// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector liveness bitmap generation.
// The command line flag -live causes this code to print debug information.
// The levels are:
//
// -live (aka -live=1): print liveness lists as code warnings at safe points
// -live=2: print an assembly listing with liveness annotations
//
// Each level includes the earlier output as well.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"crypto/md5"
"crypto/sha1"
"fmt"
"os"
"strings"
)
// TODO(mdempsky): Update to reference OpVar{Def,Kill,Live} instead.
// VARDEF is an annotation for the liveness analysis, marking a place
// where a complete initialization (definition) of a variable begins.
// Since the liveness analysis can see initialization of single-word
// variables quite easy, gvardef is usually only called for multi-word
// or 'fat' variables, those satisfying isfat(n->type).
// However, gvardef is also called when a non-fat variable is initialized
// via a block move; the only time this happens is when you have
// return f()
// for a function with multiple return values exactly matching the return
// types of the current function.
//
// A 'VARDEF x' annotation in the instruction stream tells the liveness
// analysis to behave as though the variable x is being initialized at that
// point in the instruction stream. The VARDEF must appear before the
// actual (multi-instruction) initialization, and it must also appear after
// any uses of the previous value, if any. For example, if compiling:
//
// x = x[1:]
//
// it is important to generate code like:
//
// base, len, cap = pieces of x[1:]
// VARDEF x
// x = {base, len, cap}
//
// If instead the generated code looked like:
//
// VARDEF x
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
//
// then the liveness analysis would decide the previous value of x was
// unnecessary even though it is about to be used by the x[1:] computation.
// Similarly, if the generated code looked like:
//
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
// VARDEF x
//
// then the liveness analysis will not preserve the new value of x, because
// the VARDEF appears to have "overwritten" it.
//
// VARDEF is a bit of a kludge to work around the fact that the instruction
// stream is working on single-word values but the liveness analysis
// wants to work on individual variables, which might be multi-word
// aggregates. It might make sense at some point to look into letting
// the liveness analysis work on single-word values as well, although
// there are complications around interface values, slices, and strings,
// all of which cannot be treated as individual words.
//
// VARKILL is the opposite of VARDEF: it marks a value as no longer needed,
// even if its address has been taken. That is, a VARKILL annotation asserts
// that its argument is certainly dead, for use when the liveness analysis
// would not otherwise be able to deduce that fact.
// BlockEffects summarizes the liveness effects on an SSA block.
type BlockEffects struct {
lastbitmapindex int // for livenessepilogue
// Computed during livenessprologue using only the content of
// individual blocks:
//
// uevar: upward exposed variables (used before set in block)
// varkill: killed variables (set in block)
// avarinit: addrtaken variables set or used (proof of initialization)
uevar bvec
varkill bvec
avarinit bvec
// Computed during livenesssolve using control flow information:
//
// livein: variables live at block entry
// liveout: variables live at block exit
// avarinitany: addrtaken variables possibly initialized at block exit
// (initialized in block or at exit from any predecessor block)
// avarinitall: addrtaken variables certainly initialized at block exit
// (initialized in block or at exit from all predecessor blocks)
livein bvec
liveout bvec
avarinitany bvec
avarinitall bvec
}
// A collection of global state used by liveness analysis.
type Liveness struct {
fn *Node
f *ssa.Func
vars []*Node
idx map[*Node]int32
stkptrsize int64
be []BlockEffects
// stackMapIndex maps from safe points (i.e., CALLs) to their
// index within the stack maps.
stackMapIndex map[*ssa.Value]int
// An array with a bit vector for each safe point tracking live variables.
livevars []bvec
cache progeffectscache
}
type progeffectscache struct {
textavarinit []int32
retuevar []int32
tailuevar []int32
initialized bool
}
// livenessShouldTrack reports whether the liveness analysis
// should track the variable n.
// We don't care about variables that have no pointers,
// nor do we care about non-local variables,
// nor do we care about empty structs (handled by the pointer check),
// nor do we care about the fake PAUTOHEAP variables.
func livenessShouldTrack(n *Node) bool {
return n.Op == ONAME && (n.Class() == PAUTO || n.Class() == PPARAM || n.Class() == PPARAMOUT) && types.Haspointers(n.Type)
}
// getvariables returns the list of on-stack variables that we need to track
// and a map for looking up indices by *Node.
