// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first caninl determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then inlcalls walks each function body to
// expand calls to inlinable functions.
//
// The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
// are not supported.
// 0: disabled
// 1: 80-nodes leaf functions, oneliners, lazy typechecking (default)
// 2: (unassigned)
// 3: allow variadic functions
// 4: allow non-leaf functions
//
// At some point this may get another default and become switch-offable with -N.
//
// The -d typcheckinl flag enables early typechecking of all imported bodies,
// which is useful to flush out bugs.
//
// The debug['m'] flag enables diagnostic output. a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.
//
// TODO:
// - inline functions with ... args
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
"fmt"
"strings"
)
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
func fnpkg(fn *Node) *types.Pkg {
if fn.IsMethod() {
// method
rcvr := fn.Type.Recv().Type
if rcvr.IsPtr() {
rcvr = rcvr.Elem()
}
if rcvr.Sym == nil {
Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr)
}
return rcvr.Sym.Pkg
}
// non-method
return fn.Sym.Pkg
}
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
// because they're a copy of an already checked body.
func typecheckinl(fn *Node) {
lno := setlineno(fn)
// typecheckinl is only for imported functions;
// their bodies may refer to unsafe as long as the package
// was marked safe during import (which was checked then).
// the ->inl of a local function has been typechecked before caninl copied it.
pkg := fnpkg(fn)
if pkg == localpkg || pkg == nil {
return // typecheckinl on local function
}
if Debug['m'] > 2 || Debug_export != 0 {
fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl)
}
save_safemode := safemode
safemode = false
savefn := Curfn
Curfn = fn
typecheckslice(fn.Func.Inl.Slice(), Etop)
Curfn = savefn
safemode = save_safemode
lineno = lno
}
// Caninl determines whether fn is inlineable.
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
// fn and ->nbody will already have been typechecked.
func caninl(fn *Node) {
if fn.Op != ODCLFUNC {
Fatalf("caninl %v", fn)
}
if fn.Func.Nname == nil {
Fatalf("caninl no nname %+v", fn)
}
var reason string // reason, if any, that the function was not inlined
if Debug['m'] > 1 {
defer func() {
if reason != "" {
fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
}
}()
}
// If marked "go:noinline", don't inline
if fn.Func.Pragma&Noinline != 0 {
reason = "marked go:noinline"
return
}
// If marked "go:cgo_unsafe_args", don't inline, since the
// function makes assumptions about its argument frame layout.
if fn.Func.Pragma&CgoUnsafeArgs != 0 {
reason = "marked go:cgo_unsafe_args"
return
}
// The nowritebarrierrec checker currently works at function
// granularity, so inlining yeswritebarrierrec functions can
// confuse it (#22342). As a workaround, disallow inlining
// them for now.
if fn.Func.Pragma&Yeswritebarrierrec != 0 {
reason = "marked go:yeswritebarrierrec"
return
}
// If fn has no body (is defined outside of Go), cannot inline it.
if fn.Nbody.Len() == 0 {
reason = "no function body"
return
}
if fn.Typecheck() == 0 {
Fatalf("caninl on non-typechecked function %v", fn)
}
// can't handle ... args yet
if Debug['l'] < 3 {
f := fn.Type.Params().Fields()
if len := f.Len(); len > 0 {
if t := f.Index(len - 1); t.Isddd() {
reason = "has ... args"
return
}
}
}
// Runtime package must not be instrumented.
// Instrument skips runtime package. However, some runtime code can be
// inlined into other packages and instrumented there. To avoid this,
// we disable inlining of runtime functions when instrumenting.
// The example that we observed is inlining of LockOSThread,
// which lead to false race reports on m contents.
