C++程序  |  2929行  |  103.34 KB

/*===---- avxintrin.h - AVX intrinsics -------------------------------------===
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 *===-----------------------------------------------------------------------===
 */

#ifndef __IMMINTRIN_H
#error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
#endif

#ifndef __AVXINTRIN_H
#define __AVXINTRIN_H

typedef double __v4df __attribute__ ((__vector_size__ (32)));
typedef float __v8sf __attribute__ ((__vector_size__ (32)));
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
typedef int __v8si __attribute__ ((__vector_size__ (32)));
typedef short __v16hi __attribute__ ((__vector_size__ (32)));
typedef char __v32qi __attribute__ ((__vector_size__ (32)));

/* Unsigned types */
typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));

/* We need an explicitly signed variant for char. Note that this shouldn't
 * appear in the interface though. */
typedef signed char __v32qs __attribute__((__vector_size__(32)));

typedef float __m256 __attribute__ ((__vector_size__ (32)));
typedef double __m256d __attribute__((__vector_size__(32)));
typedef long long __m256i __attribute__((__vector_size__(32)));

/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))

/* Arithmetic */
/// \brief Adds two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the sums of both
///    operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a+(__v4df)__b);
}

/// \brief Adds two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the sums of both
///    operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a+(__v8sf)__b);
}

/// \brief Subtracts two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the minuend.
/// \param __b
///    A 256-bit vector of [4 x double] containing the subtrahend.
/// \returns A 256-bit vector of [4 x double] containing the differences between
///    both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a-(__v4df)__b);
}

/// \brief Subtracts two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the minuend.
/// \param __b
///    A 256-bit vector of [8 x float] containing the subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the differences between
///    both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a-(__v8sf)__b);
}

/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
///    two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the left source operand.
/// \param __b
///    A 256-bit vector of [4 x double] containing the right source operand.
/// \returns A 256-bit vector of [4 x double] containing the alternating sums
///    and differences between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
///    two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the left source operand.
/// \param __b
///    A 256-bit vector of [8 x float] containing the right source operand.
/// \returns A 256-bit vector of [8 x float] containing the alternating sums and
///    differences between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Divides two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the dividend.
/// \param __b
///    A 256-bit vector of [4 x double] containing the divisor.
/// \returns A 256-bit vector of [4 x double] containing the quotients of both
///    operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a/(__v4df)__b);
}

/// \brief Divides two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the dividend.
/// \param __b
///    A 256-bit vector of [8 x float] containing the divisor.
/// \returns A 256-bit vector of [8 x float] containing the quotients of both
///    operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a/(__v8sf)__b);
}

/// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \returns A 256-bit vector of [4 x double] containing the maximum values
///    between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \returns A 256-bit vector of [8 x float] containing the maximum values
///    between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \returns A 256-bit vector of [4 x double] containing the minimum values
///    between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
///    of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \returns A 256-bit vector of [8 x float] containing the minimum values
///    between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Multiplies two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the operands.
/// \returns A 256-bit vector of [4 x double] containing the products of both
///    operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4df)__a * (__v4df)__b);
}

/// \brief Multiplies two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the operands.
/// \returns A 256-bit vector of [8 x float] containing the products of both
///    operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8sf)__a * (__v8sf)__b);
}

/// \brief Calculates the square roots of the values in a 256-bit vector of
///    [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the square roots of the
///    values in the operand.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)
{
  return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
}

/// \brief Calculates the square roots of the values in a 256-bit vector of
///    [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the square roots of the
///    values in the operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)
{
  return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
}

/// \brief Calculates the reciprocal square roots of the values in a 256-bit
///    vector of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the reciprocal square
///    roots of the values in the operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)
{
  return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
}

/// \brief Calculates the reciprocals of the values in a 256-bit vector of
///    [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
///    values in the operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)
{
  return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
}

/// \brief Rounds the values in a 256-bit vector of [4 x double] as specified
///    by the byte operand. The source values are rounded to integer values and
///    returned as 64-bit double-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_round_pd(__m256d V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
///
/// \param V
///    A 256-bit vector of [4 x double].
/// \param M
///    An integer value that specifies the rounding operation.
///    Bits [7:4] are reserved.
///    Bit [3] is a precision exception value:
///    0: A normal PE exception is used.
///    1: The PE field is not updated.
///    Bit [2] is the rounding control source:
///    0: Use bits [1:0] of M.
///    1: Use the current MXCSR setting.
///    Bits [1:0] contain the rounding control definition:
///    00: Nearest.
///    01: Downward (toward negative infinity).
///    10: Upward (toward positive infinity).
///    11: Truncated.
/// \returns A 256-bit vector of [4 x double] containing the rounded values.
#define _mm256_round_pd(V, M) __extension__ ({ \
    (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })

/// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
///    specified by the byte operand. The source values are rounded to integer
///    values and returned as floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_round_ps(__m256 V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
///
/// \param V
///    A 256-bit vector of [8 x float].
/// \param M
///    An integer value that specifies the rounding operation.
///    Bits [7:4] are reserved.
///    Bit [3] is a precision exception value:
///    0: A normal PE exception is used.
///    1: The PE field is not updated.
///    Bit [2] is the rounding control source:
///    0: Use bits [1:0] of M.
///    1: Use the current MXCSR setting.
///    Bits [1:0] contain the rounding control definition:
///    00: Nearest.
///    01: Downward (toward negative infinity).
///    10: Upward (toward positive infinity).
///    11: Truncated.
/// \returns A 256-bit vector of [8 x float] containing the rounded values.
#define _mm256_round_ps(V, M) __extension__ ({ \
  (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })

/// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The
///    source values are rounded up to integer values and returned as 64-bit
///    double-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_ceil_pd(__m256d V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
///
/// \param V
///    A 256-bit vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the rounded up values.
#define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)

/// \brief Rounds down the values stored in a 256-bit vector of [4 x double].
///    The source values are rounded down to integer values and returned as
///    64-bit double-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_floor_pd(__m256d V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
///
/// \param V
///    A 256-bit vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the rounded down
///    values.
#define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)

/// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The
///    source values are rounded up to integer values and returned as
///    floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_ceil_ps(__m256 V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
///
/// \param V
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the rounded up values.
#define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)

/// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The
///    source values are rounded down to integer values and returned as
///    floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_floor_ps(__m256 V);
/// \endcode
///
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
///
/// \param V
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the rounded down values.
#define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)

/* Logical */
/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
///    values between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4du)__a & (__v4du)__b);
}

/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
///    values between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8su)__a & (__v8su)__b);
}

/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
///    the one's complement of the values contained in the first source operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing the left source operand. The
///    one's complement of this value is used in the bitwise AND.
/// \param __b
///    A 256-bit vector of [4 x double] containing the right source operand.
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
///    values of the second operand and the one's complement of the first
///    operand.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a, __m256d __b)
{
  return (__m256d)(~(__v4du)__a & (__v4du)__b);
}

/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
///    the one's complement of the values contained in the first source operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing the left source operand. The
///    one's complement of this value is used in the bitwise AND.
/// \param __b
///    A 256-bit vector of [8 x float] containing the right source operand.
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
///    values of the second operand and the one's complement of the first
///    operand.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a, __m256 __b)
{
  return (__m256)(~(__v8su)__a & (__v8su)__b);
}

/// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VORPD / ORPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
///    values between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4du)__a | (__v4du)__b);
}

/// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VORPS / ORPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
///    values between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8su)__a | (__v8su)__b);
}

/// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
/// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
///    values between both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a, __m256d __b)
{
  return (__m256d)((__v4du)__a ^ (__v4du)__b);
}

/// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
/// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
///    values between both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a, __m256 __b)
{
  return (__m256)((__v8su)__a ^ (__v8su)__b);
}

/* Horizontal arithmetic */
/// \brief Horizontally adds the adjacent pairs of values contained in two
///    256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal sums of the values are returned in the even-indexed
///    elements of a vector of [4 x double].
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal sums of the values are returned in the odd-indexed
///    elements of a vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
///    both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Horizontally adds the adjacent pairs of values contained in two
///    256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal sums of the values are returned in the elements with
///    index 0, 1, 4, 5 of a vector of [8 x float].
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal sums of the values are returned in the elements with
///    index 2, 3, 6, 7 of a vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
///    both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
}

/// \brief Horizontally subtracts the adjacent pairs of values contained in two
///    256-bit vectors of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    even-indexed elements of a vector of [4 x double].
/// \param __b
///    A 256-bit vector of [4 x double] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    odd-indexed elements of a vector of [4 x double].
/// \returns A 256-bit vector of [4 x double] containing the horizontal
///    differences of both operands.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a, __m256d __b)
{
  return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
}

/// \brief Horizontally subtracts the adjacent pairs of values contained in two
///    256-bit vectors of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
/// \param __b
///    A 256-bit vector of [8 x float] containing one of the source operands.
///    The horizontal differences between the values are returned in the
///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] containing the horizontal
///    differences of both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a, __m256 __b)
{
  return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
}

/* Vector permutations */
/// \brief Copies the values in a 128-bit vector of [2 x double] as specified
///    by the 128-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param __a
///    A 128-bit vector of [2 x double].
/// \param __c
///    A 128-bit integer vector operand specifying how the values are to be
///    copied.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [65]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
/// \returns A 128-bit vector of [2 x double] containing the copied values.
static __inline __m128d __DEFAULT_FN_ATTRS
_mm_permutevar_pd(__m128d __a, __m128i __c)
{
  return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
}

/// \brief Copies the values in a 256-bit vector of [4 x double] as
///    specified by the 256-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \param __c
///    A 256-bit integer vector operand specifying how the values are to be
///    copied.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [65]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
///    Bit [129]:
///    0: Bits [191:128] of the source are copied to bits [191:128] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [191:128] of the
///    returned vector.
///    Bit [193]:
///    0: Bits [191:128] of the source are copied to bits [255:192] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [255:192] of the
///    returned vector.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a, __m256i __c)
{
  return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
}

/// \brief Copies the values stored in a 128-bit vector of [4 x float] as
///    specified by the 128-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param __a
///    A 128-bit vector of [4 x float].
/// \param __c
///    A 128-bit integer vector operand specifying how the values are to be
///    copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [33:32]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [65:64]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [97:96]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
/// \returns A 128-bit vector of [4 x float] containing the copied values.
static __inline __m128 __DEFAULT_FN_ATTRS
_mm_permutevar_ps(__m128 __a, __m128i __c)
{
  return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
}

/// \brief Copies the values stored in a 256-bit vector of [8 x float] as
///    specified by the 256-bit integer vector operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \param __c
///    A 256-bit integer vector operand specifying how the values are to be
///    copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [33:32]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [65:64]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [97:96]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
///    Bits [129:128]:
///    00: Bits [159:128] of the source are copied to bits [159:128] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [159:128] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [159:128] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [159:128] of the
///    returned vector.
///    Bits [161:160]:
///    00: Bits [159:128] of the source are copied to bits [191:160] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [191:160] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [191:160] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [191:160] of the
///    returned vector.
///    Bits [193:192]:
///    00: Bits [159:128] of the source are copied to bits [223:192] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [223:192] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [223:192] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [223:192] of the
///    returned vector.
///    Bits [225:224]:
///    00: Bits [159:128] of the source are copied to bits [255:224] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [255:224] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [255:224] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [255:224] of the
///    returned vector.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a, __m256i __c)
{
  return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
}

/// \brief Copies the values in a 128-bit vector of [2 x double] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_permute_pd(__m128d A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param A
///    A 128-bit vector of [2 x double].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bit [0]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
/// \returns A 128-bit vector of [2 x double] containing the copied values.
#define _mm_permute_pd(A, C) __extension__ ({ \
  (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
                                   (__v2df)_mm_undefined_pd(), \
                                   ((C) >> 0) & 0x1, ((C) >> 1) & 0x1); })