func getvariables(fn *Node) ([]*Node, map[*Node]int32) {
var vars []*Node
for _, n := range fn.Func.Dcl {
if livenessShouldTrack(n) {
vars = append(vars, n)
}
}
idx := make(map[*Node]int32, len(vars))
for i, n := range vars {
idx[n] = int32(i)
}
return vars, idx
}
func (lv *Liveness) initcache() {
if lv.cache.initialized {
Fatalf("liveness cache initialized twice")
return
}
lv.cache.initialized = true
for i, node := range lv.vars {
switch node.Class() {
case PPARAM:
// A return instruction with a p.to is a tail return, which brings
// the stack pointer back up (if it ever went down) and then jumps
// to a new function entirely. That form of instruction must read
// all the parameters for correctness, and similarly it must not
// read the out arguments - they won't be set until the new
// function runs.
lv.cache.tailuevar = append(lv.cache.tailuevar, int32(i))
if node.Addrtaken() {
lv.cache.textavarinit = append(lv.cache.textavarinit, int32(i))
}
case PPARAMOUT:
// If the result had its address taken, it is being tracked
// by the avarinit code, which does not use uevar.
// If we added it to uevar too, we'd not see any kill
// and decide that the variable was live entry, which it is not.
// So only use uevar in the non-addrtaken case.
// The p.to.type == obj.TYPE_NONE limits the bvset to
// non-tail-call return instructions; see note below for details.
if !node.Addrtaken() {
lv.cache.retuevar = append(lv.cache.retuevar, int32(i))
}
}
}
}
// A liveEffect is a set of flags that describe an instruction's
// liveness effects on a variable.
//
// The possible flags are:
// uevar - used by the instruction
// varkill - killed by the instruction
// for variables without address taken, means variable was set
// for variables with address taken, means variable was marked dead
// avarinit - initialized or referred to by the instruction,
// only for variables with address taken but not escaping to heap
//
// The avarinit output serves as a signal that the data has been
// initialized, because any use of a variable must come after its
// initialization.
type liveEffect int
const (
uevar liveEffect = 1 << iota
varkill
avarinit
)
// valueEffects returns the index of a variable in lv.vars and the
// liveness effects v has on that variable.
// If v does not affect any tracked variables, it returns -1, 0.
func (lv *Liveness) valueEffects(v *ssa.Value) (int32, liveEffect) {
n, e := affectedNode(v)
if e == 0 || n == nil || n.Op != ONAME { // cheapest checks first
return -1, 0
}
// AllocFrame has dropped unused variables from
// lv.fn.Func.Dcl, but they might still be referenced by
// OpVarFoo pseudo-ops. Ignore them to prevent "lost track of
// variable" ICEs (issue 19632).
switch v.Op {
case ssa.OpVarDef, ssa.OpVarKill, ssa.OpVarLive, ssa.OpKeepAlive:
if !n.Name.Used() {
return -1, 0
}
}
var effect liveEffect
if n.Addrtaken() {
if v.Op != ssa.OpVarKill {
effect |= avarinit
}
if v.Op == ssa.OpVarDef || v.Op == ssa.OpVarKill {
effect |= varkill
}
} else {
// Read is a read, obviously.
// Addr by itself is also implicitly a read.
//
// Addr|Write means that the address is being taken
// but only so that the instruction can write to the value.
// It is not a read.
if e&ssa.SymRead != 0 || e&(ssa.SymAddr|ssa.SymWrite) == ssa.SymAddr {
effect |= uevar
}
if e&ssa.SymWrite != 0 && (!isfat(n.Type) || v.Op == ssa.OpVarDef) {
effect |= varkill
}
}
if effect == 0 {
return -1, 0
}
if pos, ok := lv.idx[n]; ok {
return pos, effect
}
return -1, 0
}
// affectedNode returns the *Node affected by v
func affectedNode(v *ssa.Value) (*Node, ssa.SymEffect) {
// Special cases.
switch v.Op {
case ssa.OpLoadReg:
n, _ := AutoVar(v.Args[0])
return n, ssa.SymRead
case ssa.OpStoreReg:
n, _ := AutoVar(v)
return n, ssa.SymWrite
case ssa.OpVarLive:
return v.Aux.(*Node), ssa.SymRead
case ssa.OpVarDef, ssa.OpVarKill:
return v.Aux.(*Node), ssa.SymWrite
case ssa.OpKeepAlive:
n, _ := AutoVar(v.Args[0])
return n, ssa.SymRead
}
e := v.Op.SymEffect()
if e == 0 {
return nil, 0
}
var n *Node
switch a := v.Aux.(type) {
case nil, *obj.LSym:
// ok, but no node
case *Node:
n = a
default:
Fatalf("weird aux: %s", v.LongString())
}
return n, e
}
// Constructs a new liveness structure used to hold the global state of the
// liveness computation. The cfg argument is a slice of *BasicBlocks and the
// vars argument is a slice of *Nodes.