if instrumenting && myimportpath == "runtime" {
reason = "instrumenting and is runtime function"
return
}
n := fn.Func.Nname
if n.Func.InlinabilityChecked() {
return
}
defer n.Func.SetInlinabilityChecked(true)
const maxBudget = 80
visitor := hairyVisitor{budget: maxBudget}
if visitor.visitList(fn.Nbody) {
reason = visitor.reason
return
}
if visitor.budget < 0 {
reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", maxBudget-visitor.budget, maxBudget)
return
}
savefn := Curfn
Curfn = fn
n.Func.Inl.Set(fn.Nbody.Slice())
fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice()))
inldcl := inlcopylist(n.Name.Defn.Func.Dcl)
n.Func.Inldcl.Set(inldcl)
n.Func.InlCost = maxBudget - visitor.budget
// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
// this is so export can find the body of a method
fn.Type.FuncType().Nname = asTypesNode(n)
if Debug['m'] > 1 {
fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl)
} else if Debug['m'] != 0 {
fmt.Printf("%v: can inline %v\n", fn.Line(), n)
}
Curfn = savefn
}
// inlFlood marks n's inline body for export and recursively ensures
// all called functions are marked too.
func inlFlood(n *Node) {
if n == nil {
return
}
if n.Op != ONAME || n.Class() != PFUNC {
Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class())
}
if n.Func == nil {
// TODO(mdempsky): Should init have a Func too?
if n.Sym.Name == "init" {
return
}
Fatalf("inlFlood: missing Func on %v", n)
}
if n.Func.Inl.Len() == 0 {
return
}
if n.Func.ExportInline() {
return
}
n.Func.SetExportInline(true)
typecheckinl(n)
// Recursively flood any functions called by this one.
inspectList(n.Func.Inl, func(n *Node) bool {
switch n.Op {
case OCALLFUNC, OCALLMETH:
inlFlood(asNode(n.Left.Type.Nname()))
}
return true
})
}
// hairyVisitor visits a function body to determine its inlining
// hairiness and whether or not it can be inlined.
type hairyVisitor struct {
budget int32
reason string
}
// Look for anything we want to punt on.
func (v *hairyVisitor) visitList(ll Nodes) bool {
for _, n := range ll.Slice() {
if v.visit(n) {
return true
}
}
return false
}
func (v *hairyVisitor) visit(n *Node) bool {
if n == nil {
return false
}
switch n.Op {
// Call is okay if inlinable and we have the budget for the body.
case OCALLFUNC:
if isIntrinsicCall(n) {
v.budget--
break
}
// Functions that call runtime.getcaller{pc,sp} can not be inlined
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) {
fn := n.Left.Sym.Name
if fn == "getcallerpc" || fn == "getcallersp" {
v.reason = "call to " + fn
return true
}
}
if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 {
v.budget -= fn.InlCost
break
}
if n.Left.isMethodExpression() {
if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl.Len() != 0 {
v.budget -= d.Func.InlCost
break
}
}
// TODO(mdempsky): Budget for OCLOSURE calls if we
// ever allow that. See #15561 and #23093.
if Debug['l'] < 4 {
v.reason = "non-leaf function"
return true
}
// Call is okay if inlinable and we have the budget for the body.
case OCALLMETH:
t := n.Left.Type
if t == nil {
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
}
if t.Nname() == nil {
Fatalf("no function definition for [%p] %+v\n", t, t)
}
if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl.Len() != 0 {
v.budget -= inlfn.InlCost
break
}
if Debug['l'] < 4 {
v.reason = "non-leaf method"
return true
}
// Things that are too hairy, irrespective of the budget
case OCALL, OCALLINTER, OPANIC:
if Debug['l'] < 4 {
v.reason = "non-leaf op " + n.Op.String()
return true
}
case ORECOVER:
// recover matches the argument frame pointer to find
// the right panic value, so it needs an argument frame.
v.reason = "call to recover"
return true
case OCLOSURE,
OCALLPART,
ORANGE,
OFOR,
OFORUNTIL,
OSELECT,
OTYPESW,
OPROC,
ODEFER,
ODCLTYPE, // can't print yet
OBREAK,
ORETJMP:
v.reason = "unhandled op " + n.Op.String()
return true
case ODCLCONST, OEMPTY, OFALL, OLABEL:
// These nodes don't produce code; omit from inlining budget.
return false
}
v.budget--
// TODO(mdempsky/josharian): Hacks to appease toolstash; remove.
// See issue 17566 and CL 31674 for discussion.
switch n.Op {
case OSTRUCTKEY:
v.budget--
case OSLICE, OSLICEARR, OSLICESTR:
v.budget--
case OSLICE3, OSLICE3ARR:
v.budget -= 2
}
// When debugging, don't stop early, to get full cost of inlining this function
if v.budget < 0 && Debug['m'] < 2 {
return true
}
return v.visit(n.Left) || v.visit(n.Right) ||
v.visitList(n.List) || v.visitList(n.Rlist) ||
v.visitList(n.Ninit) || v.visitList(n.Nbody)
}
// Inlcopy and inlcopylist recursively copy the body of a function.
