Golang程序
|
575行
|
16.72 KB
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/obj"
"fmt"
"strings"
)
type SlotID int32
// A FuncDebug contains all the debug information for the variables in a
// function. Variables are identified by their LocalSlot, which may be the
// result of decomposing a larger variable.
type FuncDebug struct {
// Slots is all the slots used in the debug info, indexed by their SlotID.
// Use this when getting a LocalSlot from a SlotID.
Slots []*LocalSlot
// VarSlots is the slots that represent part of user variables.
// Use this when iterating over all the slots to generate debug information.
VarSlots []*LocalSlot
// The blocks in the function, in program text order.
Blocks []*BlockDebug
// The registers of the current architecture, indexed by Register.num.
Registers []Register
}
func (f *FuncDebug) BlockString(b *BlockDebug) string {
var vars []string
for slot := range f.VarSlots {
if len(b.Variables[slot].Locations) == 0 {
continue
}
vars = append(vars, fmt.Sprintf("%v = %v", f.Slots[slot], b.Variables[slot]))
}
return fmt.Sprintf("{%v}", strings.Join(vars, ", "))
}
func (f *FuncDebug) SlotLocsString(id SlotID) string {
var locs []string
for _, block := range f.Blocks {
for _, loc := range block.Variables[id].Locations {
locs = append(locs, block.LocString(loc))
}
}
return strings.Join(locs, " ")
}
type BlockDebug struct {
// The SSA block that this tracks. For debug logging only.
Block *Block
// The variables in this block, indexed by their SlotID.
Variables []VarLocList
}
func (b *BlockDebug) LocString(loc *VarLoc) string {
registers := b.Block.Func.Config.registers
var storage []string
if loc.OnStack {
storage = append(storage, "stack")
}
for reg := 0; reg < 64; reg++ {
if loc.Registers&(1<<uint8(reg)) == 0 {
continue
}
if registers != nil {
storage = append(storage, registers[reg].String())
} else {
storage = append(storage, fmt.Sprintf("reg%d", reg))
}
}
if len(storage) == 0 {
storage = append(storage, "!!!no storage!!!")
}
pos := func(v *Value, p *obj.Prog, pc int64) string {
if v == nil {
return "?"
}
vStr := fmt.Sprintf("v%d", v.ID)
if v == BlockStart {
vStr = fmt.Sprintf("b%dStart", b.Block.ID)
}
if v == BlockEnd {
vStr = fmt.Sprintf("b%dEnd", b.Block.ID)
}
if p == nil {
return vStr
}
return fmt.Sprintf("%s/%x", vStr, pc)
}
start := pos(loc.Start, loc.StartProg, loc.StartPC)
end := pos(loc.End, loc.EndProg, loc.EndPC)
return fmt.Sprintf("%v-%v@%s", start, end, strings.Join(storage, ","))
}
// append adds a location to the location list for slot.
func (b *BlockDebug) append(slot SlotID, loc *VarLoc) {
b.Variables[slot].append(loc)
}
// lastLoc returns the last VarLoc for slot, or nil if it has none.
func (b *BlockDebug) lastLoc(slot SlotID) *VarLoc {
return b.Variables[slot].last()
}
// A VarLocList contains the locations for a variable, in program text order.
// It will often have gaps.
type VarLocList struct {
Locations []*VarLoc
}
func (l *VarLocList) append(loc *VarLoc) {
l.Locations = append(l.Locations, loc)
}
// last returns the last location in the list.
func (l *VarLocList) last() *VarLoc {
if l == nil || len(l.Locations) == 0 {
return nil
}
return l.Locations[len(l.Locations)-1]
}
// A VarLoc describes a variable's location in a single contiguous range
// of program text. It is generated from the SSA representation, but it
// refers to the generated machine code, so the Values referenced are better
// understood as PCs than actual Values, and the ranges can cross blocks.
// The range is defined first by Values, which are then mapped to Progs
// during genssa and finally to function PCs after assembly.
// A variable can be on the stack and in any number of registers.
type VarLoc struct {
// Inclusive -- the first SSA value that the range covers. The value
// doesn't necessarily have anything to do with the variable; it just
// identifies a point in the program text.
// The special sentinel value BlockStart indicates that the range begins
// at the beginning of the containing block, even if the block doesn't
// actually have a Value to use to indicate that.
Start *Value
// Exclusive -- the first SSA value after start that the range doesn't
// cover. A location with start == end is empty.