func newliveness(fn *Node, f *ssa.Func, vars []*Node, idx map[*Node]int32, stkptrsize int64) *Liveness {
lv := &Liveness{
fn: fn,
f: f,
vars: vars,
idx: idx,
stkptrsize: stkptrsize,
be: make([]BlockEffects, f.NumBlocks()),
}
nblocks := int32(len(f.Blocks))
nvars := int32(len(vars))
bulk := bvbulkalloc(nvars, nblocks*7)
for _, b := range f.Blocks {
be := lv.blockEffects(b)
be.uevar = bulk.next()
be.varkill = bulk.next()
be.livein = bulk.next()
be.liveout = bulk.next()
be.avarinit = bulk.next()
be.avarinitany = bulk.next()
be.avarinitall = bulk.next()
}
return lv
}
func (lv *Liveness) blockEffects(b *ssa.Block) *BlockEffects {
return &lv.be[b.ID]
}
// NOTE: The bitmap for a specific type t could be cached in t after
// the first run and then simply copied into bv at the correct offset
// on future calls with the same type t.
func onebitwalktype1(t *types.Type, off int64, bv bvec) {
if t.Align > 0 && off&int64(t.Align-1) != 0 {
Fatalf("onebitwalktype1: invalid initial alignment, %v", t)
}
switch t.Etype {
case TINT8, TUINT8, TINT16, TUINT16,
TINT32, TUINT32, TINT64, TUINT64,
TINT, TUINT, TUINTPTR, TBOOL,
TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128:
case TPTR32, TPTR64, TUNSAFEPTR, TFUNC, TCHAN, TMAP:
if off&int64(Widthptr-1) != 0 {
Fatalf("onebitwalktype1: invalid alignment, %v", t)
}
bv.Set(int32(off / int64(Widthptr))) // pointer
case TSTRING:
// struct { byte *str; intgo len; }
if off&int64(Widthptr-1) != 0 {
Fatalf("onebitwalktype1: invalid alignment, %v", t)
}
bv.Set(int32(off / int64(Widthptr))) //pointer in first slot
case TINTER:
// struct { Itab *tab; void *data; }
// or, when isnilinter(t)==true:
// struct { Type *type; void *data; }
if off&int64(Widthptr-1) != 0 {
Fatalf("onebitwalktype1: invalid alignment, %v", t)
}
bv.Set(int32(off / int64(Widthptr))) // pointer in first slot
bv.Set(int32(off/int64(Widthptr) + 1)) // pointer in second slot
case TSLICE:
// struct { byte *array; uintgo len; uintgo cap; }
if off&int64(Widthptr-1) != 0 {
Fatalf("onebitwalktype1: invalid TARRAY alignment, %v", t)
}
bv.Set(int32(off / int64(Widthptr))) // pointer in first slot (BitsPointer)
case TARRAY:
elt := t.Elem()
if elt.Width == 0 {
// Short-circuit for #20739.
break
}
for i := int64(0); i < t.NumElem(); i++ {
onebitwalktype1(elt, off, bv)
off += elt.Width
}
case TSTRUCT:
for _, f := range t.Fields().Slice() {
onebitwalktype1(f.Type, off+f.Offset, bv)
}
default:
Fatalf("onebitwalktype1: unexpected type, %v", t)
}
}
// localWords returns the number of words of local variables.
func (lv *Liveness) localWords() int32 {
return int32(lv.stkptrsize / int64(Widthptr))
}
// argWords returns the number of words of in and out arguments.
func (lv *Liveness) argWords() int32 {
return int32(lv.fn.Type.ArgWidth() / int64(Widthptr))
}
// Generates live pointer value maps for arguments and local variables. The
// this argument and the in arguments are always assumed live. The vars
// argument is a slice of *Nodes.
func (lv *Liveness) pointerMap(liveout bvec, vars []*Node, args, locals bvec) {
for i := int32(0); ; i++ {
i = liveout.Next(i)
if i < 0 {
break
}
node := vars[i]
switch node.Class() {
case PAUTO:
onebitwalktype1(node.Type, node.Xoffset+lv.stkptrsize, locals)
case PPARAM, PPARAMOUT:
onebitwalktype1(node.Type, node.Xoffset, args)
}
}
}
// Returns true for instructions that are safe points that must be annotated
// with liveness information.
func issafepoint(v *ssa.Value) bool {
return v.Op.IsCall()
}
// Initializes the sets for solving the live variables. Visits all the
// instructions in each basic block to summarizes the information at each basic
// block
func (lv *Liveness) prologue() {
lv.initcache()
for _, b := range lv.f.Blocks {
be := lv.blockEffects(b)
// Walk the block instructions backward and update the block
// effects with the each prog effects.
for j := len(b.Values) - 1; j >= 0; j-- {
pos, e := lv.valueEffects(b.Values[j])
if e&varkill != 0 {
be.varkill.Set(pos)
be.uevar.Unset(pos)
}
if e&uevar != 0 {
be.uevar.Set(pos)
}
}
// Walk the block instructions forward to update avarinit bits.
