/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <stdlib.h>
#include <android-base/strings.h>
#include "fec_private.h"
/* converts a hex nibble into an int */
static inline int hextobin(char c)
{
if (c >= '0' && c <= '9') {
return c - '0';
} else if (c >= 'a' && c <= 'f') {
return c - 'a' + 10;
} else {
errno = EINVAL;
return -1;
}
}
/* converts a hex string `src' of `size' characters to binary and copies the
the result into `dst' */
static int parse_hex(uint8_t *dst, uint32_t size, const char *src)
{
int l, h;
check(dst);
check(src);
check(2 * size == strlen(src));
while (size) {
h = hextobin(tolower(*src++));
l = hextobin(tolower(*src++));
check(l >= 0);
check(h >= 0);
*dst++ = (h << 4) | l;
--size;
}
return 0;
}
/* parses a 64-bit unsigned integer from string `src' into `dst' and if
`maxval' is >0, checks that `dst' <= `maxval' */
static int parse_uint64(const char *src, uint64_t maxval, uint64_t *dst)
{
char *end;
unsigned long long int value;
check(src);
check(dst);
errno = 0;
value = strtoull(src, &end, 0);
if (*src == '\0' || *end != '\0' ||
(errno == ERANGE && value == ULLONG_MAX)) {
errno = EINVAL;
return -1;
}
if (maxval && value > maxval) {
errno = EINVAL;
return -1;
}
*dst = (uint64_t)value;
return 0;
}
/* computes the size of verity hash tree for `file_size' bytes and returns the
number of hash tree levels in `verity_levels,' and the number of hashes per
level in `level_hashes', if the parameters are non-NULL */
uint64_t verity_get_size(uint64_t file_size, uint32_t *verity_levels,
uint32_t *level_hashes)
{
/* we assume a known metadata size, 4 KiB block size, and SHA-256 to avoid
relying on disk content */
uint32_t level = 0;
uint64_t total = 0;
uint64_t hashes = file_size / FEC_BLOCKSIZE;
do {
if (level_hashes) {
level_hashes[level] = hashes;
}
hashes = fec_div_round_up(hashes * SHA256_DIGEST_LENGTH, FEC_BLOCKSIZE);
total += hashes;
++level;
} while (hashes > 1);
if (verity_levels) {
*verity_levels = level;
}
return total * FEC_BLOCKSIZE;
}
/* computes a SHA-256 salted with `f->verity.salt' from a FEC_BLOCKSIZE byte
buffer `block', and copies the hash to `hash' */
static inline int verity_hash(fec_handle *f, const uint8_t *block,
uint8_t *hash)
{
SHA256_CTX ctx;
SHA256_Init(&ctx);
check(f);
check(f->verity.salt);
SHA256_Update(&ctx, f->verity.salt, f->verity.salt_size);
check(block);
SHA256_Update(&ctx, block, FEC_BLOCKSIZE);
check(hash);
SHA256_Final(hash, &ctx);
return 0;
}
/* computes a verity hash for FEC_BLOCKSIZE bytes from buffer `block' and
compares it to the expected value in `expected' */
bool verity_check_block(fec_handle *f, const uint8_t *expected,
const uint8_t *block)
{
check(f);
check(block);
uint8_t hash[SHA256_DIGEST_LENGTH];
if (unlikely(verity_hash(f, block, hash) == -1)) {
error("failed to hash");
return false;
}
check(expected);
return !memcmp(expected, hash, SHA256_DIGEST_LENGTH);
}
/* reads a verity hash and the corresponding data block using error correction,
if available */
static bool ecc_read_hashes(fec_handle *f, uint64_t hash_offset,
uint8_t *hash, uint64_t data_offset, uint8_t *data)
{
check(f);
if (hash && fec_pread(f, hash, SHA256_DIGEST_LENGTH, hash_offset) !=
SHA256_DIGEST_LENGTH) {
error("failed to read hash tree: offset %" PRIu64 ": %s", hash_offset,
strerror(errno));
return false;
}
check(data);
if (fec_pread(f, data, FEC_BLOCKSIZE, data_offset) != FEC_BLOCKSIZE) {
error("failed to read hash tree: data_offset %" PRIu64 ": %s",
data_offset, strerror(errno));
return false;
}
return true;
}
/* reads the verity hash tree, validates it against the root hash in `root',
corrects errors if necessary, and copies valid data blocks for later use
to `f->verity.hash' */
static int verify_tree(fec_handle *f, const uint8_t *root)
{
uint8_t data[FEC_BLOCKSIZE];
uint8_t hash[SHA256_DIGEST_LENGTH];
check(f);
check(root);
verity_info *v = &f->verity;
uint32_t levels = 0;