// The special sentinel value BlockEnd indicates that the variable survives
// to the end of the of the containing block, after all its Values and any
// control flow instructions added later.
End *Value
// The prog/PCs corresponding to Start and End above. These are for the
// convenience of later passes, since code generation isn't done when
// BuildFuncDebug runs.
// Control flow instructions don't correspond to a Value, so EndProg
// may point to a Prog in the next block if SurvivedBlock is true. For
// the last block, where there's no later Prog, it will be nil to indicate
// the end of the function.
StartProg, EndProg *obj.Prog
StartPC, EndPC int64
// The registers this variable is available in. There can be more than
// one in various situations, e.g. it's being moved between registers.
Registers RegisterSet
// OnStack indicates that the variable is on the stack in the LocalSlot
// identified by StackLocation.
OnStack bool
StackLocation SlotID
}
var BlockStart = &Value{
ID: -10000,
Op: OpInvalid,
Aux: "BlockStart",
}
var BlockEnd = &Value{
ID: -20000,
Op: OpInvalid,
Aux: "BlockEnd",
}
// RegisterSet is a bitmap of registers, indexed by Register.num.
type RegisterSet uint64
// unexpected is used to indicate an inconsistency or bug in the debug info
// generation process. These are not fixable by users. At time of writing,
// changing this to a Fprintf(os.Stderr) and running make.bash generates
// thousands of warnings.
func (s *debugState) unexpected(v *Value, msg string, args ...interface{}) {
s.f.Logf("unexpected at "+fmt.Sprint(v.ID)+":"+msg, args...)
}
func (s *debugState) logf(msg string, args ...interface{}) {
s.f.Logf(msg, args...)
}
type debugState struct {
loggingEnabled bool
slots []*LocalSlot
varSlots []*LocalSlot
f *Func
cache *Cache
numRegisters int
// working storage for BuildFuncDebug, reused between blocks.
registerContents [][]SlotID
}
// getHomeSlot returns the SlotID of the home slot for v, adding to s.slots
// if necessary.
func (s *debugState) getHomeSlot(v *Value) SlotID {
home := s.f.getHome(v.ID).(LocalSlot)
for id, slot := range s.slots {
if *slot == home {
return SlotID(id)
}
}
// This slot wasn't in the NamedValue table so it needs to be added.
s.slots = append(s.slots, &home)
return SlotID(len(s.slots) - 1)
}
func (s *debugState) BlockString(b *BlockDebug) string {
f := &FuncDebug{
Slots: s.slots,
VarSlots: s.varSlots,
Registers: s.f.Config.registers,
}
return f.BlockString(b)
}
// BuildFuncDebug returns debug information for f.
// f must be fully processed, so that each Value is where it will be when
// machine code is emitted.
func BuildFuncDebug(f *Func, loggingEnabled bool) *FuncDebug {
if f.RegAlloc == nil {
f.Fatalf("BuildFuncDebug on func %v that has not been fully processed", f)
}
state := &debugState{
loggingEnabled: loggingEnabled,
slots: make([]*LocalSlot, len(f.Names)),
cache: f.Cache,
f: f,
numRegisters: len(f.Config.registers),
registerContents: make([][]SlotID, len(f.Config.registers)),
}
// TODO: consider storing this in Cache and reusing across functions.
valueNames := make([][]SlotID, f.NumValues())
for i, slot := range f.Names {
slot := slot
state.slots[i] = &slot
if isSynthetic(&slot) {
continue
}
for _, value := range f.NamedValues[slot] {
valueNames[value.ID] = append(valueNames[value.ID], SlotID(i))
}
}
// state.varSlots is never changed, and state.slots is only appended to,
// so aliasing is safe.
state.varSlots = state.slots
if state.loggingEnabled {
var names []string
for i, name := range f.Names {
names = append(names, fmt.Sprintf("%d = %s", i, name))
}
state.logf("Name table: %v\n", strings.Join(names, ", "))
}
// Build up block states, starting with the first block, then
// processing blocks once their predecessors have been processed.
// Location list entries for each block.
blockLocs := make([]*BlockDebug, f.NumBlocks())
// Reverse postorder: visit a block after as many as possible of its
// predecessors have been visited.
po := f.Postorder()
for i := len(po) - 1; i >= 0; i-- {
b := po[i]
// Build the starting state for the block from the final
// state of its predecessors.
locs := state.mergePredecessors(b, blockLocs)
if state.loggingEnabled {
state.logf("Processing %v, initial locs %v, regs %v\n", b, state.BlockString(locs), state.registerContents)
}
// Update locs/registers with the effects of each Value.