/// \brief Copies the values in a 256-bit vector of [4 x double] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_permute_pd(__m256d A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
///
/// \param A
///    A 256-bit vector of [4 x double].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bit [0]:
///    0: Bits [63:0] of the source are copied to bits [63:0] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [63:0] of the
///    returned vector.
///    Bit [1]:
///    0: Bits [63:0] of the source are copied to bits [127:64] of the
///    returned vector.
///    1: Bits [127:64] of the source are copied to bits [127:64] of the
///    returned vector.
///    Bit [2]:
///    0: Bits [191:128] of the source are copied to bits [191:128] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [191:128] of the
///    returned vector.
///    Bit [3]:
///    0: Bits [191:128] of the source are copied to bits [255:192] of the
///    returned vector.
///    1: Bits [255:192] of the source are copied to bits [255:192] of the
///    returned vector.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
#define _mm256_permute_pd(A, C) __extension__ ({ \
  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
                                   (__v4df)_mm256_undefined_pd(), \
                                   0 + (((C) >> 0) & 0x1), \
                                   0 + (((C) >> 1) & 0x1), \
                                   2 + (((C) >> 2) & 0x1), \
                                   2 + (((C) >> 3) & 0x1)); })

/// \brief Copies the values in a 128-bit vector of [4 x float] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_permute_ps(__m128 A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param A
///    A 128-bit vector of [4 x float].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [3:2]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [5:4]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [7:6]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
/// \returns A 128-bit vector of [4 x float] containing the copied values.
#define _mm_permute_ps(A, C) __extension__ ({ \
  (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
                                  (__v4sf)_mm_undefined_ps(), \
                                  ((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \
                                  ((C) >> 4) & 0x3, ((C) >> 6) & 0x3); })

/// \brief Copies the values in a 256-bit vector of [8 x float] as
///    specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_permute_ps(__m256 A, const int C);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
///
/// \param A
///    A 256-bit vector of [8 x float].
/// \param C
///    An immediate integer operand specifying how the values are to be copied.
///    Bits [1:0]:
///    00: Bits [31:0] of the source are copied to bits [31:0] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [31:0] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [31:0] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [31:0] of the
///    returned vector.
///    Bits [3:2]:
///    00: Bits [31:0] of the source are copied to bits [63:32] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [63:32] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [63:32] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [63:32] of the
///    returned vector.
///    Bits [5:4]:
///    00: Bits [31:0] of the source are copied to bits [95:64] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [95:64] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [95:64] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [95:64] of the
///    returned vector.
///    Bits [7:6]:
///    00: Bits [31:0] of the source are copied to bits [127:96] of the
///    returned vector.
///    01: Bits [63:32] of the source are copied to bits [127:96] of the
///    returned vector.
///    10: Bits [95:64] of the source are copied to bits [127:96] of the
///    returned vector.
///    11: Bits [127:96] of the source are copied to bits [127:96] of the
///    returned vector.
///    Bits [1:0]:
///    00: Bits [159:128] of the source are copied to bits [159:128] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [159:128] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [159:128] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [159:128] of the
///    returned vector.
///    Bits [3:2]:
///    00: Bits [159:128] of the source are copied to bits [191:160] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [191:160] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [191:160] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [191:160] of the
///    returned vector.
///    Bits [5:4]:
///    00: Bits [159:128] of the source are copied to bits [223:192] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [223:192] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [223:192] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [223:192] of the
///    returned vector.
///    Bits [7:6]:
///    00: Bits [159:128] of the source are copied to bits [255:224] of the
///    returned vector.
///    01: Bits [191:160] of the source are copied to bits [255:224] of the
///    returned vector.
///    10: Bits [223:192] of the source are copied to bits [255:224] of the
///    returned vector.
///    11: Bits [255:224] of the source are copied to bits [255:224] of the
///    returned vector.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
#define _mm256_permute_ps(A, C) __extension__ ({ \
  (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
                                  (__v8sf)_mm256_undefined_ps(), \
                                  0 + (((C) >> 0) & 0x3), \
                                  0 + (((C) >> 2) & 0x3), \
                                  0 + (((C) >> 4) & 0x3), \
                                  0 + (((C) >> 6) & 0x3), \
                                  4 + (((C) >> 0) & 0x3), \
                                  4 + (((C) >> 2) & 0x3), \
                                  4 + (((C) >> 4) & 0x3), \
                                  4 + (((C) >> 6) & 0x3)); })

/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
///    [4 x double], as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
///
/// \param V1
///    A 256-bit vector of [4 x double].
/// \param V2
///    A 256-bit vector of [4 x double.
/// \param M
///    An immediate integer operand specifying how the values are to be
///    permuted.
///    Bits [1:0]:
///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
///    destination.
///    Bits [5:4]:
///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
///    destination.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
#define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
  (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
                                           (__v4df)(__m256d)(V2), (M)); })

/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
///    [8 x float], as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
///
/// \param V1
///    A 256-bit vector of [8 x float].
/// \param V2
///    A 256-bit vector of [8 x float].
/// \param M
///    An immediate integer operand specifying how the values are to be
///    permuted.
///    Bits [1:0]:
///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
///    destination.
///    Bits [5:4]:
///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
///    destination.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
#define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
                                          (__v8sf)(__m256)(V2), (M)); })

/// \brief Permutes 128-bit data values stored in two 256-bit integer vectors,
///    as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
///
/// \param V1
///    A 256-bit integer vector.
/// \param V2
///    A 256-bit integer vector.
/// \param M
///    An immediate integer operand specifying how the values are to be copied.
///    Bits [1:0]:
///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
///    destination.
///    Bits [5:4]:
///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
///    destination.
///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
///    destination.
///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
///    destination.
///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
///    destination.
/// \returns A 256-bit integer vector containing the copied values.
#define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
  (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
                                           (__v8si)(__m256i)(V2), (M)); })

