// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This implements the write barrier buffer. The write barrier itself
// is gcWriteBarrier and is implemented in assembly.
//
// The write barrier has a fast path and a slow path. The fast path
// simply enqueues to a per-P write barrier buffer. It's written in
// assembly and doesn't clobber any general purpose registers, so it
// doesn't have the usual overheads of a Go call.
//
// When the buffer fills up, the write barrier invokes the slow path
// (wbBufFlush) to flush the buffer to the GC work queues. In this
// path, since the compiler didn't spill registers, we spill *all*
// registers and disallow any GC safe points that could observe the
// stack frame (since we don't know the types of the spilled
// registers).
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
// testSmallBuf forces a small write barrier buffer to stress write
// barrier flushing.
const testSmallBuf = false
// wbBuf is a per-P buffer of pointers queued by the write barrier.
// This buffer is flushed to the GC workbufs when it fills up and on
// various GC transitions.
//
// This is closely related to a "sequential store buffer" (SSB),
// except that SSBs are usually used for maintaining remembered sets,
// while this is used for marking.
type wbBuf struct {
// next points to the next slot in buf. It must not be a
// pointer type because it can point past the end of buf and
// must be updated without write barriers.
//
// This is a pointer rather than an index to optimize the
// write barrier assembly.
next uintptr
// end points to just past the end of buf. It must not be a
// pointer type because it points past the end of buf and must
// be updated without write barriers.
end uintptr
// buf stores a series of pointers to execute write barriers
// on. This must be a multiple of wbBufEntryPointers because
// the write barrier only checks for overflow once per entry.
buf [wbBufEntryPointers * wbBufEntries]uintptr
}
const (
// wbBufEntries is the number of write barriers between
// flushes of the write barrier buffer.
//
// This trades latency for throughput amortization. Higher
// values amortize flushing overhead more, but increase the
// latency of flushing. Higher values also increase the cache
// footprint of the buffer.
//
// TODO: What is the latency cost of this? Tune this value.
wbBufEntries = 256
// wbBufEntryPointers is the number of pointers added to the
// buffer by each write barrier.
wbBufEntryPointers = 2
)
// reset empties b by resetting its next and end pointers.
func (b *wbBuf) reset() {
start := uintptr(unsafe.Pointer(&b.buf[0]))
b.next = start
if gcBlackenPromptly || writeBarrier.cgo {
// Effectively disable the buffer by forcing a flush
// on every barrier.
b.end = uintptr(unsafe.Pointer(&b.buf[wbBufEntryPointers]))
} else if testSmallBuf {
// For testing, allow two barriers in the buffer. If
// we only did one, then barriers of non-heap pointers
// would be no-ops. This lets us combine a buffered
// barrier with a flush at a later time.
b.end = uintptr(unsafe.Pointer(&b.buf[2*wbBufEntryPointers]))
} else {
b.end = start + uintptr(len(b.buf))*unsafe.Sizeof(b.buf[0])
}
if (b.end-b.next)%(wbBufEntryPointers*unsafe.Sizeof(b.buf[0])) != 0 {
throw("bad write barrier buffer bounds")
}
}
// discard resets b's next pointer, but not its end pointer.
//
// This must be nosplit because it's called by wbBufFlush.
//
//go:nosplit
func (b *wbBuf) discard() {
b.next = uintptr(unsafe.Pointer(&b.buf[0]))
}
// putFast adds old and new to the write barrier buffer and returns
// false if a flush is necessary. Callers should use this as:
//
// buf := &getg().m.p.ptr().wbBuf
// if !buf.putFast(old, new) {
// wbBufFlush(...)
// }
//
// The arguments to wbBufFlush depend on whether the caller is doing
// its own cgo pointer checks. If it is, then this can be
// wbBufFlush(nil, 0). Otherwise, it must pass the slot address and
// new.
//
// Since buf is a per-P resource, the caller must ensure there are no
// preemption points while buf is in use.
//
// It must be nowritebarrierrec to because write barriers here would
// corrupt the write barrier buffer. It (and everything it calls, if
// it called anything) has to be nosplit to avoid scheduling on to a
// different P and a different buffer.