// The location list generated here needs to be slightly adjusted for use by gdb.
// These adjustments are applied in genssa.
for _, v := range b.Values {
slots := valueNames[v.ID]
// Loads and stores inherit the names of their sources.
var source *Value
switch v.Op {
case OpStoreReg:
source = v.Args[0]
case OpLoadReg:
switch a := v.Args[0]; a.Op {
case OpArg:
source = a
case OpStoreReg:
source = a.Args[0]
default:
state.unexpected(v, "load with unexpected source op %v", a)
}
}
if source != nil {
slots = append(slots, valueNames[source.ID]...)
// As of writing, the compiler never uses a load/store as a
// source of another load/store, so there's no reason this should
// ever be consulted. Update just in case, and so that when
// valueNames is cached, we can reuse the memory.
valueNames[v.ID] = slots
}
if len(slots) == 0 {
continue
}
reg, _ := f.getHome(v.ID).(*Register)
state.processValue(locs, v, slots, reg)
}
// The block is done; mark any live locations as ending with the block.
for _, locList := range locs.Variables {
last := locList.last()
if last == nil || last.End != nil {
continue
}
last.End = BlockEnd
}
if state.loggingEnabled {
f.Logf("Block done: locs %v, regs %v\n", state.BlockString(locs), state.registerContents)
}
blockLocs[b.ID] = locs
}
info := &FuncDebug{
Slots: state.slots,
VarSlots: state.varSlots,
Registers: f.Config.registers,
}
// Consumers want the information in textual order, not by block ID.
for _, b := range f.Blocks {
info.Blocks = append(info.Blocks, blockLocs[b.ID])
}
if state.loggingEnabled {
f.Logf("Final result:\n")
for slot := range info.VarSlots {
f.Logf("\t%v => %v\n", info.Slots[slot], info.SlotLocsString(SlotID(slot)))
}
}
return info
}
// isSynthetic reports whether if slot represents a compiler-inserted variable,
// e.g. an autotmp or an anonymous return value that needed a stack slot.
func isSynthetic(slot *LocalSlot) bool {
c := slot.String()[0]
return c == '.' || c == '~'
}
// mergePredecessors takes the end state of each of b's predecessors and
// intersects them to form the starting state for b.
// The registers slice (the second return value) will be reused for each call to mergePredecessors.
func (state *debugState) mergePredecessors(b *Block, blockLocs []*BlockDebug) *BlockDebug {
live := make([]VarLocList, len(state.slots))
// Filter out back branches.
var preds []*Block
for _, pred := range b.Preds {
if blockLocs[pred.b.ID] != nil {
preds = append(preds, pred.b)
}
}
if len(preds) > 0 {
p := preds[0]
for slot, locList := range blockLocs[p.ID].Variables {
last := locList.last()
if last == nil || last.End != BlockEnd {
continue
}
loc := state.cache.NewVarLoc()
loc.Start = BlockStart
loc.OnStack = last.OnStack
loc.StackLocation = last.StackLocation
loc.Registers = last.Registers
live[slot].append(loc)
}
}
if state.loggingEnabled && len(b.Preds) > 1 {
state.logf("Starting merge with state from %v: %v\n", b.Preds[0].b, state.BlockString(blockLocs[b.Preds[0].b.ID]))
}
for i := 1; i < len(preds); i++ {
p := preds[i]
if state.loggingEnabled {
state.logf("Merging in state from %v: %v &= %v\n", p, live, state.BlockString(blockLocs[p.ID]))
}
for slot, liveVar := range live {
liveLoc := liveVar.last()
if liveLoc == nil {
continue
}
predLoc := blockLocs[p.ID].Variables[SlotID(slot)].last()
// Clear out slots missing/dead in p.
if predLoc == nil || predLoc.End != BlockEnd {
live[slot].Locations = nil
continue
}
// Unify storage locations.
if !liveLoc.OnStack || !predLoc.OnStack || liveLoc.StackLocation != predLoc.StackLocation {
liveLoc.OnStack = false
liveLoc.StackLocation = 0
}
liveLoc.Registers &= predLoc.Registers
}
}
// Create final result.