/* Vector Blend */
/// \brief Merges 64-bit double-precision data values stored in either of the
///    two 256-bit vectors of [4 x double], as specified by the immediate
///    integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction.
///
/// \param V1
///    A 256-bit vector of [4 x double].
/// \param V2
///    A 256-bit vector of [4 x double].
/// \param M
///    An immediate integer operand, with mask bits [3:0] specifying how the
///    values are to be copied. The position of the mask bit corresponds to the
///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
///    element in operand V1 is copied to the same position in the destination.
///    When a mask bit is 1, the corresponding 64-bit element in operand V2 is
///    copied to the same position in the destination.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
#define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
                                   (__v4df)(__m256d)(V2), \
                                   (((M) & 0x01) ? 4 : 0), \
                                   (((M) & 0x02) ? 5 : 1), \
                                   (((M) & 0x04) ? 6 : 2), \
                                   (((M) & 0x08) ? 7 : 3)); })

/// \brief Merges 32-bit single-precision data values stored in either of the
///    two 256-bit vectors of [8 x float], as specified by the immediate
///    integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction.
///
/// \param V1
///    A 256-bit vector of [8 x float].
/// \param V2
///    A 256-bit vector of [8 x float].
/// \param M
///    An immediate integer operand, with mask bits [7:0] specifying how the
///    values are to be copied. The position of the mask bit corresponds to the
///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
///    element in operand V1 is copied to the same position in the destination.
///    When a mask bit is 1, the corresponding 32-bit element in operand V2 is
///    copied to the same position in the destination.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
#define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
                                  (__v8sf)(__m256)(V2), \
                                  (((M) & 0x01) ?  8 : 0), \
                                  (((M) & 0x02) ?  9 : 1), \
                                  (((M) & 0x04) ? 10 : 2), \
                                  (((M) & 0x08) ? 11 : 3), \
                                  (((M) & 0x10) ? 12 : 4), \
                                  (((M) & 0x20) ? 13 : 5), \
                                  (((M) & 0x40) ? 14 : 6), \
                                  (((M) & 0x80) ? 15 : 7)); })

/// \brief Merges 64-bit double-precision data values stored in either of the
///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
///    operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \param __b
///    A 256-bit vector of [4 x double].
/// \param __c
///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
///    how the values are to be copied. The position of the mask bit corresponds
///    to the most significant bit of a copied value. When a mask bit is 0, the
///    corresponding 64-bit element in operand __a is copied to the same
///    position in the destination. When a mask bit is 1, the corresponding
///    64-bit element in operand __b is copied to the same position in the
///    destination.
/// \returns A 256-bit vector of [4 x double] containing the copied values.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
{
  return (__m256d)__builtin_ia32_blendvpd256(
    (__v4df)__a, (__v4df)__b, (__v4df)__c);
}

/// \brief Merges 32-bit single-precision data values stored in either of the
///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
///    operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \param __b
///    A 256-bit vector of [8 x float].
/// \param __c
///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
///    and 31 specifying how the values are to be copied. The position of the
///    mask bit corresponds to the most significant bit of a copied value. When
///    a mask bit is 0, the corresponding 32-bit element in operand __a is
///    copied to the same position in the destination. When a mask bit is 1, the
///    corresponding 32-bit element in operand __b is copied to the same
///    position in the destination.
/// \returns A 256-bit vector of [8 x float] containing the copied values.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
{
  return (__m256)__builtin_ia32_blendvps256(
    (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
}

/* Vector Dot Product */
/// \brief Computes two dot products in parallel, using the lower and upper
///    halves of two [8 x float] vectors as input to the two computations, and
///    returning the two dot products in the lower and upper halves of the
///    [8 x float] result. The immediate integer operand controls which
///    input elements will contribute to the dot product, and where the final
///    results are returned. In general, for each dot product, the four
///    corresponding elements of the input vectors are multiplied; the first
///    two and second two products are summed, then the two sums are added to
///    form the final result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VDPPS / DPPS instruction.
///
/// \param V1
///    A vector of [8 x float] values, treated as two [4 x float] vectors.
/// \param V2
///    A vector of [8 x float] values, treated as two [4 x float] vectors.
/// \param M
///    An immediate integer argument. Bits [7:4] determine which elements of
///    the input vectors are used, with bit [4] corresponding to the lowest
///    element and bit [7] corresponding to the highest element of each [4 x
///    float] subvector. If a bit is set, the corresponding elements from the
///    two input vectors are used as an input for dot product; otherwise that
///    input is treated as zero. Bits [3:0] determine which elements of the
///    result will receive a copy of the final dot product, with bit [0]
///    corresponding to the lowest element and bit [3] corresponding to the
///    highest element of each [4 x float] subvector. If a bit is set, the dot
///    product is returned in the corresponding element; otherwise that element
///    is set to zero. The bitmask is applied in the same way to each of the
///    two parallel dot product computations.
/// \returns A 256-bit vector of [8 x float] containing the two dot products.
#define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
                                 (__v8sf)(__m256)(V2), (M)); })