/* calculate the size and the number of levels in the hash tree */
v->hash_size =
verity_get_size(v->data_blocks * FEC_BLOCKSIZE, &levels, NULL);
check(v->hash_start < UINT64_MAX - v->hash_size);
check(v->hash_start + v->hash_size <= f->data_size);
uint64_t hash_offset = v->hash_start;
uint64_t data_offset = hash_offset + FEC_BLOCKSIZE;
v->hash_data_offset = data_offset;
/* validate the root hash */
if (!raw_pread(f, data, FEC_BLOCKSIZE, hash_offset) ||
!verity_check_block(f, root, data)) {
/* try to correct */
if (!ecc_read_hashes(f, 0, NULL, hash_offset, data) ||
!verity_check_block(f, root, data)) {
error("root hash invalid");
return -1;
} else if (f->mode & O_RDWR &&
!raw_pwrite(f, data, FEC_BLOCKSIZE, hash_offset)) {
error("failed to rewrite the root block: %s", strerror(errno));
return -1;
}
}
debug("root hash valid");
/* calculate the number of hashes on each level */
uint32_t hashes[levels];
verity_get_size(v->data_blocks * FEC_BLOCKSIZE, NULL, hashes);
/* calculate the size and offset for the data hashes */
for (uint32_t i = 1; i < levels; ++i) {
uint32_t blocks = hashes[levels - i];
debug("%u hash blocks on level %u", blocks, levels - i);
v->hash_data_offset = data_offset;
v->hash_data_blocks = blocks;
data_offset += blocks * FEC_BLOCKSIZE;
}
check(v->hash_data_blocks);
check(v->hash_data_blocks <= v->hash_size / FEC_BLOCKSIZE);
check(v->hash_data_offset);
check(v->hash_data_offset <=
UINT64_MAX - (v->hash_data_blocks * FEC_BLOCKSIZE));
check(v->hash_data_offset < f->data_size);
check(v->hash_data_offset + v->hash_data_blocks * FEC_BLOCKSIZE <=
f->data_size);
/* copy data hashes to memory in case they are corrupted, so we don't
have to correct them every time they are needed */
std::unique_ptr<uint8_t[]> data_hashes(
new (std::nothrow) uint8_t[f->verity.hash_data_blocks * FEC_BLOCKSIZE]);
if (!data_hashes) {
errno = ENOMEM;
return -1;
}
/* validate the rest of the hash tree */
data_offset = hash_offset + FEC_BLOCKSIZE;
for (uint32_t i = 1; i < levels; ++i) {
uint32_t blocks = hashes[levels - i];
for (uint32_t j = 0; j < blocks; ++j) {
/* ecc reads are very I/O intensive, so read raw hash tree and do
error correcting only if it doesn't validate */
if (!raw_pread(f, hash, SHA256_DIGEST_LENGTH,
hash_offset + j * SHA256_DIGEST_LENGTH) ||
!raw_pread(f, data, FEC_BLOCKSIZE,
data_offset + j * FEC_BLOCKSIZE)) {
error("failed to read hashes: %s", strerror(errno));
return -1;
}
if (!verity_check_block(f, hash, data)) {
/* try to correct */
if (!ecc_read_hashes(f,
hash_offset + j * SHA256_DIGEST_LENGTH, hash,
data_offset + j * FEC_BLOCKSIZE, data) ||
!verity_check_block(f, hash, data)) {
error("invalid hash tree: hash_offset %" PRIu64 ", "
"data_offset %" PRIu64 ", block %u",
hash_offset, data_offset, j);
return -1;
}
/* update the corrected blocks to the file if we are in r/w
mode */
if (f->mode & O_RDWR) {
if (!raw_pwrite(f, hash, SHA256_DIGEST_LENGTH,
hash_offset + j * SHA256_DIGEST_LENGTH) ||
!raw_pwrite(f, data, FEC_BLOCKSIZE,
data_offset + j * FEC_BLOCKSIZE)) {
error("failed to write hashes: %s", strerror(errno));
return -1;
}
}
}
if (blocks == v->hash_data_blocks) {
memcpy(data_hashes.get() + j * FEC_BLOCKSIZE, data,
FEC_BLOCKSIZE);
}
}
hash_offset = data_offset;
data_offset += blocks * FEC_BLOCKSIZE;
}
debug("valid");
if (v->hash) {
delete[] v->hash;
v->hash = NULL;
}
v->hash = data_hashes.release();
return 0;
}
/* reads, corrects and parses the verity table, validates parameters, and if
`f->flags' does not have `FEC_VERITY_DISABLE' set, calls `verify_tree' to
load and validate the hash tree */
static int parse_table(fec_handle *f, uint64_t offset, uint32_t size, bool useecc)
{
check(f);
check(size >= VERITY_MIN_TABLE_SIZE);
check(size <= VERITY_MAX_TABLE_SIZE);
debug("offset = %" PRIu64 ", size = %u", offset, size);
verity_info *v = &f->verity;
std::unique_ptr<char[]> table(new (std::nothrow) char[size + 1]);
if (!table) {
