SetSampleSpeed(group_id, *sample_speed_);
}
wait_setting_speed_event_groups_.clear();
} else if (args[i] == "--call-graph") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> strs = android::base::Split(args[i], ",");
if (strs[0] == "fp") {
fp_callchain_sampling_ = true;
dwarf_callchain_sampling_ = false;
} else if (strs[0] == "dwarf") {
fp_callchain_sampling_ = false;
dwarf_callchain_sampling_ = true;
if (strs.size() > 1) {
char* endptr;
uint64_t size = strtoull(strs[1].c_str(), &endptr, 0);
if (*endptr != '\0' || size > UINT_MAX) {
LOG(ERROR) << "invalid dump stack size in --call-graph option: "
<< strs[1];
return false;
}
if ((size & 7) != 0) {
LOG(ERROR) << "dump stack size " << size
<< " is not 8-byte aligned.";
return false;
}
if (size >= MAX_DUMP_STACK_SIZE) {
LOG(ERROR) << "dump stack size " << size
<< " is bigger than max allowed size "
<< MAX_DUMP_STACK_SIZE << ".";
return false;
}
dump_stack_size_in_dwarf_sampling_ = static_cast<uint32_t>(size);
}
} else {
LOG(ERROR) << "unexpected argument for --call-graph option: "
<< args[i];
return false;
}
} else if (args[i] == "--clockid") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (args[i] != "perf") {
if (!IsSettingClockIdSupported()) {
LOG(ERROR) << "Setting clockid is not supported by the kernel.";
return false;
}
if (clockid_map.find(args[i]) == clockid_map.end()) {
LOG(ERROR) << "Invalid clockid: " << args[i];
return false;
}
}
clockid_ = args[i];
} else if (args[i] == "--cpu") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
cpus_ = GetCpusFromString(args[i]);
} else if (args[i] == "--duration") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!android::base::ParseDouble(args[i].c_str(), &duration_in_sec_,
1e-9)) {
LOG(ERROR) << "Invalid duration: " << args[i].c_str();
return false;
}
} else if (args[i] == "-e") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> event_types = android::base::Split(args[i], ",");
for (auto& event_type : event_types) {
size_t group_id;
if (!event_selection_set_.AddEventType(event_type, &group_id)) {
return false;
}
if (sample_speed_) {
event_selection_set_.SetSampleSpeed(group_id, *sample_speed_);
} else {
wait_setting_speed_event_groups_.push_back(group_id);
}
}
} else if (args[i] == "--exit-with-parent") {
prctl(PR_SET_PDEATHSIG, SIGHUP, 0, 0, 0);
} else if (args[i] == "-g") {
fp_callchain_sampling_ = false;
dwarf_callchain_sampling_ = true;
} else if (args[i] == "--group") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> event_types = android::base::Split(args[i], ",");
size_t group_id;
if (!event_selection_set_.AddEventGroup(event_types, &group_id)) {
return false;
}
if (sample_speed_) {
event_selection_set_.SetSampleSpeed(group_id, *sample_speed_);
} else {
wait_setting_speed_event_groups_.push_back(group_id);
}
} else if (args[i] == "--in-app") {
in_app_context_ = true;
} else if (args[i] == "-j") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> branch_sampling_types =
android::base::Split(args[i], ",");
for (auto& type : branch_sampling_types) {
auto it = branch_sampling_type_map.find(type);
if (it == branch_sampling_type_map.end()) {
LOG(ERROR) << "unrecognized branch sampling filter: " << type;
return false;
}
branch_sampling_ |= it->second;
}
} else if (args[i] == "-m") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
char* endptr;
uint64_t pages = strtoull(args[i].c_str(), &endptr, 0);
if (*endptr != '\0' || !IsPowerOfTwo(pages)) {
LOG(ERROR) << "Invalid mmap_pages: '" << args[i] << "'";
return false;
}
mmap_page_range_.first = mmap_page_range_.second = pages;
} else if (args[i] == "--no-dump-kernel-symbols") {
can_dump_kernel_symbols_ = false;
} else if (args[i] == "--no-dump-symbols") {
dump_symbols_ = false;
} else if (args[i] == "--no-inherit") {
child_inherit_ = false;
} else if (args[i] == "--no-unwind") {
unwind_dwarf_callchain_ = false;
} else if (args[i] == "--no-callchain-joiner") {
allow_callchain_joiner_ = false;
} else if (args[i] == "--callchain-joiner-min-matching-nodes") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!android::base::ParseUint(args[i].c_str(), &callchain_joiner_min_matching_nodes_) ||
callchain_joiner_min_matching_nodes_ < 1u) {