/* Vector shuffle */
/// \brief Selects 8 float values from the 256-bit operands of [8 x float], as
///    specified by the immediate value operand. The four selected elements in
///    each operand are copied to the destination according to the bits
///    specified in the immediate operand. The selected elements from the first
///    256-bit operand are copied to bits [63:0] and bits [191:128] of the
///    destination, and the selected elements from the second 256-bit operand
///    are copied to bits [127:64] and bits [255:192] of the destination. For
///    example, if bits [7:0] of the immediate operand contain a value of 0xFF,
///    the 256-bit destination vector would contain the following values: b[7],
///    b[7], a[7], a[7], b[3], b[3], a[3], a[3].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
/// \endcode
///
/// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction.
///
/// \param a
///    A 256-bit vector of [8 x float]. The four selected elements in this
///    operand are copied to bits [63:0] and bits [191:128] in the destination,
///    according to the bits specified in the immediate operand.
/// \param b
///    A 256-bit vector of [8 x float]. The four selected elements in this
///    operand are copied to bits [127:64] and bits [255:192] in the
///    destination, according to the bits specified in the immediate operand.
/// \param mask
///    An immediate value containing an 8-bit value specifying which elements to
///    copy from a and b. Bits [3:0] specify the values copied from operand a.
///    Bits [7:4] specify the values copied from operand b.
///    The destinations within the 256-bit destination are assigned values as
///    follows, according to the bit value assignments described below:
///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
///    destination.
///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
///    destination.
///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
///    destination.
///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
///    the destination.
///    Bit value assignments:
///    00: Bits [31:0] and [159:128] are copied from the selected operand.
///    01: Bits [63:32] and [191:160] are copied from the selected operand.
///    10: Bits [95:64] and [223:192] are copied from the selected operand.
///    11: Bits [127:96] and [255:224] are copied from the selected operand.
/// \returns A 256-bit vector of [8 x float] containing the shuffled values.
#define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
  (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
                                  (__v8sf)(__m256)(b), \
                                  0  + (((mask) >> 0) & 0x3), \
                                  0  + (((mask) >> 2) & 0x3), \
                                  8  + (((mask) >> 4) & 0x3), \
                                  8  + (((mask) >> 6) & 0x3), \
                                  4  + (((mask) >> 0) & 0x3), \
                                  4  + (((mask) >> 2) & 0x3), \
                                  12 + (((mask) >> 4) & 0x3), \
                                  12 + (((mask) >> 6) & 0x3)); })

/// \brief Selects four double-precision values from the 256-bit operands of
///    [4 x double], as specified by the immediate value operand. The selected
///    elements from the first 256-bit operand are copied to bits [63:0] and
///    bits [191:128] in the destination, and the selected elements from the
///    second 256-bit operand are copied to bits [127:64] and bits [255:192] in
///    the destination. For example, if bits [3:0] of the immediate operand
///    contain a value of 0xF, the 256-bit destination vector would contain the
///    following values: b[3], a[3], b[1], a[1].
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
/// \endcode
///
/// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction.
///
/// \param a
///    A 256-bit vector of [4 x double].
/// \param b
///    A 256-bit vector of [4 x double].
/// \param mask
///    An immediate value containing 8-bit values specifying which elements to
///    copy from a and b:
///    Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the
///    destination.
///    Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the
///    destination.
///    Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the
///    destination.
///    Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the
///    destination.
///    Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the
///    destination.
///    Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the
///    destination.
///    Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the
///    destination.
///    Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the
///    destination.
/// \returns A 256-bit vector of [4 x double] containing the shuffled values.
#define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
                                   (__v4df)(__m256d)(b), \
                                   0 + (((mask) >> 0) & 0x1), \
                                   4 + (((mask) >> 1) & 0x1), \
                                   2 + (((mask) >> 2) & 0x1), \
                                   6 + (((mask) >> 3) & 0x1)); })

/* Compare */
#define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
#define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
#define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
#define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
#define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
#define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
#define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
#define _CMP_ORD_Q    0x07 /* Ordered (nonsignaling)   */
#define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
#define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unord, signaling)  */
#define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
#define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
#define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
#define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
#define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
#define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
#define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
#define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
#define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
#define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
#define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
#define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
#define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unord, non-signaling)  */
#define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
#define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
#define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unord, non-sign)  */
#define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
#define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
#define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
#define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
#define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
#define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */

/// \brief Compares each of the corresponding double-precision values of two
///    128-bit vectors of [2 x double], using the operation specified by the
///    immediate integer operand. Returns a [2 x double] vector consisting of
///    two doubles corresponding to the two comparison results: zero if the
///    comparison is false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
///
/// \param a
///    A 128-bit vector of [2 x double].
/// \param b
///    A 128-bit vector of [2 x double].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                        (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
#define _mm_cmp_pd(a, b, c) __extension__ ({ \
  (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
                                (__v2df)(__m128d)(b), (c)); })

/// \brief Compares each of the corresponding values of two 128-bit vectors of
///    [4 x float], using the operation specified by the immediate integer
///    operand. Returns a [4 x float] vector consisting of four floats
///    corresponding to the four comparison results: zero if the comparison is
///    false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
///
/// \param a
///    A 128-bit vector of [4 x float].
/// \param b
///    A 128-bit vector of [4 x float].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
#define _mm_cmp_ps(a, b, c) __extension__ ({ \
  (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
                               (__v4sf)(__m128)(b), (c)); })

/// \brief Compares each of the corresponding double-precision values of two
///    256-bit vectors of [4 x double], using the operation specified by the
///    immediate integer operand. Returns a [4 x double] vector consisting of
///    four doubles corresponding to the four comparison results: zero if the
///    comparison is false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
///
/// \param a
///    A 256-bit vector of [4 x double].
/// \param b
///    A 256-bit vector of [4 x double].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                        (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 256-bit vector of [4 x double] containing the comparison results.
#define _mm256_cmp_pd(a, b, c) __extension__ ({ \
  (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
                                   (__v4df)(__m256d)(b), (c)); })

/// \brief Compares each of the corresponding values of two 256-bit vectors of
///    [8 x float], using the operation specified by the immediate integer
///    operand. Returns a [8 x float] vector consisting of eight floats
///    corresponding to the eight comparison results: zero if the comparison is
///    false, and all 1's if the comparison is true.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
///
/// \param a
///    A 256-bit vector of [8 x float].
/// \param b
///    A 256-bit vector of [8 x float].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 256-bit vector of [8 x float] containing the comparison results.
#define _mm256_cmp_ps(a, b, c) __extension__ ({ \
  (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
                                  (__v8sf)(__m256)(b), (c)); })

/// \brief Compares each of the corresponding scalar double-precision values of
///    two 128-bit vectors of [2 x double], using the operation specified by the
///    immediate integer operand. If the result is true, all 64 bits of the
///    destination vector are set; otherwise they are cleared.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction.
///
/// \param a
///    A 128-bit vector of [2 x double].
/// \param b
///    A 128-bit vector of [2 x double].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
#define _mm_cmp_sd(a, b, c) __extension__ ({ \
  (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
                                (__v2df)(__m128d)(b), (c)); })