locs := &BlockDebug{Variables: live}
if state.loggingEnabled {
locs.Block = b
}
for reg := range state.registerContents {
state.registerContents[reg] = state.registerContents[reg][:0]
}
for slot, locList := range live {
loc := locList.last()
if loc == nil {
continue
}
for reg := 0; reg < state.numRegisters; reg++ {
if loc.Registers&(1<<uint8(reg)) != 0 {
state.registerContents[reg] = append(state.registerContents[reg], SlotID(slot))
}
}
}
return locs
}
// processValue updates locs and state.registerContents to reflect v, a value with
// the names in vSlots and homed in vReg. "v" becomes visible after execution of
// the instructions evaluating it.
func (state *debugState) processValue(locs *BlockDebug, v *Value, vSlots []SlotID, vReg *Register) {
switch {
case v.Op == OpRegKill:
if state.loggingEnabled {
existingSlots := make([]bool, len(state.slots))
for _, slot := range state.registerContents[vReg.num] {
existingSlots[slot] = true
}
for _, slot := range vSlots {
if existingSlots[slot] {
existingSlots[slot] = false
} else {
state.unexpected(v, "regkill of unassociated name %v\n", state.slots[slot])
}
}
for slot, live := range existingSlots {
if live {
state.unexpected(v, "leftover register name: %v\n", state.slots[slot])
}
}
}
state.registerContents[vReg.num] = nil
for _, slot := range vSlots {
last := locs.lastLoc(slot)
if last == nil {
state.unexpected(v, "regkill of already dead %s, %+v\n", vReg, state.slots[slot])
continue
}
if state.loggingEnabled {
state.logf("at %v: %v regkilled out of %s\n", v.ID, state.slots[slot], vReg)
}
if last.End != nil {
state.unexpected(v, "regkill of dead slot, died at %v\n", last.End)
}
last.End = v
regs := last.Registers &^ (1 << uint8(vReg.num))
if !last.OnStack && regs == 0 {
continue
}
loc := state.cache.NewVarLoc()
loc.Start = v
loc.OnStack = last.OnStack
loc.StackLocation = last.StackLocation
loc.Registers = regs
locs.append(slot, loc)
}
case v.Op == OpArg:
for _, slot := range vSlots {
if last := locs.lastLoc(slot); last != nil {
state.unexpected(v, "Arg op on already-live slot %v", state.slots[slot])
last.End = v
}
loc := state.cache.NewVarLoc()
loc.Start = v
loc.OnStack = true
loc.StackLocation = state.getHomeSlot(v)
locs.append(slot, loc)
if state.loggingEnabled {
state.logf("at %v: arg %v now on stack in location %v\n", v.ID, state.slots[slot], state.slots[loc.StackLocation])
}
}
case v.Op == OpStoreReg:
for _, slot := range vSlots {
last := locs.lastLoc(slot)
if last == nil {
state.unexpected(v, "spill of unnamed register %s\n", vReg)
break
}
last.End = v
loc := state.cache.NewVarLoc()
loc.Start = v
loc.OnStack = true
loc.StackLocation = state.getHomeSlot(v)
loc.Registers = last.Registers
locs.append(slot, loc)
if state.loggingEnabled {
state.logf("at %v: %v spilled to stack location %v\n", v.ID, state.slots[slot], state.slots[loc.StackLocation])
}
}
case vReg != nil:
if state.loggingEnabled {
newSlots := make([]bool, len(state.slots))
for _, slot := range vSlots {
newSlots[slot] = true
}
for _, slot := range state.registerContents[vReg.num] {
if !newSlots[slot] {
state.unexpected(v, "%v clobbered\n", state.slots[slot])
}
}
}
for _, slot := range vSlots {
if state.loggingEnabled {
state.logf("at %v: %v now in %s\n", v.ID, state.slots[slot], vReg)
}
last := locs.lastLoc(slot)
if last != nil && last.End == nil {
last.End = v
}
state.registerContents[vReg.num] = append(state.registerContents[vReg.num], slot)
loc := state.cache.NewVarLoc()
loc.Start = v
if last != nil {
loc.OnStack = last.OnStack
loc.StackLocation = last.StackLocation
loc.Registers = last.Registers
}
loc.Registers |= 1 << uint8(vReg.num)
locs.append(slot, loc)
}
default:
state.unexpected(v, "named value with no reg\n")
}
}