// Any name-like node of non-local class is marked for re-export by adding it to
// the exportlist.
func inlcopylist(ll []*Node) []*Node {
s := make([]*Node, 0, len(ll))
for _, n := range ll {
s = append(s, inlcopy(n))
}
return s
}
func inlcopy(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME, OTYPE, OLITERAL:
return n
}
m := *n
if m.Func != nil {
m.Func.Inl.Set(nil)
}
m.Left = inlcopy(n.Left)
m.Right = inlcopy(n.Right)
m.List.Set(inlcopylist(n.List.Slice()))
m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
m.Nbody.Set(inlcopylist(n.Nbody.Slice()))
return &m
}
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
func inlcalls(fn *Node) {
savefn := Curfn
Curfn = fn
fn = inlnode(fn)
if fn != Curfn {
Fatalf("inlnode replaced curfn")
}
Curfn = savefn
}
// Turn an OINLCALL into a statement.
func inlconv2stmt(n *Node) {
n.Op = OBLOCK
// n->ninit stays
n.List.Set(n.Nbody.Slice())
n.Nbody.Set(nil)
n.Rlist.Set(nil)
}
// Turn an OINLCALL into a single valued expression.
// The result of inlconv2expr MUST be assigned back to n, e.g.
// n.Left = inlconv2expr(n.Left)
func inlconv2expr(n *Node) *Node {
r := n.Rlist.First()
return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
}
// Turn the rlist (with the return values) of the OINLCALL in
// n into an expression list lumping the ninit and body
// containing the inlined statements on the first list element so
// order will be preserved Used in return, oas2func and call
// statements.
func inlconv2list(n *Node) []*Node {
if n.Op != OINLCALL || n.Rlist.Len() == 0 {
Fatalf("inlconv2list %+v\n", n)
}
s := n.Rlist.Slice()
s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
return s
}
func inlnodelist(l Nodes) {
s := l.Slice()
for i := range s {
s[i] = inlnode(s[i])
}
}
// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here. so this is cleaner and
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
// n.Left = inlnode(n.Left)
func inlnode(n *Node) *Node {
if n == nil {
return n
}
switch n.Op {
// inhibit inlining of their argument
case ODEFER, OPROC:
switch n.Left.Op {
case OCALLFUNC, OCALLMETH:
n.Left.SetNoInline(true)
}
return n
// TODO do them here (or earlier),
// so escape analysis can avoid more heapmoves.
case OCLOSURE:
return n
}
lno := setlineno(n)
inlnodelist(n.Ninit)
for _, n1 := range n.Ninit.Slice() {
if n1.Op == OINLCALL {
inlconv2stmt(n1)
}
}
n.Left = inlnode(n.Left)
if n.Left != nil && n.Left.Op == OINLCALL {
n.Left = inlconv2expr(n.Left)
}
n.Right = inlnode(n.Right)
if n.Right != nil && n.Right.Op == OINLCALL {
if n.Op == OFOR || n.Op == OFORUNTIL {
inlconv2stmt(n.Right)
} else {
n.Right = inlconv2expr(n.Right)
}
}
inlnodelist(n.List)
switch n.Op {
case OBLOCK:
for _, n2 := range n.List.Slice() {
if n2.Op == OINLCALL {
inlconv2stmt(n2)
}
}
case ORETURN, OCALLFUNC, OCALLMETH, OCALLINTER, OAPPEND, OCOMPLEX:
// if we just replaced arg in f(arg()) or return arg with an inlined call
// and arg returns multiple values, glue as list
if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 {
n.List.Set(inlconv2list(n.List.First()))
break
}
fallthrough
default:
s := n.List.Slice()
for i1, n1 := range s {
if n1 != nil && n1.Op == OINLCALL {
s[i1] = inlconv2expr(s[i1])
}
}
}
inlnodelist(n.Rlist)
if n.Op == OAS2FUNC && n.Rlist.First().Op == OINLCALL {
n.Rlist.Set(inlconv2list(n.Rlist.First()))
n.Op = OAS2
n.SetTypecheck(0)
n = typecheck(n, Etop)
} else {
s := n.Rlist.Slice()
for i1, n1 := range s {
if n1.Op == OINLCALL {
if n.Op == OIF {
inlconv2stmt(n1)
} else {
s[i1] = inlconv2expr(s[i1])
}
}
}
}
inlnodelist(n.Nbody)
for _, n := range n.Nbody.Slice() {
if n.Op == OINLCALL {
inlconv2stmt(n)
}
}
// with all the branches out of the way, it is now time to
// transmogrify this node itself unless inhibited by the
// switch at the top of this function.