LOG(ERROR) << "unexpected argument for " << args[i - 1] << " option";
return false;
}
} else if (args[i] == "-o") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
record_filename_ = args[i];
} else if (args[i] == "-p") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::set<pid_t> pids;
if (!GetValidThreadsFromThreadString(args[i], &pids)) {
return false;
}
event_selection_set_.AddMonitoredProcesses(pids);
} else if (args[i] == "--no-post-unwind") {
post_unwind_ = false;
} else if (args[i] == "--start_profiling_fd") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!android::base::ParseInt(args[i].c_str(), &start_profiling_fd_, 0)) {
LOG(ERROR) << "Invalid start_profiling_fd: " << args[i];
return false;
}
} else if (args[i] == "--symfs") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!Dso::SetSymFsDir(args[i])) {
return false;
}
} else if (args[i] == "-t") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::set<pid_t> tids;
if (!GetValidThreadsFromThreadString(args[i], &tids)) {
return false;
}
event_selection_set_.AddMonitoredThreads(tids);
} else if (args[i] == "--trace-offcpu") {
trace_offcpu_ = true;
} else if (args[i] == "--tracepoint-events") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!SetTracepointEventsFilePath(args[i])) {
return false;
}
} else if (args[i] == "--") {
i++;
break;
} else {
ReportUnknownOption(args, i);
return false;
}
}
if (!dwarf_callchain_sampling_) {
if (!unwind_dwarf_callchain_) {
LOG(ERROR)
<< "--no-unwind is only used with `--call-graph dwarf` option.";
return false;
}
unwind_dwarf_callchain_ = false;
}
if (post_unwind_) {
if (!dwarf_callchain_sampling_ || !unwind_dwarf_callchain_) {
post_unwind_ = false;
}
} else {
if (!dwarf_callchain_sampling_) {
LOG(ERROR)
<< "--no-post-unwind is only used with `--call-graph dwarf` option.";
return false;
}
if (!unwind_dwarf_callchain_) {
LOG(ERROR) << "--no-post-unwind can't be used with `--no-unwind` option.";
return false;
}
}
if (fp_callchain_sampling_) {
if (GetBuildArch() == ARCH_ARM) {
LOG(WARNING) << "`--callgraph fp` option doesn't work well on arm architecture, "
<< "consider using `-g` option or profiling on aarch64 architecture.";
}
}
if (system_wide_collection_ && event_selection_set_.HasMonitoredTarget()) {
LOG(ERROR) << "Record system wide and existing processes/threads can't be "
"used at the same time.";
return false;
}
if (system_wide_collection_ && !IsRoot()) {
LOG(ERROR) << "System wide profiling needs root privilege.";
return false;
}
if (dump_symbols_ && can_dump_kernel_symbols_) {
// No need to dump kernel symbols as we will dump all required symbols.
can_dump_kernel_symbols_ = false;
}
non_option_args->clear();
for (; i < args.size(); ++i) {
non_option_args->push_back(args[i]);
}
return true;
}
bool RecordCommand::TraceOffCpu() {
if (FindEventTypeByName("sched:sched_switch") == nullptr) {
LOG(ERROR) << "Can't trace off cpu because sched:sched_switch event is not available";
return false;
}
for (auto& event_type : event_selection_set_.GetTracepointEvents()) {
if (event_type->name == "sched:sched_switch") {
LOG(ERROR) << "Trace offcpu can't be used together with sched:sched_switch event";
return false;
}
}
if (!IsDumpingRegsForTracepointEventsSupported()) {
LOG(ERROR) << "Dumping regs for tracepoint events is not supported by the kernel";
return false;
}
return event_selection_set_.AddEventType("sched:sched_switch");
}
bool RecordCommand::SetEventSelectionFlags() {
event_selection_set_.SampleIdAll();
if (!event_selection_set_.SetBranchSampling(branch_sampling_)) {
return false;
}
if (fp_callchain_sampling_) {
event_selection_set_.EnableFpCallChainSampling();
} else if (dwarf_callchain_sampling_) {
if (!event_selection_set_.EnableDwarfCallChainSampling(
dump_stack_size_in_dwarf_sampling_)) {
return false;
}
}
event_selection_set_.SetInherit(child_inherit_);
if (clockid_ != "perf") {
event_selection_set_.SetClockId(clockid_map[clockid_]);
}
return true;
}
bool RecordCommand::CreateAndInitRecordFile() {
record_file_writer_ = CreateRecordFile(record_filename_);
if (record_file_writer_ == nullptr) {
return false;
}
// Use first perf_event_attr and first event id to dump mmap and comm records.