// avarinit describes the effect at the end of the block, not the beginning.
for j := 0; j < len(b.Values); j++ {
pos, e := lv.valueEffects(b.Values[j])
if e&varkill != 0 {
be.avarinit.Unset(pos)
}
if e&avarinit != 0 {
be.avarinit.Set(pos)
}
}
}
}
// Solve the liveness dataflow equations.
func (lv *Liveness) solve() {
// These temporary bitvectors exist to avoid successive allocations and
// frees within the loop.
newlivein := bvalloc(int32(len(lv.vars)))
newliveout := bvalloc(int32(len(lv.vars)))
any := bvalloc(int32(len(lv.vars)))
all := bvalloc(int32(len(lv.vars)))
// Push avarinitall, avarinitany forward.
// avarinitall says the addressed var is initialized along all paths reaching the block exit.
// avarinitany says the addressed var is initialized along some path reaching the block exit.
for _, b := range lv.f.Blocks {
be := lv.blockEffects(b)
if b == lv.f.Entry {
be.avarinitall.Copy(be.avarinit)
} else {
be.avarinitall.Clear()
be.avarinitall.Not()
}
be.avarinitany.Copy(be.avarinit)
}
// Walk blocks in the general direction of propagation (RPO
// for avarinit{any,all}, and PO for live{in,out}). This
// improves convergence.
po := lv.f.Postorder()
for change := true; change; {
change = false
for i := len(po) - 1; i >= 0; i-- {
b := po[i]
be := lv.blockEffects(b)
lv.avarinitanyall(b, any, all)
any.AndNot(any, be.varkill)
all.AndNot(all, be.varkill)
any.Or(any, be.avarinit)
all.Or(all, be.avarinit)
if !any.Eq(be.avarinitany) {
change = true
be.avarinitany.Copy(any)
}
if !all.Eq(be.avarinitall) {
change = true
be.avarinitall.Copy(all)
}
}
}
// Iterate through the blocks in reverse round-robin fashion. A work
// queue might be slightly faster. As is, the number of iterations is
// so low that it hardly seems to be worth the complexity.
for change := true; change; {
change = false
for _, b := range po {
be := lv.blockEffects(b)
newliveout.Clear()
switch b.Kind {
case ssa.BlockRet:
for _, pos := range lv.cache.retuevar {
newliveout.Set(pos)
}
case ssa.BlockRetJmp:
for _, pos := range lv.cache.tailuevar {
newliveout.Set(pos)
}
case ssa.BlockExit:
// nothing to do
default:
// A variable is live on output from this block
// if it is live on input to some successor.
//
// out[b] = \bigcup_{s \in succ[b]} in[s]
newliveout.Copy(lv.blockEffects(b.Succs[0].Block()).livein)
for _, succ := range b.Succs[1:] {
newliveout.Or(newliveout, lv.blockEffects(succ.Block()).livein)
}
}
if !be.liveout.Eq(newliveout) {
change = true
be.liveout.Copy(newliveout)
}
// A variable is live on input to this block
// if it is live on output from this block and
// not set by the code in this block.
//
// in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
newlivein.AndNot(be.liveout, be.varkill)
be.livein.Or(newlivein, be.uevar)
}
}
}
// Visits all instructions in a basic block and computes a bit vector of live
// variables at each safe point locations.
func (lv *Liveness) epilogue() {
nvars := int32(len(lv.vars))
liveout := bvalloc(nvars)
any := bvalloc(nvars)
all := bvalloc(nvars)
livedefer := bvalloc(nvars) // always-live variables
// If there is a defer (that could recover), then all output
// parameters are live all the time. In addition, any locals
// that are pointers to heap-allocated output parameters are
// also always live (post-deferreturn code needs these
// pointers to copy values back to the stack).
// TODO: if the output parameter is heap-allocated, then we
// don't need to keep the stack copy live?
if lv.fn.Func.HasDefer() {
for i, n := range lv.vars {
if n.Class() == PPARAMOUT {
if n.IsOutputParamHeapAddr() {
// Just to be paranoid. Heap addresses are PAUTOs.
Fatalf("variable %v both output param and heap output param", n)
}
if n.Name.Param.Heapaddr != nil {
// If this variable moved to the heap, then
// its stack copy is not live.
continue
}
// Note: zeroing is handled by zeroResults in walk.go.
livedefer.Set(int32(i))
}
if n.IsOutputParamHeapAddr() {
n.Name.SetNeedzero(true)
livedefer.Set(int32(i))
}
}
}
{
// Reserve an entry for function entry.
live := bvalloc(nvars)
for _, pos := range lv.cache.textavarinit {
live.Set(pos)
}
lv.livevars = append(lv.livevars, live)
}
for _, b := range lv.f.Blocks {
be := lv.blockEffects(b)
// Compute avarinitany and avarinitall for entry to block.