switch n.Op {
case OCALLFUNC, OCALLMETH:
if n.NoInline() {
return n
}
}
switch n.Op {
case OCALLFUNC:
if Debug['m'] > 3 {
fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
}
if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case
n = mkinlcall(n, n.Left, n.Isddd())
} else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil {
n = mkinlcall(n, asNode(n.Left.Sym.Def), n.Isddd())
} else if n.Left.Op == OCLOSURE {
if f := inlinableClosure(n.Left); f != nil {
n = mkinlcall(n, f, n.Isddd())
}
} else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil {
if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE {
if f := inlinableClosure(d.Right); f != nil {
// NB: this check is necessary to prevent indirect re-assignment of the variable
// having the address taken after the invocation or only used for reads is actually fine
// but we have no easy way to distinguish the safe cases
if d.Left.Addrtaken() {
if Debug['m'] > 1 {
fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left)
}
break
}
// ensure the variable is never re-assigned
if unsafe, a := reassigned(n.Left); unsafe {
if Debug['m'] > 1 {
if a != nil {
fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a)
} else {
fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left)
}
}
break
}
n = mkinlcall(n, f, n.Isddd())
}
}
}
case OCALLMETH:
if Debug['m'] > 3 {
fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
}
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
if n.Left.Type == nil {
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
}
if n.Left.Type.Nname() == nil {
Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
}
n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), n.Isddd())
}
lineno = lno
return n
}
// inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with
// the inlinable body. Returns nil if the function is not inlinable.
func inlinableClosure(n *Node) *Node {
c := n.Func.Closure
caninl(c)
f := c.Func.Nname
if f == nil || f.Func.Inl.Len() == 0 {
return nil
}
return f
}
// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
// indicating whether the name has any assignments other than its declaration.
// The second return value is the first such assignment encountered in the walk, if any. It is mostly
// useful for -m output documenting the reason for inhibited optimizations.
// NB: global variables are always considered to be re-assigned.
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
func reassigned(n *Node) (bool, *Node) {
if n.Op != ONAME {
Fatalf("reassigned %v", n)
}
// no way to reliably check for no-reassignment of globals, assume it can be
if n.Name.Curfn == nil {
return true, nil
}
f := n.Name.Curfn
// There just might be a good reason for this although this can be pretty surprising:
// local variables inside a closure have Curfn pointing to the OCLOSURE node instead
// of the corresponding ODCLFUNC.
// We need to walk the function body to check for reassignments so we follow the
// linkage to the ODCLFUNC node as that is where body is held.
if f.Op == OCLOSURE {
f = f.Func.Closure
}
v := reassignVisitor{name: n}
a := v.visitList(f.Nbody)
return a != nil, a
}
type reassignVisitor struct {
name *Node
}
func (v *reassignVisitor) visit(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case OAS:
if n.Left == v.name && n != v.name.Name.Defn {
return n
}
return nil
case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE:
for _, p := range n.List.Slice() {
if p == v.name && n != v.name.Name.Defn {
return n
}
}
return nil
}
if a := v.visit(n.Left); a != nil {
return a
}
if a := v.visit(n.Right); a != nil {
return a
}
if a := v.visitList(n.List); a != nil {
return a
}
if a := v.visitList(n.Rlist); a != nil {
return a
}
if a := v.visitList(n.Ninit); a != nil {
return a
}
if a := v.visitList(n.Nbody); a != nil {
return a
}
return nil
}
func (v *reassignVisitor) visitList(l Nodes) *Node {
for _, n := range l.Slice() {
if a := v.visit(n); a != nil {
return a
}
}
return nil
}
// The result of mkinlcall MUST be assigned back to n, e.g.