/// \brief Compares each of the corresponding scalar values of two 128-bit
///    vectors of [4 x float], using the operation specified by the immediate
///    integer operand. If the result is true, all 32 bits of the destination
///    vector are set; otherwise they are cleared.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
/// \endcode
///
/// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction.
///
/// \param a
///    A 128-bit vector of [4 x float].
/// \param b
///    A 128-bit vector of [4 x float].
/// \param c
///    An immediate integer operand, with bits [4:0] specifying which comparison
///    operation to use:
///    00h, 08h, 10h, 18h: Equal
///    01h, 09h, 11h, 19h: Less than
///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
///                        operands)
///    03h, 0Bh, 13h, 1Bh: Unordered
///    04h, 0Ch, 14h, 1Ch: Not equal
///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
///                       (swapped operands)
///    07h, 0Fh, 17h, 1Fh: Ordered
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
#define _mm_cmp_ss(a, b, c) __extension__ ({ \
  (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
                               (__v4sf)(__m128)(b), (c)); })

/// \brief Takes a [8 x i32] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///   EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit vector of [8 x i32].
/// \param __imm
///    An immediate integer operand with bits [2:0] determining which vector
///    element is extracted and returned.
/// \returns A 32-bit integer containing the extracted 32 bits of extended
///    packed data.
static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi32(__m256i __a, const int __imm)
{
  __v8si __b = (__v8si)__a;
  return __b[__imm & 7];
}

/// \brief Takes a [16 x i16] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///    EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit integer vector of [16 x i16].
/// \param __imm
///    An immediate integer operand with bits [3:0] determining which vector
///    element is extracted and returned.
/// \returns A 32-bit integer containing the extracted 16 bits of zero extended
///    packed data.
static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi16(__m256i __a, const int __imm)
{
  __v16hi __b = (__v16hi)__a;
  return (unsigned short)__b[__imm & 15];
}

/// \brief Takes a [32 x i8] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///    EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit integer vector of [32 x i8].
/// \param __imm
///    An immediate integer operand with bits [4:0] determining which vector
///    element is extracted and returned.
/// \returns A 32-bit integer containing the extracted 8 bits of zero extended
///    packed data.
static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi8(__m256i __a, const int __imm)
{
  __v32qi __b = (__v32qi)__a;
  return (unsigned char)__b[__imm & 31];
}

#ifdef __x86_64__
/// \brief Takes a [4 x i64] vector and returns the vector element value
///    indexed by the immediate constant operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
///    EXTRACTF128+COMPOSITE instruction.
///
/// \param __a
///    A 256-bit integer vector of [4 x i64].
/// \param __imm
///    An immediate integer operand with bits [1:0] determining which vector
///    element is extracted and returned.
/// \returns A 64-bit integer containing the extracted 64 bits of extended
///    packed data.
static __inline long long  __DEFAULT_FN_ATTRS
_mm256_extract_epi64(__m256i __a, const int __imm)
{
  __v4di __b = (__v4di)__a;
  return __b[__imm & 3];
}
#endif

/// \brief Takes a [8 x i32] vector and replaces the vector element value
///    indexed by the immediate constant operand by a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [8 x i32] to be used by the insert operation.
/// \param __b
///    An integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///     with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi32(__m256i __a, int __b, int const __imm)
{
  __v8si __c = (__v8si)__a;
  __c[__imm & 7] = __b;
  return (__m256i)__c;
}


/// \brief Takes a [16 x i16] vector and replaces the vector element value
///    indexed by the immediate constant operand with a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [16 x i16] to be used by the insert operation.
/// \param __b
///    An i16 integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///     with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi16(__m256i __a, int __b, int const __imm)
{
  __v16hi __c = (__v16hi)__a;
  __c[__imm & 15] = __b;
  return (__m256i)__c;
}

/// \brief Takes a [32 x i8] vector and replaces the vector element value
///    indexed by the immediate constant operand with a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [32 x i8] to be used by the insert operation.
/// \param __b
///    An i8 integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///    with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi8(__m256i __a, int __b, int const __imm)
{
  __v32qi __c = (__v32qi)__a;
  __c[__imm & 31] = __b;
  return (__m256i)__c;
}

#ifdef __x86_64__
/// \brief Takes a [4 x i64] vector and replaces the vector element value
///    indexed by the immediate constant operand with a new value. Returns the
///    modified vector.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
///    INSERTF128+COMPOSITE instruction.
///
/// \param __a
///    A vector of [4 x i64] to be used by the insert operation.
/// \param __b
///    A 64-bit integer value. The replacement value for the insert operation.
/// \param __imm
///    An immediate integer specifying the index of the vector element to be
///    replaced.
/// \returns A copy of vector __a, after replacing its element indexed by __imm
///     with __b.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
{
  __v4di __c = (__v4di)__a;
  __c[__imm & 3] = __b;
  return (__m256i)__c;
}
#endif

/* Conversion */
/// \brief Converts a vector of [4 x i32] into a vector of [4 x double].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction.
///
/// \param __a
///    A 128-bit integer vector of [4 x i32].
/// \returns A 256-bit vector of [4 x double] containing the converted values.
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)
{
  return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
}

/// \brief Converts a vector of [8 x i32] into a vector of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction.
///
/// \param __a
///    A 256-bit integer vector.
/// \returns A 256-bit vector of [8 x float] containing the converted values.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)
{
  return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
}

/// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of
///    [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction.
///
/// \param __a
///    A 256-bit vector of [4 x double].
/// \returns A 128-bit vector of [4 x float] containing the converted values.
static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)
{
  return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
}

/// \brief Converts a vector of [8 x float] into a vector of [8 x i32].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction.
///
/// \param __a
///    A 256-bit vector of [8 x float].
/// \returns A 256-bit integer vector containing the converted values.
static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)
{
  return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)
{
  return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
}

static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)
{
  return (__m128i)__builtin_convertvector((__v4df) __a, __v4si);
}

static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)
{
  return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)
{
  return (__m256i)__builtin_convertvector((__v8sf) __a, __v8si);
}

static __inline double __DEFAULT_FN_ATTRS
_mm256_cvtsd_f64(__m256d __a)
{
 return __a[0];
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_cvtsi256_si32(__m256i __a)
{
 __v8si __b = (__v8si)__a;
 return __b[0];
}

static __inline float __DEFAULT_FN_ATTRS
_mm256_cvtss_f32(__m256 __a)
{
 return __a[0];
}