// This duplicates information known during livenesssolve
// but avoids storing two more vectors for each block.
lv.avarinitanyall(b, any, all)
// Walk forward through the basic block instructions and
// allocate liveness maps for those instructions that need them.
// Seed the maps with information about the addrtaken variables.
for _, v := range b.Values {
pos, e := lv.valueEffects(v)
if e&varkill != 0 {
any.Unset(pos)
all.Unset(pos)
}
if e&avarinit != 0 {
any.Set(pos)
all.Set(pos)
}
if !issafepoint(v) {
continue
}
// Annotate ambiguously live variables so that they can
// be zeroed at function entry and at VARKILL points.
// liveout is dead here and used as a temporary.
liveout.AndNot(any, all)
if !liveout.IsEmpty() {
for pos := int32(0); pos < liveout.n; pos++ {
if !liveout.Get(pos) {
continue
}
all.Set(pos) // silence future warnings in this block
n := lv.vars[pos]
if !n.Name.Needzero() {
n.Name.SetNeedzero(true)
if debuglive >= 1 {
Warnl(v.Pos, "%v: %L is ambiguously live", lv.fn.Func.Nname, n)
}
}
}
}
// Live stuff first.
live := bvalloc(nvars)
live.Copy(any)
lv.livevars = append(lv.livevars, live)
}
be.lastbitmapindex = len(lv.livevars) - 1
}
for _, b := range lv.f.Blocks {
be := lv.blockEffects(b)
// walk backward, construct maps at each safe point
index := int32(be.lastbitmapindex)
if index < 0 {
// the first block we encounter should have the ATEXT so
// at no point should pos ever be less than zero.
Fatalf("livenessepilogue")
}
liveout.Copy(be.liveout)
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
if issafepoint(v) {
// Found an interesting instruction, record the
// corresponding liveness information.
live := lv.livevars[index]
live.Or(live, liveout)
live.Or(live, livedefer) // only for non-entry safe points
index--
}
// Update liveness information.
pos, e := lv.valueEffects(v)
if e&varkill != 0 {
liveout.Unset(pos)
}
if e&uevar != 0 {
liveout.Set(pos)
}
}
if b == lv.f.Entry {
if index != 0 {
Fatalf("bad index for entry point: %v", index)
}
// Record live variables.
live := lv.livevars[index]
live.Or(live, liveout)
}
}
// Useful sanity check: on entry to the function,
// the only things that can possibly be live are the
// input parameters.
for j, n := range lv.vars {
if n.Class() != PPARAM && lv.livevars[0].Get(int32(j)) {
Fatalf("internal error: %v %L recorded as live on entry", lv.fn.Func.Nname, n)
}
}
}
func (lv *Liveness) clobber() {
// The clobberdead experiment inserts code to clobber all the dead variables (locals and args)
// before and after every safepoint. This experiment is useful for debugging the generation
// of live pointer bitmaps.
if objabi.Clobberdead_enabled == 0 {
return
}
var varSize int64
for _, n := range lv.vars {
varSize += n.Type.Size()
}
if len(lv.livevars) > 1000 || varSize > 10000 {
// Be careful to avoid doing too much work.
// Bail if >1000 safepoints or >10000 bytes of variables.
// Otherwise, giant functions make this experiment generate too much code.
return
}
if h := os.Getenv("GOCLOBBERDEADHASH"); h != "" {
// Clobber only functions where the hash of the function name matches a pattern.
// Useful for binary searching for a miscompiled function.
hstr := ""
for _, b := range sha1.Sum([]byte(lv.fn.funcname())) {
hstr += fmt.Sprintf("%08b", b)
}
if !strings.HasSuffix(hstr, h) {
return
}
fmt.Printf("\t\t\tCLOBBERDEAD %s\n", lv.fn.funcname())
}
if lv.f.Name == "forkAndExecInChild" {
// forkAndExecInChild calls vfork (on linux/amd64, anyway).
// The code we add here clobbers parts of the stack in the child.
// When the parent resumes, it is using the same stack frame. But the
// child has clobbered stack variables that the parent needs. Boom!
// In particular, the sys argument gets clobbered.