EventAttrWithId attr_id = event_selection_set_.GetEventAttrWithId()[0];
if (!DumpKernelSymbol()) {
return false;
}
if (!DumpTracingData()) {
return false;
}
if (!DumpKernelAndModuleMmaps(*attr_id.attr, attr_id.ids[0])) {
return false;
}
if (!DumpThreadCommAndMmaps(*attr_id.attr, attr_id.ids[0])) {
return false;
}
return true;
}
std::unique_ptr<RecordFileWriter> RecordCommand::CreateRecordFile(
const std::string& filename) {
std::unique_ptr<RecordFileWriter> writer =
RecordFileWriter::CreateInstance(filename);
if (writer == nullptr) {
return nullptr;
}
if (!writer->WriteAttrSection(event_selection_set_.GetEventAttrWithId())) {
return nullptr;
}
return writer;
}
bool RecordCommand::DumpKernelSymbol() {
if (can_dump_kernel_symbols_) {
std::string kallsyms;
if (event_selection_set_.NeedKernelSymbol() &&
CheckKernelSymbolAddresses()) {
if (!android::base::ReadFileToString("/proc/kallsyms", &kallsyms)) {
PLOG(ERROR) << "failed to read /proc/kallsyms";
return false;
}
KernelSymbolRecord r(kallsyms);
if (!ProcessRecord(&r)) {
return false;
}
}
}
return true;
}
bool RecordCommand::DumpTracingData() {
std::vector<const EventType*> tracepoint_event_types =
event_selection_set_.GetTracepointEvents();
if (tracepoint_event_types.empty() || !CanRecordRawData()) {
return true; // No need to dump tracing data, or can't do it.
}
std::vector<char> tracing_data;
if (!GetTracingData(tracepoint_event_types, &tracing_data)) {
return false;
}
TracingDataRecord record(tracing_data);
if (!ProcessRecord(&record)) {
return false;
}
return true;
}
bool RecordCommand::DumpKernelAndModuleMmaps(const perf_event_attr& attr,
uint64_t event_id) {
KernelMmap kernel_mmap;
std::vector<KernelMmap> module_mmaps;
GetKernelAndModuleMmaps(&kernel_mmap, &module_mmaps);
MmapRecord mmap_record(attr, true, UINT_MAX, 0, kernel_mmap.start_addr,
kernel_mmap.len, 0, kernel_mmap.filepath, event_id);
if (!ProcessRecord(&mmap_record)) {
return false;
}
for (auto& module_mmap : module_mmaps) {
MmapRecord mmap_record(attr, true, UINT_MAX, 0, module_mmap.start_addr,
module_mmap.len, 0, module_mmap.filepath, event_id);
if (!ProcessRecord(&mmap_record)) {
return false;
}
}
return true;
}
bool RecordCommand::DumpThreadCommAndMmaps(const perf_event_attr& attr,
uint64_t event_id) {
// Decide which processes and threads to dump.
// For system_wide profiling, dump all threads.