//
//go:nowritebarrierrec
//go:nosplit
func (b *wbBuf) putFast(old, new uintptr) bool {
p := (*[2]uintptr)(unsafe.Pointer(b.next))
p[0] = old
p[1] = new
b.next += 2 * sys.PtrSize
return b.next != b.end
}
// wbBufFlush flushes the current P's write barrier buffer to the GC
// workbufs. It is passed the slot and value of the write barrier that
// caused the flush so that it can implement cgocheck.
//
// This must not have write barriers because it is part of the write
// barrier implementation.
//
// This and everything it calls must be nosplit because 1) the stack
// contains untyped slots from gcWriteBarrier and 2) there must not be
// a GC safe point between the write barrier test in the caller and
// flushing the buffer.
//
// TODO: A "go:nosplitrec" annotation would be perfect for this.
//
//go:nowritebarrierrec
//go:nosplit
func wbBufFlush(dst *uintptr, src uintptr) {
// Note: Every possible return from this function must reset
// the buffer's next pointer to prevent buffer overflow.
if getg().m.dying > 0 {
// We're going down. Not much point in write barriers
// and this way we can allow write barriers in the
// panic path.
getg().m.p.ptr().wbBuf.discard()
return
}
if writeBarrier.cgo && dst != nil {
// This must be called from the stack that did the
// write. It's nosplit all the way down.
cgoCheckWriteBarrier(dst, src)
if !writeBarrier.needed {
// We were only called for cgocheck.
getg().m.p.ptr().wbBuf.discard()
return
}
}
// Switch to the system stack so we don't have to worry about
// the untyped stack slots or safe points.
systemstack(func() {
wbBufFlush1(getg().m.p.ptr())
})
}
// wbBufFlush1 flushes p's write barrier buffer to the GC work queue.
//
// This must not have write barriers because it is part of the write
// barrier implementation, so this may lead to infinite loops or
// buffer corruption.
//
// This must be non-preemptible because it uses the P's workbuf.
//
//go:nowritebarrierrec
//go:systemstack
func wbBufFlush1(_p_ *p) {
// Get the buffered pointers.
start := uintptr(unsafe.Pointer(&_p_.wbBuf.buf[0]))
n := (_p_.wbBuf.next - start) / unsafe.Sizeof(_p_.wbBuf.buf[0])
ptrs := _p_.wbBuf.buf[:n]
// Reset the buffer.
_p_.wbBuf.reset()
if useCheckmark {
// Slow path for checkmark mode.
for _, ptr := range ptrs {
shade(ptr)
}
return
}
// Mark all of the pointers in the buffer and record only the
// pointers we greyed. We use the buffer itself to temporarily
// record greyed pointers.
//
// TODO: Should scanobject/scanblock just stuff pointers into
// the wbBuf? Then this would become the sole greying path.
gcw := &_p_.gcw
pos := 0
arenaStart := mheap_.arena_start
for _, ptr := range ptrs {
if ptr < arenaStart {
// nil pointers are very common, especially
// for the "old" values. Filter out these and
// other "obvious" non-heap pointers ASAP.
//
// TODO: Should we filter out nils in the fast
// path to reduce the rate of flushes?
continue
}
// TODO: This doesn't use hbits, so calling
// heapBitsForObject seems a little silly. We could
// easily separate this out since heapBitsForObject
// just calls heapBitsForAddr(obj) to get hbits.
obj, _, span, objIndex := heapBitsForObject(ptr, 0, 0)
if obj == 0 {
continue
}
// TODO: Consider making two passes where the first
// just prefetches the mark bits.
mbits := span.markBitsForIndex(objIndex)
if mbits.isMarked() {
continue
}
mbits.setMarked()
if span.spanclass.noscan() {
gcw.bytesMarked += uint64(span.elemsize)
continue
}
ptrs[pos] = obj
pos++
}
// Enqueue the greyed objects.
gcw.putBatch(ptrs[:pos])
if gcphase == _GCmarktermination || gcBlackenPromptly {
// Ps aren't allowed to cache work during mark
// termination.
gcw.dispose()
}
}