/* Vector replicate */
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
}

/* Unpack and Interleave */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a, __m256d __b)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a, __m256d __b)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a, __m256 __b)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a, __m256 __b)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
}

/* Bit Test */
static __inline int __DEFAULT_FN_ATTRS
_mm_testz_pd(__m128d __a, __m128d __b)
{
  return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testc_pd(__m128d __a, __m128d __b)
{
  return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_pd(__m128d __a, __m128d __b)
{
  return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testz_ps(__m128 __a, __m128 __b)
{
  return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testc_ps(__m128 __a, __m128 __b)
{
  return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_ps(__m128 __a, __m128 __b)
{
  return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a, __m256d __b)
{
  return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a, __m256d __b)
{
  return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a, __m256d __b)
{
  return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a, __m256 __b)
{
  return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a, __m256 __b)
{
  return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a, __m256 __b)
{
  return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a, __m256i __b)
{
  return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a, __m256i __b)
{
  return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a, __m256i __b)
{
  return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
}

/* Vector extract sign mask */
static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)
{
  return __builtin_ia32_movmskpd256((__v4df)__a);
}

static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)
{
  return __builtin_ia32_movmskps256((__v8sf)__a);
}

/* Vector __zero */
static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroall(void)
{
  __builtin_ia32_vzeroall();
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroupper(void)
{
  __builtin_ia32_vzeroupper();
}

/* Vector load with broadcast */
static __inline __m128 __DEFAULT_FN_ATTRS
_mm_broadcast_ss(float const *__a)
{
  float __f = *__a;
  return (__m128)(__v4sf){ __f, __f, __f, __f };
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const *__a)
{
  double __d = *__a;
  return (__m256d)(__v4df){ __d, __d, __d, __d };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const *__a)
{
  float __f = *__a;
  return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const *__a)
{
  return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const *__a)
{
  return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a);
}

/* SIMD load ops */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const *__p)
{
  return *(__m256d *)__p;
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const *__p)
{
  return *(__m256 *)__p;
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const *__p)
{
  struct __loadu_pd {
    __m256d __v;
  } __attribute__((__packed__, __may_alias__));
  return ((struct __loadu_pd*)__p)->__v;
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const *__p)
{
  struct __loadu_ps {
    __m256 __v;
  } __attribute__((__packed__, __may_alias__));
  return ((struct __loadu_ps*)__p)->__v;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const *__p)
{
  return *__p;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i const *__p)
{
  struct __loadu_si256 {
    __m256i __v;
  } __attribute__((__packed__, __may_alias__));
  return ((struct __loadu_si256*)__p)->__v;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i const *__p)
{
  return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
}

/* SIMD store ops */
static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double *__p, __m256d __a)
{
  *(__m256d *)__p = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float *__p, __m256 __a)
{
  *(__m256 *)__p = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double *__p, __m256d __a)
{
  struct __storeu_pd {
    __m256d __v;
  } __attribute__((__packed__, __may_alias__));
  ((struct __storeu_pd*)__p)->__v = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float *__p, __m256 __a)
{
  struct __storeu_ps {
    __m256 __v;
  } __attribute__((__packed__, __may_alias__));
  ((struct __storeu_ps*)__p)->__v = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i *__p, __m256i __a)
{
  *__p = __a;
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i *__p, __m256i __a)
{
  struct __storeu_si256 {
    __m256i __v;
  } __attribute__((__packed__, __may_alias__));
  ((struct __storeu_si256*)__p)->__v = __a;
}

/* Conditional load ops */
static __inline __m128d __DEFAULT_FN_ATTRS
_mm_maskload_pd(double const *__p, __m128i __m)
{
  return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const *__p, __m256i __m)
{
  return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
                                               (__v4di)__m);
}

static __inline __m128 __DEFAULT_FN_ATTRS
_mm_maskload_ps(float const *__p, __m128i __m)
{
  return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const *__p, __m256i __m)
{
  return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
}

/* Conditional store ops */
static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
{
  __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
{
  __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
{
  __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
{
  __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
}

/* Cacheability support ops */
static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(__m256i *__a, __m256i __b)
{
  __builtin_nontemporal_store((__v4di)__b, (__v4di*)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(double *__a, __m256d __b)
{
  __builtin_nontemporal_store((__v4df)__b, (__v4df*)__a);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(float *__p, __m256 __a)
{
  __builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p);
}

/* Create vectors */
static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd(void)
{
  return (__m256d)__builtin_ia32_undef256();
}

static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps(void)
{
  return (__m256)__builtin_ia32_undef256();
}

static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256(void)
{
  return (__m256i)__builtin_ia32_undef256();
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a, double __b, double __c, double __d)
{
  return (__m256d){ __d, __c, __b, __a };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a, float __b, float __c, float __d,
              float __e, float __f, float __g, float __h)
{
  return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
                 int __i4, int __i5, int __i6, int __i7)
{
  return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
                 short __w11, short __w10, short __w09, short __w08,
                 short __w07, short __w06, short __w05, short __w04,
                 short __w03, short __w02, short __w01, short __w00)
{
  return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
    __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
                char __b27, char __b26, char __b25, char __b24,
                char __b23, char __b22, char __b21, char __b20,
                char __b19, char __b18, char __b17, char __b16,
                char __b15, char __b14, char __b13, char __b12,
                char __b11, char __b10, char __b09, char __b08,
                char __b07, char __b06, char __b05, char __b04,
                char __b03, char __b02, char __b01, char __b00)
{
  return (__m256i)(__v32qi){
    __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
    __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
    __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
    __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
  };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
{
  return (__m256i)(__v4di){ __d, __c, __b, __a };
}