// n.Left = mkinlcall(n.Left, fn, isddd)
func mkinlcall(n *Node, fn *Node, isddd bool) *Node {
save_safemode := safemode
// imported functions may refer to unsafe as long as the
// package was marked safe during import (already checked).
pkg := fnpkg(fn)
if pkg != localpkg && pkg != nil {
safemode = false
}
n = mkinlcall1(n, fn, isddd)
safemode = save_safemode
return n
}
func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node {
if asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) {
inlvar := inlvars[asNode(t.Nname)]
if inlvar == nil {
Fatalf("missing inlvar for %v\n", asNode(t.Nname))
}
return inlvar
}
return typecheck(nblank, Erv|Easgn)
}
var inlgen int
// If n is a call, and fn is a function with an inlinable body,
// return an OINLCALL.
// On return ninit has the parameter assignments, the nbody is the
// inlined function body and list, rlist contain the input, output
// parameters.
// The result of mkinlcall1 MUST be assigned back to n, e.g.
// n.Left = mkinlcall1(n.Left, fn, isddd)
func mkinlcall1(n, fn *Node, isddd bool) *Node {
if fn.Func.Inl.Len() == 0 {
// No inlinable body.
return n
}
if fn == Curfn || fn.Name.Defn == Curfn {
// Can't recursively inline a function into itself.
return n
}
if Debug_typecheckinl == 0 {
typecheckinl(fn)
}
// We have a function node, and it has an inlineable body.
if Debug['m'] > 1 {
fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl)
} else if Debug['m'] != 0 {
fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
}
if Debug['m'] > 2 {
fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
}
ninit := n.Ninit
// Make temp names to use instead of the originals.
inlvars := make(map[*Node]*Node)
// record formals/locals for later post-processing
var inlfvars []*Node
// Find declarations corresponding to inlineable body.
var dcl []*Node
if fn.Name.Defn != nil {
dcl = fn.Func.Inldcl.Slice() // local function
// handle captured variables when inlining closures
if c := fn.Name.Defn.Func.Closure; c != nil {
for _, v := range c.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
o := v.Name.Param.Outer
// make sure the outer param matches the inlining location
// NB: if we enabled inlining of functions containing OCLOSURE or refined
// the reassigned check via some sort of copy propagation this would most
// likely need to be changed to a loop to walk up to the correct Param
if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) {
Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v)
}
if v.Name.Byval() {
iv := typecheck(inlvar(v), Erv)
ninit.Append(nod(ODCL, iv, nil))
ninit.Append(typecheck(nod(OAS, iv, o), Etop))
inlvars[v] = iv
} else {
addr := newname(lookup("&" + v.Sym.Name))
addr.Type = types.NewPtr(v.Type)
ia := typecheck(inlvar(addr), Erv)
ninit.Append(nod(ODCL, ia, nil))
ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), Etop))
inlvars[addr] = ia
// When capturing by reference, all occurrence of the captured var
// must be substituted with dereference of the temporary address
inlvars[v] = typecheck(nod(OIND, ia, nil), Erv)
}
}
}
} else {
dcl = fn.Func.Dcl // imported function
}
for _, ln := range dcl {
if ln.Op != ONAME {
continue
}
if ln.Class() == PPARAMOUT { // return values handled below.
continue
}
if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
continue
}
inlvars[ln] = typecheck(inlvar(ln), Erv)
if ln.Class() == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class() == PPARAM {
ninit.Append(nod(ODCL, inlvars[ln], nil))
}
if genDwarfInline > 0 {
inlf := inlvars[ln]
if ln.Class() == PPARAM {
inlf.SetInlFormal(true)
} else {
inlf.SetInlLocal(true)
}
inlf.Pos = ln.Pos
inlfvars = append(inlfvars, inlf)
}
}
// temporaries for return values.
var retvars []*Node
for i, t := range fn.Type.Results().Fields().Slice() {
var m *Node
var mpos src.XPos
if t != nil && asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) {
mpos = asNode(t.Nname).Pos
m = inlvar(asNode(t.Nname))
m = typecheck(m, Erv)
inlvars[asNode(t.Nname)] = m
} else {
// anonymous return values, synthesize names for use in assignment that replaces return
m = retvar(t, i)
}
if genDwarfInline > 0 {
// Don't update the src.Pos on a return variable if it
// was manufactured by the inliner (e.g. "~R2"); such vars
// were not part of the original callee.