// For non system wide profiling, build dump_threads.
bool all_threads = system_wide_collection_;
std::set<pid_t> dump_threads = event_selection_set_.GetMonitoredThreads();
for (const auto& pid : event_selection_set_.GetMonitoredProcesses()) {
std::vector<pid_t> tids = GetThreadsInProcess(pid);
dump_threads.insert(tids.begin(), tids.end());
}
// Collect processes to dump.
std::vector<pid_t> processes;
if (all_threads) {
processes = GetAllProcesses();
} else {
std::set<pid_t> process_set;
for (const auto& tid : dump_threads) {
pid_t pid;
if (!GetProcessForThread(tid, &pid)) {
continue;
}
process_set.insert(pid);
}
processes.insert(processes.end(), process_set.begin(), process_set.end());
}
// Dump each process and its threads.
for (auto& pid : processes) {
// Dump mmap records.
std::vector<ThreadMmap> thread_mmaps;
if (!GetThreadMmapsInProcess(pid, &thread_mmaps)) {
// The process may exit before we get its info.
continue;
}
for (const auto& map : thread_mmaps) {
if (map.executable == 0) {
continue; // No need to dump non-executable mmap info.
}
MmapRecord record(attr, false, pid, pid, map.start_addr, map.len,
map.pgoff, map.name, event_id);
if (!ProcessRecord(&record)) {
return false;
}
}
// Dump process name.
std::string name;
if (GetThreadName(pid, &name)) {
CommRecord record(attr, pid, pid, name, event_id, 0);
if (!ProcessRecord(&record)) {
return false;
}
}
// Dump thread info.
std::vector<pid_t> threads = GetThreadsInProcess(pid);
for (const auto& tid : threads) {
if (tid == pid) {
continue;
}
if (all_threads || dump_threads.find(tid) != dump_threads.end()) {
ForkRecord fork_record(attr, pid, tid, pid, pid, event_id);
if (!ProcessRecord(&fork_record)) {
return false;
}
if (GetThreadName(tid, &name)) {
CommRecord comm_record(attr, pid, tid, name, event_id, 0);
if (!ProcessRecord(&comm_record)) {
return false;
}
}
}
}
}
return true;
}
bool RecordCommand::ProcessRecord(Record* record) {
if (unwind_dwarf_callchain_) {
if (post_unwind_) {
return SaveRecordForPostUnwinding(record);
}
return SaveRecordAfterUnwinding(record);
}
return SaveRecordWithoutUnwinding(record);
}
bool RecordCommand::SaveRecordForPostUnwinding(Record* record) {
if (record->type() == PERF_RECORD_SAMPLE) {
static_cast<SampleRecord*>(record)->RemoveInvalidStackData();
}
if (!record_file_writer_->WriteRecord(*record)) {
LOG(ERROR) << "If there isn't enough space for storing profiling data, consider using "
<< "--no-post-unwind option.";
return false;
}
return true;
}
bool RecordCommand::SaveRecordAfterUnwinding(Record* record) {
if (record->type() == PERF_RECORD_SAMPLE) {
auto& r = *static_cast<SampleRecord*>(record);
// AdjustCallChainGeneratedByKernel() should go before UnwindRecord(). Because we don't want
// to adjust callchains generated by dwarf unwinder.
r.AdjustCallChainGeneratedByKernel();
if (!UnwindRecord(r)) {
return false;
}
// ExcludeKernelCallChain() should go after UnwindRecord() to notice the generated user call
// chain.
if (r.InKernel() && exclude_kernel_callchain_ && r.ExcludeKernelCallChain() == 0u) {
// If current record contains no user callchain, skip it.
return true;
}
sample_record_count_++;
} else if (record->type() == PERF_RECORD_LOST) {
lost_record_count_ += static_cast<LostRecord*>(record)->lost;
} else {
UpdateRecordForEmbeddedElfPath(record);
thread_tree_.Update(*record);
}
return record_file_writer_->WriteRecord(*record);
}
bool RecordCommand::SaveRecordWithoutUnwinding(Record* record) {
if (record->type() == PERF_RECORD_SAMPLE) {
auto& r = *static_cast<SampleRecord*>(record);
if (fp_callchain_sampling_ || dwarf_callchain_sampling_) {
r.AdjustCallChainGeneratedByKernel();
}
if (r.InKernel() && exclude_kernel_callchain_ && r.ExcludeKernelCallChain() == 0u) {
// If current record contains no user callchain, skip it.