errno = ENOMEM;
return -1;
}
if (!useecc) {
if (!raw_pread(f, table.get(), size, offset)) {
error("failed to read verity table: %s", strerror(errno));
return -1;
}
} else if (fec_pread(f, table.get(), size, offset) != (ssize_t)size) {
error("failed to ecc read verity table: %s", strerror(errno));
return -1;
}
table[size] = '\0';
debug("verity table: '%s'", table.get());
int i = 0;
std::unique_ptr<uint8_t[]> salt;
uint8_t root[SHA256_DIGEST_LENGTH];
auto tokens = android::base::Split(table.get(), " ");
for (const auto& token : tokens) {
switch (i++) {
case 0: /* version */
if (token != stringify(VERITY_TABLE_VERSION)) {
error("unsupported verity table version: %s", token.c_str());
return -1;
}
break;
case 3: /* data_block_size */
case 4: /* hash_block_size */
/* assume 4 KiB block sizes for everything */
if (token != stringify(FEC_BLOCKSIZE)) {
error("unsupported verity block size: %s", token.c_str());
return -1;
}
break;
case 5: /* num_data_blocks */
if (parse_uint64(token.c_str(), f->data_size / FEC_BLOCKSIZE,
&v->data_blocks) == -1) {
error("invalid number of verity data blocks: %s",
token.c_str());
return -1;
}
break;
case 6: /* hash_start_block */
if (parse_uint64(token.c_str(), f->data_size / FEC_BLOCKSIZE,
&v->hash_start) == -1) {
error("invalid verity hash start block: %s", token.c_str());
return -1;
}
v->hash_start *= FEC_BLOCKSIZE;
break;
case 7: /* algorithm */
if (token != "sha256") {
error("unsupported verity hash algorithm: %s", token.c_str());
return -1;
}
break;
case 8: /* digest */
if (parse_hex(root, sizeof(root), token.c_str()) == -1) {
error("invalid verity root hash: %s", token.c_str());
return -1;
}
break;
case 9: /* salt */
v->salt_size = token.size();
check(v->salt_size % 2 == 0);
v->salt_size /= 2;
salt.reset(new (std::nothrow) uint8_t[v->salt_size]);
if (!salt) {
errno = ENOMEM;
return -1;
}
if (parse_hex(salt.get(), v->salt_size, token.c_str()) == -1) {
error("invalid verity salt: %s", token.c_str());
return -1;
}
break;
default:
break;
}
}
if (i < VERITY_TABLE_ARGS) {
error("not enough arguments in verity table: %d; expected at least "
stringify(VERITY_TABLE_ARGS), i);
return -1;
}
check(v->hash_start < f->data_size);
if (v->metadata_start < v->hash_start) {
check(v->data_blocks == v->metadata_start / FEC_BLOCKSIZE);
} else {
check(v->data_blocks == v->hash_start / FEC_BLOCKSIZE);
}
if (v->salt) {
delete[] v->salt;
v->salt = NULL;
}
v->salt = salt.release();
if (v->table) {
delete[] v->table;
v->table = NULL;
}
v->table = table.release();
if (!(f->flags & FEC_VERITY_DISABLE)) {
if (verify_tree(f, root) == -1) {
return -1;
}
check(v->hash);
uint8_t zero_block[FEC_BLOCKSIZE];
memset(zero_block, 0, FEC_BLOCKSIZE);
if (verity_hash(f, zero_block, v->zero_hash) == -1) {
error("failed to hash");
return -1;
}
}
return 0;
}
/* rewrites verity metadata block using error corrected data in `f->verity' */
static int rewrite_metadata(fec_handle *f, uint64_t offset)
{
check(f);
check(f->data_size > VERITY_METADATA_SIZE);
check(offset <= f->data_size - VERITY_METADATA_SIZE);
std::unique_ptr<uint8_t[]> metadata(
new (std::nothrow) uint8_t[VERITY_METADATA_SIZE]);
if (!metadata) {
errno = ENOMEM;
return -1;
}
memset(metadata.get(), 0, VERITY_METADATA_SIZE);
verity_info *v = &f->verity;
memcpy(metadata.get(), &v->header, sizeof(v->header));
check(v->table);
size_t len = strlen(v->table);
check(sizeof(v->header) + len <= VERITY_METADATA_SIZE);
memcpy(metadata.get() + sizeof(v->header), v->table, len);
return raw_pwrite(f, metadata.get(), VERITY_METADATA_SIZE, offset);
}
static int validate_header(const fec_handle *f, const verity_header *header,
uint64_t offset)
{
check(f);
check(header);
if (header->magic != VERITY_MAGIC &&
header->magic != VERITY_MAGIC_DISABLE) {
return -1;
}
if (header->version != VERITY_VERSION) {
error("unsupported verity version %u", header->version);
return -1;
}