if !strings.HasPrefix(m.Sym.Name, "~R") {
m.SetInlFormal(true)
m.Pos = mpos
inlfvars = append(inlfvars, m)
}
}
ninit.Append(nod(ODCL, m, nil))
retvars = append(retvars, m)
}
// Assign arguments to the parameters' temp names.
as := nod(OAS2, nil, nil)
as.Rlist.Set(n.List.Slice())
// For non-dotted calls to variadic functions, we assign the
// variadic parameter's temp name separately.
var vas *Node
if fn.IsMethod() {
rcv := fn.Type.Recv()
if n.Left.Op == ODOTMETH {
// For x.M(...), assign x directly to the
// receiver parameter.
if n.Left.Left == nil {
Fatalf("method call without receiver: %+v", n)
}
ras := nod(OAS, tinlvar(rcv, inlvars), n.Left.Left)
ras = typecheck(ras, Etop)
ninit.Append(ras)
} else {
// For T.M(...), add the receiver parameter to
// as.List, so it's assigned by the normal
// arguments.
if as.Rlist.Len() == 0 {
Fatalf("non-method call to method without first arg: %+v", n)
}
as.List.Append(tinlvar(rcv, inlvars))
}
}
for _, param := range fn.Type.Params().Fields().Slice() {
// For ordinary parameters or variadic parameters in
// dotted calls, just add the variable to the
// assignment list, and we're done.
if !param.Isddd() || isddd {
as.List.Append(tinlvar(param, inlvars))
continue
}
// Otherwise, we need to collect the remaining values
// to pass as a slice.
numvals := n.List.Len()
if numvals == 1 && n.List.First().Type.IsFuncArgStruct() {
numvals = n.List.First().Type.NumFields()
}
x := as.List.Len()
for as.List.Len() < numvals {
as.List.Append(argvar(param.Type, as.List.Len()))
}
varargs := as.List.Slice()[x:]
vas = nod(OAS, tinlvar(param, inlvars), nil)
if len(varargs) == 0 {
vas.Right = nodnil()
vas.Right.Type = param.Type
} else {
vas.Right = nod(OCOMPLIT, nil, typenod(param.Type))
vas.Right.List.Set(varargs)
}
}
if as.Rlist.Len() != 0 {
as = typecheck(as, Etop)
ninit.Append(as)
}
if vas != nil {
vas = typecheck(vas, Etop)
ninit.Append(vas)
}
// Zero the return parameters.
for _, n := range retvars {
ras := nod(OAS, n, nil)
ras = typecheck(ras, Etop)
ninit.Append(ras)
}
retlabel := autolabel(".i")
retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps)
inlgen++
parent := -1
if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil {
parent = b.InliningIndex()
}
newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym())
if genDwarfInline > 0 {
if !fn.Sym.Linksym().WasInlined() {
Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn)
fn.Sym.Linksym().Set(obj.AttrWasInlined, true)
}
}
subst := inlsubst{
retlabel: retlabel,
retvars: retvars,
inlvars: inlvars,
bases: make(map[*src.PosBase]*src.PosBase),
newInlIndex: newIndex,
}
body := subst.list(fn.Func.Inl)
lab := nod(OLABEL, retlabel, nil)
body = append(body, lab)
typecheckslice(body, Etop)
if genDwarfInline > 0 {
for _, v := range inlfvars {
v.Pos = subst.updatedPos(v.Pos)
}
}
//dumplist("ninit post", ninit);
call := nod(OINLCALL, nil, nil)
call.Ninit.Set(ninit.Slice())
call.Nbody.Set(body)
call.Rlist.Set(retvars)
call.Type = n.Type
call.SetTypecheck(1)
// transitive inlining
// might be nice to do this before exporting the body,
// but can't emit the body with inlining expanded.
// instead we emit the things that the body needs
// and each use must redo the inlining.