// Note to self: GOCLOBBERDEADHASH=011100101110
return
}
var oldSched []*ssa.Value
for _, b := range lv.f.Blocks {
// Copy block's values to a temporary.
oldSched = append(oldSched[:0], b.Values...)
b.Values = b.Values[:0]
// Clobber all dead variables at entry.
if b == lv.f.Entry {
for len(oldSched) > 0 && len(oldSched[0].Args) == 0 {
// Skip argless ops. We need to skip at least
// the lowered ClosurePtr op, because it
// really wants to be first. This will also
// skip ops like InitMem and SP, which are ok.
b.Values = append(b.Values, oldSched[0])
oldSched = oldSched[1:]
}
clobber(lv, b, lv.livevars[0])
}
// Copy values into schedule, adding clobbering around safepoints.
for _, v := range oldSched {
if !issafepoint(v) {
b.Values = append(b.Values, v)
continue
}
before := true
if v.Op.IsCall() && v.Aux != nil && v.Aux.(*obj.LSym) == typedmemmove {
// Can't put clobber code before the call to typedmemmove.
// The variable to-be-copied is marked as dead
// at the callsite. That is ok, though, as typedmemmove
// is marked as nosplit, and the first thing it does
// is to call memmove (also nosplit), after which
// the source value is dead.
// See issue 16026.
before = false
}
if before {
clobber(lv, b, lv.livevars[lv.stackMapIndex[v]])
}
b.Values = append(b.Values, v)
clobber(lv, b, lv.livevars[lv.stackMapIndex[v]])
}
}
}
// clobber generates code to clobber all dead variables (those not marked in live).
// Clobbering instructions are added to the end of b.Values.
func clobber(lv *Liveness, b *ssa.Block, live bvec) {
for i, n := range lv.vars {
if !live.Get(int32(i)) {
clobberVar(b, n)
}
}
}
// clobberVar generates code to trash the pointers in v.
// Clobbering instructions are added to the end of b.Values.
func clobberVar(b *ssa.Block, v *Node) {
clobberWalk(b, v, 0, v.Type)
}
// b = block to which we append instructions
// v = variable
// offset = offset of (sub-portion of) variable to clobber (in bytes)
// t = type of sub-portion of v.
func clobberWalk(b *ssa.Block, v *Node, offset int64, t *types.Type) {
if !types.Haspointers(t) {
return
}
switch t.Etype {
case TPTR32,
TPTR64,
TUNSAFEPTR,
TFUNC,
TCHAN,
TMAP:
clobberPtr(b, v, offset)
case TSTRING:
// struct { byte *str; int len; }
clobberPtr(b, v, offset)
case TINTER:
// struct { Itab *tab; void *data; }
// or, when isnilinter(t)==true:
// struct { Type *type; void *data; }
clobberPtr(b, v, offset)
clobberPtr(b, v, offset+int64(Widthptr))
case TSLICE:
// struct { byte *array; int len; int cap; }
clobberPtr(b, v, offset)
case TARRAY:
for i := int64(0); i < t.NumElem(); i++ {
clobberWalk(b, v, offset+i*t.Elem().Size(), t.Elem())
}
case TSTRUCT:
for _, t1 := range t.Fields().Slice() {
clobberWalk(b, v, offset+t1.Offset, t1.Type)
}
default:
Fatalf("clobberWalk: unexpected type, %v", t)
}
}
// clobberPtr generates a clobber of the pointer at offset offset in v.
// The clobber instruction is added at the end of b.
func clobberPtr(b *ssa.Block, v *Node, offset int64) {
b.NewValue0IA(src.NoXPos, ssa.OpClobber, types.TypeVoid, offset, v)
}
func (lv *Liveness) avarinitanyall(b *ssa.Block, any, all bvec) {
if len(b.Preds) == 0 {
any.Clear()
all.Clear()
for _, pos := range lv.cache.textavarinit {
any.Set(pos)
all.Set(pos)
}
return
}
be := lv.blockEffects(b.Preds[0].Block())
any.Copy(be.avarinitany)
all.Copy(be.avarinitall)
for _, pred := range b.Preds[1:] {
be := lv.blockEffects(pred.Block())
any.Or(any, be.avarinitany)
all.And(all, be.avarinitall)
}
}
// FNV-1 hash function constants.
const (
H0 = 2166136261
Hp = 16777619
)
func hashbitmap(h uint32, bv bvec) uint32 {
n := int((bv.n + 31) / 32)
for i := 0; i < n; i++ {
w := bv.b[i]
h = (h * Hp) ^ (w & 0xff)
h = (h * Hp) ^ ((w >> 8) & 0xff)
h = (h * Hp) ^ ((w >> 16) & 0xff)
h = (h * Hp) ^ ((w >> 24) & 0xff)
}
return h
}
// Compact liveness information by coalescing identical per-call-site bitmaps.
// The merging only happens for a single function, not across the entire binary.