if (header->length < VERITY_MIN_TABLE_SIZE ||
header->length > VERITY_MAX_TABLE_SIZE) {
error("invalid verity table size: %u; expected ["
stringify(VERITY_MIN_TABLE_SIZE) ", "
stringify(VERITY_MAX_TABLE_SIZE) ")", header->length);
return -1;
}
/* signature is skipped, because for our purposes it won't matter from
where the data originates; the caller of the library is responsible
for signature verification */
if (offset > UINT64_MAX - header->length) {
error("invalid verity table length: %u", header->length);
return -1;
} else if (offset + header->length >= f->data_size) {
error("invalid verity table length: %u", header->length);
return -1;
}
return 0;
}
/* attempts to read verity metadata from `f->fd' position `offset'; if in r/w
mode, rewrites the metadata if it had errors */
int verity_parse_header(fec_handle *f, uint64_t offset)
{
check(f);
check(f->data_size > VERITY_METADATA_SIZE);
if (offset > f->data_size - VERITY_METADATA_SIZE) {
debug("failed to read verity header: offset %" PRIu64 " is too far",
offset);
return -1;
}
verity_info *v = &f->verity;
uint64_t errors = f->errors;
if (!raw_pread(f, &v->header, sizeof(v->header), offset)) {
error("failed to read verity header: %s", strerror(errno));
return -1;
}
/* use raw data to check for the alternative magic, because it will
be error corrected to VERITY_MAGIC otherwise */
if (v->header.magic == VERITY_MAGIC_DISABLE) {
/* this value is not used by us, but can be used by a caller to
decide whether dm-verity should be enabled */
v->disabled = true;
}
if (fec_pread(f, &v->ecc_header, sizeof(v->ecc_header), offset) !=
sizeof(v->ecc_header)) {
warn("failed to read verity header: %s", strerror(errno));
return -1;
}
if (validate_header(f, &v->header, offset)) {
/* raw verity header is invalid; this could be due to corruption, or
due to missing verity metadata */
if (validate_header(f, &v->ecc_header, offset)) {
return -1; /* either way, we cannot recover */
}
/* report mismatching fields */
if (!v->disabled && v->header.magic != v->ecc_header.magic) {
warn("corrected verity header magic");
v->header.magic = v->ecc_header.magic;
}
if (v->header.version != v->ecc_header.version) {
warn("corrected verity header version");
v->header.version = v->ecc_header.version;
}
if (v->header.length != v->ecc_header.length) {
warn("corrected verity header length");
v->header.length = v->ecc_header.length;
}
if (memcmp(v->header.signature, v->ecc_header.signature,
sizeof(v->header.signature))) {
warn("corrected verity header signature");
/* we have no way of knowing which signature is correct, if either
of them is */
}
}
v->metadata_start = offset;
if (parse_table(f, offset + sizeof(v->header), v->header.length,
false) == -1 &&
parse_table(f, offset + sizeof(v->header), v->header.length,
true) == -1) {
return -1;
}
/* if we corrected something while parsing metadata and we are in r/w
mode, rewrite the corrected metadata */
if (f->mode & O_RDWR && f->errors > errors &&
rewrite_metadata(f, offset) < 0) {
warn("failed to rewrite verity metadata: %s", strerror(errno));
}
if (v->metadata_start < v->hash_start) {
f->data_size = v->metadata_start;
} else {
f->data_size = v->hash_start;
}
return 0;
}
int fec_verity_set_status(struct fec_handle *f, bool enabled)
{
check(f);
if (!(f->mode & O_RDWR)) {
error("cannot update verity magic: read-only handle");
errno = EBADF;
return -1;
}
verity_info *v = &f->verity;
if (!v->metadata_start) {
error("cannot update verity magic: no metadata found");
errno = EINVAL;
return -1;
}
if (v->disabled == !enabled) {
return 0; /* nothing to do */
}
uint32_t magic = enabled ? VERITY_MAGIC : VERITY_MAGIC_DISABLE;
if (!raw_pwrite(f, &magic, sizeof(magic), v->metadata_start)) {
error("failed to update verity magic to %08x: %s", magic,
strerror(errno));
return -1;
}
warn("updated verity magic to %08x (%s)", magic,
enabled ? "enabled" : "disabled");
v->disabled = !enabled;
return 0;
}