// luckily these are small.
inlnodelist(call.Nbody)
for _, n := range call.Nbody.Slice() {
if n.Op == OINLCALL {
inlconv2stmt(n)
}
}
if Debug['m'] > 2 {
fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call)
}
return call
}
// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
func inlvar(var_ *Node) *Node {
if Debug['m'] > 3 {
fmt.Printf("inlvar %+v\n", var_)
}
n := newname(var_.Sym)
n.Type = var_.Type
n.SetClass(PAUTO)
n.Name.SetUsed(true)
n.Name.Curfn = Curfn // the calling function, not the called one
n.SetAddrtaken(var_.Addrtaken())
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's results in.
func retvar(t *types.Field, i int) *Node {
n := newname(lookupN("~R", i))
n.Type = t.Type
n.SetClass(PAUTO)
n.Name.SetUsed(true)
n.Name.Curfn = Curfn // the calling function, not the called one
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's arguments
// when they come from a multiple return call.
func argvar(t *types.Type, i int) *Node {
n := newname(lookupN("~arg", i))
n.Type = t.Elem()
n.SetClass(PAUTO)
n.Name.SetUsed(true)
n.Name.Curfn = Curfn // the calling function, not the called one
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// The inlsubst type implements the actual inlining of a single
// function call.
type inlsubst struct {
// Target of the goto substituted in place of a return.
retlabel *Node
// Temporary result variables.
retvars []*Node
inlvars map[*Node]*Node
// bases maps from original PosBase to PosBase with an extra
// inlined call frame.
bases map[*src.PosBase]*src.PosBase
// newInlIndex is the index of the inlined call frame to
// insert for inlined nodes.
newInlIndex int
}
// list inlines a list of nodes.
func (subst *inlsubst) list(ll Nodes) []*Node {
s := make([]*Node, 0, ll.Len())
for _, n := range ll.Slice() {
s = append(s, subst.node(n))
}
return s
}
// node recursively copies a node from the saved pristine body of the
// inlined function, substituting references to input/output
// parameters with ones to the tmpnames, and substituting returns with
// assignments to the output.
func (subst *inlsubst) node(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME:
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
if Debug['m'] > 2 {
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
}
return inlvar
}
if Debug['m'] > 2 {
fmt.Printf("not substituting name %+v\n", n)
}
return n
case OLITERAL, OTYPE:
// If n is a named constant or type, we can continue
// using it in the inline copy. Otherwise, make a copy
// so we can update the line number.
if n.Sym != nil {
return n
}
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
// dump("Return before substitution", n);
case ORETURN:
m := nod(OGOTO, subst.retlabel, nil)
m.Ninit.Set(subst.list(n.Ninit))
if len(subst.retvars) != 0 && n.List.Len() != 0 {
as := nod(OAS2, nil, nil)
// Make a shallow copy of retvars.
// Otherwise OINLCALL.Rlist will be the same list,
// and later walk and typecheck may clobber it.
for _, n := range subst.retvars {
as.List.Append(n)
}
as.Rlist.Set(subst.list(n.List))
as = typecheck(as, Etop)
m.Ninit.Append(as)
}
typecheckslice(m.Ninit.Slice(), Etop)
m = typecheck(m, Etop)
// dump("Return after substitution", m);
return m
case OGOTO, OLABEL:
m := nod(OXXX, nil, nil)
*m = *n
m.Pos = subst.updatedPos(m.Pos)
m.Ninit.Set(nil)
p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen)
m.Left = newname(lookup(p))
return m
}
m := nod(OXXX, nil, nil)
*m = *n
m.Pos = subst.updatedPos(m.Pos)
m.Ninit.Set(nil)
if n.Op == OCLOSURE {
Fatalf("cannot inline function containing closure: %+v", n)
}
m.Left = subst.node(n.Left)
m.Right = subst.node(n.Right)
m.List.Set(subst.list(n.List))
m.Rlist.Set(subst.list(n.Rlist))
m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
m.Nbody.Set(subst.list(n.Nbody))
return m
}
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
pos := Ctxt.PosTable.Pos(xpos)
oldbase := pos.Base() // can be nil
newbase := subst.bases[oldbase]
if newbase == nil {
newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
subst.bases[oldbase] = newbase
}
pos.SetBase(newbase)
return Ctxt.PosTable.XPos(pos)
}