//
// There are actually two lists of bitmaps, one list for the local variables and one
// list for the function arguments. Both lists are indexed by the same PCDATA
// index, so the corresponding pairs must be considered together when
// merging duplicates. The argument bitmaps change much less often during
// function execution than the local variable bitmaps, so it is possible that
// we could introduce a separate PCDATA index for arguments vs locals and
// then compact the set of argument bitmaps separately from the set of
// local variable bitmaps. As of 2014-04-02, doing this to the godoc binary
// is actually a net loss: we save about 50k of argument bitmaps but the new
// PCDATA tables cost about 100k. So for now we keep using a single index for
// both bitmap lists.
func (lv *Liveness) compact() {
// Linear probing hash table of bitmaps seen so far.
// The hash table has 4n entries to keep the linear
// scan short. An entry of -1 indicates an empty slot.
n := len(lv.livevars)
tablesize := 4 * n
table := make([]int, tablesize)
for i := range table {
table[i] = -1
}
// remap[i] = the new index of the old bit vector #i.
remap := make([]int, n)
for i := range remap {
remap[i] = -1
}
uniq := 0 // unique tables found so far
// Consider bit vectors in turn.
// If new, assign next number using uniq,
// record in remap, record in lv.livevars
// under the new index, and add entry to hash table.
// If already seen, record earlier index in remap.
Outer:
for i, live := range lv.livevars {
h := hashbitmap(H0, live) % uint32(tablesize)
for {
j := table[h]
if j < 0 {
break
}
jlive := lv.livevars[j]
if live.Eq(jlive) {
remap[i] = j
continue Outer
}
h++
if h == uint32(tablesize) {
h = 0
}
}
table[h] = uniq
remap[i] = uniq
lv.livevars[uniq] = live
uniq++
}
// We've already reordered lv.livevars[0:uniq]. Clear the
// pointers later in the array so they can be GC'd.
tail := lv.livevars[uniq:]
for i := range tail { // memclr loop pattern
tail[i] = bvec{}
}
lv.livevars = lv.livevars[:uniq]
// Record compacted stack map indexes for each value.
// These will later become PCDATA instructions.
lv.showlive(nil, lv.livevars[0])
pos := 1
lv.stackMapIndex = make(map[*ssa.Value]int)
for _, b := range lv.f.Blocks {
for _, v := range b.Values {
if issafepoint(v) {
lv.showlive(v, lv.livevars[remap[pos]])
lv.stackMapIndex[v] = int(remap[pos])
pos++
}
}
}
}
func (lv *Liveness) showlive(v *ssa.Value, live bvec) {
if debuglive == 0 || lv.fn.funcname() == "init" || strings.HasPrefix(lv.fn.funcname(), ".") {
return
}
if live.IsEmpty() {
return
}
pos := lv.fn.Func.Nname.Pos
if v != nil {
pos = v.Pos
}
s := "live at "
if v == nil {
s += fmt.Sprintf("entry to %s:", lv.fn.funcname())
} else if sym, ok := v.Aux.(*obj.LSym); ok {
fn := sym.Name
if pos := strings.Index(fn, "."); pos >= 0 {
fn = fn[pos+1:]
}
s += fmt.Sprintf("call to %s:", fn)
} else {
s += "indirect call:"
}
for j, n := range lv.vars {
if live.Get(int32(j)) {
s += fmt.Sprintf(" %v", n)
}
}
Warnl(pos, s)
}
func (lv *Liveness) printbvec(printed bool, name string, live bvec) bool {
started := false
for i, n := range lv.vars {
if !live.Get(int32(i)) {
continue
}
if !started {
if !printed {
fmt.Printf("\t")
} else {
fmt.Printf(" ")
}
started = true
printed = true
fmt.Printf("%s=", name)
} else {
fmt.Printf(",")
}
fmt.Printf("%s", n.Sym.Name)
}
return printed
}
// printeffect is like printbvec, but for a single variable.
func (lv *Liveness) printeffect(printed bool, name string, pos int32, x bool) bool {
if !x {
return printed
}
if !printed {
fmt.Printf("\t")
} else {
fmt.Printf(" ")
}
fmt.Printf("%s=%s", name, lv.vars[pos].Sym.Name)
return true
}
// Prints the computed liveness information and inputs, for debugging.