return true;
}
sample_record_count_++;
} else if (record->type() == PERF_RECORD_LOST) {
lost_record_count_ += static_cast<LostRecord*>(record)->lost;
}
return record_file_writer_->WriteRecord(*record);
}
template <class RecordType>
void UpdateMmapRecordForEmbeddedElfPath(RecordType* record) {
RecordType& r = *record;
if (!r.InKernel() && r.data->pgoff != 0) {
// For the case of a shared library "foobar.so" embedded
// inside an APK, we rewrite the original MMAP from
// ["path.apk" offset=X] to ["path.apk!/foobar.so" offset=W]
// so as to make the library name explicit. This update is
// done here (as part of the record operation) as opposed to
// on the host during the report, since we want to report
// the correct library name even if the the APK in question
// is not present on the host. The new offset W is
// calculated to be with respect to the start of foobar.so,
// not to the start of path.apk.
EmbeddedElf* ee =
ApkInspector::FindElfInApkByOffset(r.filename, r.data->pgoff);
if (ee != nullptr) {
// Compute new offset relative to start of elf in APK.
auto data = *r.data;
data.pgoff -= ee->entry_offset();
r.SetDataAndFilename(data, GetUrlInApk(r.filename, ee->entry_name()));
}
}
}
void RecordCommand::UpdateRecordForEmbeddedElfPath(Record* record) {
if (record->type() == PERF_RECORD_MMAP) {
UpdateMmapRecordForEmbeddedElfPath(static_cast<MmapRecord*>(record));
} else if (record->type() == PERF_RECORD_MMAP2) {
UpdateMmapRecordForEmbeddedElfPath(static_cast<Mmap2Record*>(record));
}
}
bool RecordCommand::UnwindRecord(SampleRecord& r) {
if ((r.sample_type & PERF_SAMPLE_CALLCHAIN) &&
(r.sample_type & PERF_SAMPLE_REGS_USER) &&
(r.regs_user_data.reg_mask != 0) &&
(r.sample_type & PERF_SAMPLE_STACK_USER) &&
(r.GetValidStackSize() > 0)) {
ThreadEntry* thread =
thread_tree_.FindThreadOrNew(r.tid_data.pid, r.tid_data.tid);
RegSet regs(r.regs_user_data.abi, r.regs_user_data.reg_mask, r.regs_user_data.regs);
std::vector<uint64_t> ips;
std::vector<uint64_t> sps;
if (!offline_unwinder_->UnwindCallChain(*thread, regs, r.stack_user_data.data,
r.GetValidStackSize(), &ips, &sps)) {
return false;
}
r.ReplaceRegAndStackWithCallChain(ips);
if (callchain_joiner_) {
return callchain_joiner_->AddCallChain(r.tid_data.pid, r.tid_data.tid,
CallChainJoiner::ORIGINAL_OFFLINE, ips, sps);
}
}
return true;
}
bool RecordCommand::PostUnwindRecords() {
// 1. Move records from record_filename_ to a temporary file.
if (!record_file_writer_->Close()) {
return false;
}
record_file_writer_.reset();
std::unique_ptr<TemporaryFile> tmp_file = ScopedTempFiles::CreateTempFile();
if (!Workload::RunCmd({"mv", record_filename_, tmp_file->path})) {
return false;
}
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmp_file->path);
if (!reader) {
return false;
}
// 2. Read records from the temporary file, and write unwound records back to record_filename_.
record_file_writer_ = CreateRecordFile(record_filename_);
if (!record_file_writer_) {
return false;
}
sample_record_count_ = 0;
lost_record_count_ = 0;
auto callback = [this](std::unique_ptr<Record> record) {
return SaveRecordAfterUnwinding(record.get());
};
return reader->ReadDataSection(callback, false);
}
bool RecordCommand::JoinCallChains() {
// 1. Prepare joined callchains.
if (!callchain_joiner_->JoinCallChains()) {
return false;
}
// 2. Move records from record_filename_ to a temporary file.
if (!record_file_writer_->Close()) {
return false;
}
record_file_writer_.reset();
std::unique_ptr<TemporaryFile> tmp_file = ScopedTempFiles::CreateTempFile();
if (!Workload::RunCmd({"mv", record_filename_, tmp_file->path})) {
return false;
}
// 3. Read records from the temporary file, and write record with joined call chains back
// to record_filename_.