/* Create vectors with elements in reverse order */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a, double __b, double __c, double __d)
{
  return (__m256d){ __a, __b, __c, __d };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a, float __b, float __c, float __d,
               float __e, float __f, float __g, float __h)
{
  return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
                  int __i4, int __i5, int __i6, int __i7)
{
  return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
       short __w11, short __w10, short __w09, short __w08,
       short __w07, short __w06, short __w05, short __w04,
       short __w03, short __w02, short __w01, short __w00)
{
  return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
    __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
                 char __b27, char __b26, char __b25, char __b24,
                 char __b23, char __b22, char __b21, char __b20,
                 char __b19, char __b18, char __b17, char __b16,
                 char __b15, char __b14, char __b13, char __b12,
                 char __b11, char __b10, char __b09, char __b08,
                 char __b07, char __b06, char __b05, char __b04,
                 char __b03, char __b02, char __b01, char __b00)
{
  return (__m256i)(__v32qi){
    __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
    __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
    __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
    __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
{
  return (__m256i)(__v4di){ __a, __b, __c, __d };
}

/* Create vectors with repeated elements */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)
{
  return (__m256d){ __w, __w, __w, __w };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)
{
  return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)
{
  return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)
{
  return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
    __w, __w, __w, __w, __w, __w };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)
{
  return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
    __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
    __b, __b, __b, __b, __b, __b, __b };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)
{
  return (__m256i)(__v4di){ __q, __q, __q, __q };
}

/* Create __zeroed vectors */
static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)
{
  return (__m256d){ 0, 0, 0, 0 };
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)
{
  return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)
{
  return (__m256i){ 0LL, 0LL, 0LL, 0LL };
}

/* Cast between vector types */
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)
{
  return (__m256)__a;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)
{
  return (__m256i)__a;
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)
{
  return (__m256d)__a;
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)
{
  return (__m256i)__a;
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)
{
  return (__m256)__a;
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)
{
  return (__m256d)__a;
}

static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)
{
  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
}

static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)
{
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
}

static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)
{
  return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)
{
  return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)
{
  return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)
{
  return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
}

/*
   Vector insert.
   We use macros rather than inlines because we only want to accept
   invocations where the immediate M is a constant expression.
*/
#define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
  (__m256)__builtin_shufflevector( \
    (__v8sf)(__m256)(V1), \
    (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
    (((M) & 1) ?  0 :  8), \
    (((M) & 1) ?  1 :  9), \
    (((M) & 1) ?  2 : 10), \
    (((M) & 1) ?  3 : 11), \
    (((M) & 1) ?  8 :  4), \
    (((M) & 1) ?  9 :  5), \
    (((M) & 1) ? 10 :  6), \
    (((M) & 1) ? 11 :  7) );})

#define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
  (__m256d)__builtin_shufflevector( \
    (__v4df)(__m256d)(V1), \
    (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
    (((M) & 1) ? 0 : 4), \
    (((M) & 1) ? 1 : 5), \
    (((M) & 1) ? 4 : 2), \
    (((M) & 1) ? 5 : 3) );})

#define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
  (__m256i)__builtin_shufflevector( \
    (__v4di)(__m256i)(V1), \
    (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
    (((M) & 1) ? 0 : 4), \
    (((M) & 1) ? 1 : 5), \
    (((M) & 1) ? 4 : 2), \
    (((M) & 1) ? 5 : 3) );})

/*
   Vector extract.
   We use macros rather than inlines because we only want to accept
   invocations where the immediate M is a constant expression.
*/
#define _mm256_extractf128_ps(V, M) __extension__ ({ \
  (__m128)__builtin_shufflevector( \
    (__v8sf)(__m256)(V), \
    (__v8sf)(_mm256_undefined_ps()), \
    (((M) & 1) ? 4 : 0), \
    (((M) & 1) ? 5 : 1), \
    (((M) & 1) ? 6 : 2), \
    (((M) & 1) ? 7 : 3) );})

#define _mm256_extractf128_pd(V, M) __extension__ ({ \
  (__m128d)__builtin_shufflevector( \
    (__v4df)(__m256d)(V), \
    (__v4df)(_mm256_undefined_pd()), \
    (((M) & 1) ? 2 : 0), \
    (((M) & 1) ? 3 : 1) );})

#define _mm256_extractf128_si256(V, M) __extension__ ({ \
  (__m128i)__builtin_shufflevector( \
    (__v4di)(__m256i)(V), \
    (__v4di)(_mm256_undefined_si256()), \
    (((M) & 1) ? 2 : 0), \
    (((M) & 1) ? 3 : 1) );})

/* SIMD load ops (unaligned) */
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
{
  __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
  return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
{
  __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
  return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
{
  __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
  return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
}

/* SIMD store ops (unaligned) */
static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
{
  __m128 __v128;

  __v128 = _mm256_castps256_ps128(__a);
  _mm_storeu_ps(__addr_lo, __v128);
  __v128 = _mm256_extractf128_ps(__a, 1);
  _mm_storeu_ps(__addr_hi, __v128);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
{
  __m128d __v128;

  __v128 = _mm256_castpd256_pd128(__a);
  _mm_storeu_pd(__addr_lo, __v128);
  __v128 = _mm256_extractf128_pd(__a, 1);
  _mm_storeu_pd(__addr_hi, __v128);
}

static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
{
  __m128i __v128;

  __v128 = _mm256_castsi256_si128(__a);
  _mm_storeu_si128(__addr_lo, __v128);
  __v128 = _mm256_extractf128_si256(__a, 1);
  _mm_storeu_si128(__addr_hi, __v128);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128 (__m128 __hi, __m128 __lo) {
  return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d (__m128d __hi, __m128d __lo) {
  return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i (__m128i __hi, __m128i __lo) {
  return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128 (__m128 __lo, __m128 __hi) {
  return _mm256_set_m128(__hi, __lo);
}

static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d (__m128d __lo, __m128d __hi) {
  return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i (__m128i __lo, __m128i __hi) {
  return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
}

#undef __DEFAULT_FN_ATTRS

#endif /* __AVXINTRIN_H */