// This format synthesizes the information used during the multiple passes
// into a single presentation.
func (lv *Liveness) printDebug() {
fmt.Printf("liveness: %s\n", lv.fn.funcname())
pcdata := 0
for i, b := range lv.f.Blocks {
if i > 0 {
fmt.Printf("\n")
}
// bb#0 pred=1,2 succ=3,4
fmt.Printf("bb#%d pred=", b.ID)
for j, pred := range b.Preds {
if j > 0 {
fmt.Printf(",")
}
fmt.Printf("%d", pred.Block().ID)
}
fmt.Printf(" succ=")
for j, succ := range b.Succs {
if j > 0 {
fmt.Printf(",")
}
fmt.Printf("%d", succ.Block().ID)
}
fmt.Printf("\n")
be := lv.blockEffects(b)
// initial settings
printed := false
printed = lv.printbvec(printed, "uevar", be.uevar)
printed = lv.printbvec(printed, "livein", be.livein)
if printed {
fmt.Printf("\n")
}
// program listing, with individual effects listed
if b == lv.f.Entry {
live := lv.livevars[pcdata]
fmt.Printf("(%s) function entry\n", linestr(lv.fn.Func.Nname.Pos))
fmt.Printf("\tlive=")
printed = false
for j, n := range lv.vars {
if !live.Get(int32(j)) {
continue
}
if printed {
fmt.Printf(",")
}
fmt.Printf("%v", n)
printed = true
}
fmt.Printf("\n")
}
for _, v := range b.Values {
fmt.Printf("(%s) %v\n", linestr(v.Pos), v.LongString())
if pos, ok := lv.stackMapIndex[v]; ok {
pcdata = pos
}
pos, effect := lv.valueEffects(v)
printed = false
printed = lv.printeffect(printed, "uevar", pos, effect&uevar != 0)
printed = lv.printeffect(printed, "varkill", pos, effect&varkill != 0)
printed = lv.printeffect(printed, "avarinit", pos, effect&avarinit != 0)
if printed {
fmt.Printf("\n")
}
if !issafepoint(v) {
continue
}
live := lv.livevars[pcdata]
fmt.Printf("\tlive=")
printed = false
for j, n := range lv.vars {
if !live.Get(int32(j)) {
continue
}
if printed {
fmt.Printf(",")
}
fmt.Printf("%v", n)
printed = true
}
fmt.Printf("\n")
}
// bb bitsets
fmt.Printf("end\n")
printed = false
printed = lv.printbvec(printed, "varkill", be.varkill)
printed = lv.printbvec(printed, "liveout", be.liveout)
printed = lv.printbvec(printed, "avarinit", be.avarinit)
printed = lv.printbvec(printed, "avarinitany", be.avarinitany)
printed = lv.printbvec(printed, "avarinitall", be.avarinitall)
if printed {
fmt.Printf("\n")
}
}
fmt.Printf("\n")
}
// Dumps a slice of bitmaps to a symbol as a sequence of uint32 values. The
// first word dumped is the total number of bitmaps. The second word is the
// length of the bitmaps. All bitmaps are assumed to be of equal length. The
// remaining bytes are the raw bitmaps.
func (lv *Liveness) emit(argssym, livesym *obj.LSym) {
args := bvalloc(lv.argWords())
aoff := duint32(argssym, 0, uint32(len(lv.livevars))) // number of bitmaps
aoff = duint32(argssym, aoff, uint32(args.n)) // number of bits in each bitmap
locals := bvalloc(lv.localWords())
loff := duint32(livesym, 0, uint32(len(lv.livevars))) // number of bitmaps
loff = duint32(livesym, loff, uint32(locals.n)) // number of bits in each bitmap
for _, live := range lv.livevars {
args.Clear()
locals.Clear()
lv.pointerMap(live, lv.vars, args, locals)
aoff = dbvec(argssym, aoff, args)
loff = dbvec(livesym, loff, locals)
}
// Give these LSyms content-addressable names,
// so that they can be de-duplicated.
// This provides significant binary size savings.
// It is safe to rename these LSyms because
// they are tracked separately from ctxt.hash.
argssym.Name = fmt.Sprintf("gclocals·%x", md5.Sum(argssym.P))
livesym.Name = fmt.Sprintf("gclocals·%x", md5.Sum(livesym.P))
}
// Entry pointer for liveness analysis. Solves for the liveness of
// pointer variables in the function and emits a runtime data
// structure read by the garbage collector.
// Returns a map from GC safe points to their corresponding stack map index.
func liveness(e *ssafn, f *ssa.Func) map[*ssa.Value]int {
// Construct the global liveness state.
vars, idx := getvariables(e.curfn)
lv := newliveness(e.curfn, f, vars, idx, e.stkptrsize)
// Run the dataflow framework.
lv.prologue()
lv.solve()
lv.epilogue()
lv.compact()
lv.clobber()
if debuglive >= 2 {
lv.printDebug()
}
// Emit the live pointer map data structures
if ls := e.curfn.Func.lsym; ls != nil {
lv.emit(&ls.Func.GCArgs, &ls.Func.GCLocals)
}
return lv.stackMapIndex
}