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmp_file->path);
record_file_writer_ = CreateRecordFile(record_filename_);
if (!reader || !record_file_writer_) {
return false;
}
auto record_callback = [&](std::unique_ptr<Record> r) {
if (r->type() != PERF_RECORD_SAMPLE) {
return record_file_writer_->WriteRecord(*r);
}
SampleRecord& sr = *static_cast<SampleRecord*>(r.get());
if (!sr.HasUserCallChain()) {
return record_file_writer_->WriteRecord(sr);
}
pid_t pid;
pid_t tid;
CallChainJoiner::ChainType type;
std::vector<uint64_t> ips;
std::vector<uint64_t> sps;
if (!callchain_joiner_->GetNextCallChain(pid, tid, type, ips, sps)) {
return false;
}
CHECK_EQ(type, CallChainJoiner::JOINED_OFFLINE);
CHECK_EQ(pid, static_cast<pid_t>(sr.tid_data.pid));
CHECK_EQ(tid, static_cast<pid_t>(sr.tid_data.tid));
sr.UpdateUserCallChain(ips);
return record_file_writer_->WriteRecord(sr);
};
return reader->ReadDataSection(record_callback, false);
}
bool RecordCommand::DumpAdditionalFeatures(
const std::vector<std::string>& args) {
// Read data section of perf.data to collect hit file information.
thread_tree_.ClearThreadAndMap();
if (CheckKernelSymbolAddresses()) {
Dso::ReadKernelSymbolsFromProc();
}
auto callback = [&](const Record* r) {
thread_tree_.Update(*r);
if (r->type() == PERF_RECORD_SAMPLE) {
CollectHitFileInfo(*reinterpret_cast<const SampleRecord*>(r));
}
};
if (!record_file_writer_->ReadDataSection(callback)) {
return false;
}
size_t feature_count = 5;
if (branch_sampling_) {
feature_count++;
}
if (dump_symbols_) {
feature_count++;
}
if (!record_file_writer_->BeginWriteFeatures(feature_count)) {
return false;
}
if (!DumpBuildIdFeature()) {
return false;
}
if (dump_symbols_ && !DumpFileFeature()) {
return false;
}
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(ERROR) << "uname() failed";
return false;
}
if (!record_file_writer_->WriteFeatureString(PerfFileFormat::FEAT_OSRELEASE,
uname_buf.release)) {
return false;
}
if (!record_file_writer_->WriteFeatureString(PerfFileFormat::FEAT_ARCH,
uname_buf.machine)) {
return false;
}
std::string exec_path = android::base::GetExecutablePath();
if (exec_path.empty()) exec_path = "simpleperf";
std::vector<std::string> cmdline;
cmdline.push_back(exec_path);
cmdline.push_back("record");
cmdline.insert(cmdline.end(), args.begin(), args.end());
if (!record_file_writer_->WriteCmdlineFeature(cmdline)) {
return false;
}
if (branch_sampling_ != 0 &&
!record_file_writer_->WriteBranchStackFeature()) {
return false;
}
if (!DumpMetaInfoFeature()) {
return false;
}
if (!record_file_writer_->EndWriteFeatures()) {
return false;
}
return true;
}
bool RecordCommand::DumpBuildIdFeature() {
std::vector<BuildIdRecord> build_id_records;
BuildId build_id;
std::vector<Dso*> dso_v = thread_tree_.GetAllDsos();
for (Dso* dso : dso_v) {
if (!dso->HasDumpId()) {
continue;
}
if (dso->type() == DSO_KERNEL) {
if (!GetKernelBuildId(&build_id)) {
continue;
}
build_id_records.push_back(
BuildIdRecord(true, UINT_MAX, build_id, dso->Path()));
} else if (dso->type() == DSO_KERNEL_MODULE) {
std::string path = dso->Path();
std::string module_name = basename(&path[0]);
if (android::base::EndsWith(module_name, ".ko")) {
module_name = module_name.substr(0, module_name.size() - 3);
}
if (!GetModuleBuildId(module_name, &build_id)) {
LOG(DEBUG) << "can't read build_id for module " << module_name;
continue;
}
build_id_records.push_back(BuildIdRecord(true, UINT_MAX, build_id, path));
} else {
if (dso->Path() == DEFAULT_EXECNAME_FOR_THREAD_MMAP) {
continue;
}
auto tuple = SplitUrlInApk(dso->Path());
if (std::get<0>(tuple)) {
ElfStatus result = GetBuildIdFromApkFile(std::get<1>(tuple),
std::get<2>(tuple), &build_id);
if (result != ElfStatus::NO_ERROR) {
LOG(DEBUG) << "can't read build_id from file " << dso->Path() << ": "
<< result;
continue;
}
} else {
ElfStatus result = GetBuildIdFromElfFile(dso->Path(), &build_id);
if (result != ElfStatus::NO_ERROR) {
LOG(DEBUG) << "can't read build_id from file " << dso->Path() << ": "
<< result;
continue;
}
}
build_id_records.push_back(
BuildIdRecord(false, UINT_MAX, build_id, dso->Path()));
}
}
if (!record_file_writer_->WriteBuildIdFeature(build_id_records)) {
return false;
}
return true;
}
bool RecordCommand::DumpFileFeature() {
std::vector<Dso*> dso_v = thread_tree_.GetAllDsos();
return record_file_writer_->WriteFileFeatures(thread_tree_.GetAllDsos());
}
bool RecordCommand::DumpMetaInfoFeature() {
std::unordered_map<std::string, std::string> info_map;
info_map["simpleperf_version"] = GetSimpleperfVersion();
info_map["system_wide_collection"] = system_wide_collection_ ? "true" : "false";
info_map["trace_offcpu"] = trace_offcpu_ ? "true" : "false";
// By storing event types information in perf.data, the readers of perf.data have the same
// understanding of event types, even if they are on another machine.
info_map["event_type_info"] = ScopedEventTypes::BuildString(event_selection_set_.GetEvents());
#if defined(__ANDROID__)
info_map["product_props"] = android::base::StringPrintf("%s:%s:%s",
android::base::GetProperty("ro.product.manufacturer", "").c_str(),
android::base::GetProperty("ro.product.model", "").c_str(),
android::base::GetProperty("ro.product.name", "").c_str());
info_map["android_version"] = android::base::GetProperty("ro.build.version.release", "");
#endif
info_map["clockid"] = clockid_;
info_map["timestamp"] = std::to_string(time(nullptr));
return record_file_writer_->WriteMetaInfoFeature(info_map);
}
void RecordCommand::CollectHitFileInfo(const SampleRecord& r) {
const ThreadEntry* thread =
thread_tree_.FindThreadOrNew(r.tid_data.pid, r.tid_data.tid);
const MapEntry* map =
thread_tree_.FindMap(thread, r.ip_data.ip, r.InKernel());
Dso* dso = map->dso;
const Symbol* symbol;
if (dump_symbols_) {
symbol = thread_tree_.FindSymbol(map, r.ip_data.ip, nullptr, &dso);
if (!symbol->HasDumpId()) {
dso->CreateSymbolDumpId(symbol);
}
}
if (!dso->HasDumpId()) {
dso->CreateDumpId();
}
if (r.sample_type & PERF_SAMPLE_CALLCHAIN) {
bool in_kernel = r.InKernel();
bool first_ip = true;
for (uint64_t i = 0; i < r.callchain_data.ip_nr; ++i) {
uint64_t ip = r.callchain_data.ips[i];
if (ip >= PERF_CONTEXT_MAX) {
switch (ip) {
case PERF_CONTEXT_KERNEL:
in_kernel = true;
break;
case PERF_CONTEXT_USER:
in_kernel = false;
break;
default:
LOG(DEBUG) << "Unexpected perf_context in callchain: " << std::hex
<< ip;
}
} else {
if (first_ip) {
first_ip = false;
// Remove duplication with sample ip.
if (ip == r.ip_data.ip) {
continue;
}
}
map = thread_tree_.FindMap(thread, ip, in_kernel);
dso = map->dso;
if (dump_symbols_) {
symbol = thread_tree_.FindSymbol(map, ip, nullptr, &dso);
if (!symbol->HasDumpId()) {
dso->CreateSymbolDumpId(symbol);
}
}
if (!dso->HasDumpId()) {
dso->CreateDumpId();
}
}
}
}
}
void RegisterRecordCommand() {
RegisterCommand("record",
[] { return std::unique_ptr<Command>(new RecordCommand()); });
}