//===- Transforms/Instrumentation.h - Instrumentation passes ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines constructor functions for instrumentation passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_INSTRUMENTATION_H
#define LLVM_TRANSFORMS_INSTRUMENTATION_H
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/BasicBlock.h"
#include <cassert>
#include <cstdint>
#include <limits>
#include <string>
#include <vector>
#if defined(__GNUC__) && defined(__linux__) && !defined(ANDROID)
inline void *getDFSanArgTLSPtrForJIT() {
extern __thread __attribute__((tls_model("initial-exec")))
void *__dfsan_arg_tls;
return (void *)&__dfsan_arg_tls;
}
inline void *getDFSanRetValTLSPtrForJIT() {
extern __thread __attribute__((tls_model("initial-exec")))
void *__dfsan_retval_tls;
return (void *)&__dfsan_retval_tls;
}
#endif
namespace llvm {
class FunctionPass;
class ModulePass;
class OptimizationRemarkEmitter;
/// Instrumentation passes often insert conditional checks into entry blocks.
/// Call this function before splitting the entry block to move instructions
/// that must remain in the entry block up before the split point. Static
/// allocas and llvm.localescape calls, for example, must remain in the entry
/// block.
BasicBlock::iterator PrepareToSplitEntryBlock(BasicBlock &BB,
BasicBlock::iterator IP);
// Insert GCOV profiling instrumentation
struct GCOVOptions {
static GCOVOptions getDefault();
// Specify whether to emit .gcno files.
bool EmitNotes;
// Specify whether to modify the program to emit .gcda files when run.
bool EmitData;
// A four-byte version string. The meaning of a version string is described in
// gcc's gcov-io.h
char Version[4];
// Emit a "cfg checksum" that follows the "line number checksum" of a
// function. This affects both .gcno and .gcda files.
bool UseCfgChecksum;
// Add the 'noredzone' attribute to added runtime library calls.
bool NoRedZone;
// Emit the name of the function in the .gcda files. This is redundant, as
// the function identifier can be used to find the name from the .gcno file.
bool FunctionNamesInData;
// Emit the exit block immediately after the start block, rather than after
// all of the function body's blocks.
bool ExitBlockBeforeBody;
};
ModulePass *createGCOVProfilerPass(const GCOVOptions &Options =
GCOVOptions::getDefault());
// PGO Instrumention
ModulePass *createPGOInstrumentationGenLegacyPass();
ModulePass *
createPGOInstrumentationUseLegacyPass(StringRef Filename = StringRef(""));
ModulePass *createPGOIndirectCallPromotionLegacyPass(bool InLTO = false,
bool SamplePGO = false);
FunctionPass *createPGOMemOPSizeOptLegacyPass();
// Helper function to check if it is legal to promote indirect call \p Inst
// to a direct call of function \p F. Stores the reason in \p Reason.
bool isLegalToPromote(Instruction *Inst, Function *F, const char **Reason);
// Helper function that transforms Inst (either an indirect-call instruction, or
// an invoke instruction , to a conditional call to F. This is like:
// if (Inst.CalledValue == F)
// F(...);
// else
// Inst(...);
// end
// TotalCount is the profile count value that the instruction executes.
// Count is the profile count value that F is the target function.
// These two values are used to update the branch weight.
// If \p AttachProfToDirectCall is true, a prof metadata is attached to the
// new direct call to contain \p Count.
// Returns the promoted direct call instruction.
Instruction *promoteIndirectCall(Instruction *Inst, Function *F, uint64_t Count,
uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE);
/// Options for the frontend instrumentation based profiling pass.
struct InstrProfOptions {
// Add the 'noredzone' attribute to added runtime library calls.
bool NoRedZone = false;
// Do counter register promotion
bool DoCounterPromotion = false;
// Name of the profile file to use as output
std::string InstrProfileOutput;
InstrProfOptions() = default;
};
/// Insert frontend instrumentation based profiling.
ModulePass *createInstrProfilingLegacyPass(
const InstrProfOptions &Options = InstrProfOptions());
// Insert AddressSanitizer (address sanity checking) instrumentation
FunctionPass *createAddressSanitizerFunctionPass(bool CompileKernel = false,
bool Recover = false,
bool UseAfterScope = false);
ModulePass *createAddressSanitizerModulePass(bool CompileKernel = false,
bool Recover = false,
bool UseGlobalsGC = true);
// Insert MemorySanitizer instrumentation (detection of uninitialized reads)
FunctionPass *createMemorySanitizerPass(int TrackOrigins = 0,
bool Recover = false);
// Insert ThreadSanitizer (race detection) instrumentation
FunctionPass *createThreadSanitizerPass();
// Insert DataFlowSanitizer (dynamic data flow analysis) instrumentation
ModulePass *createDataFlowSanitizerPass(
const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
// Options for EfficiencySanitizer sub-tools.
struct EfficiencySanitizerOptions {
enum Type {
ESAN_None = 0,
ESAN_CacheFrag,
ESAN_WorkingSet,
} ToolType = ESAN_None;
EfficiencySanitizerOptions() = default;
};
// Insert EfficiencySanitizer instrumentation.
ModulePass *createEfficiencySanitizerPass(
const EfficiencySanitizerOptions &Options = EfficiencySanitizerOptions());
// Options for sanitizer coverage instrumentation.
struct SanitizerCoverageOptions {
enum Type {
SCK_None = 0,
SCK_Function,
SCK_BB,
SCK_Edge
} CoverageType = SCK_None;
bool IndirectCalls = false;
bool TraceBB = false;
bool TraceCmp = false;
bool TraceDiv = false;
bool TraceGep = false;
bool Use8bitCounters = false;
bool TracePC = false;
bool TracePCGuard = false;
bool Inline8bitCounters = false;
bool PCTable = false;
bool NoPrune = false;
bool StackDepth = false;
SanitizerCoverageOptions() = default;
};
// Insert SanitizerCoverage instrumentation.
ModulePass *createSanitizerCoverageModulePass(
const SanitizerCoverageOptions &Options = SanitizerCoverageOptions());
#if defined(__GNUC__) && defined(__linux__) && !defined(ANDROID)
inline ModulePass *createDataFlowSanitizerPassForJIT(
const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) {
return createDataFlowSanitizerPass(ABIListFiles, getDFSanArgTLSPtrForJIT,
getDFSanRetValTLSPtrForJIT);
}
#endif
// BoundsChecking - This pass instruments the code to perform run-time bounds
// checking on loads, stores, and other memory intrinsics.
FunctionPass *createBoundsCheckingPass();
/// \brief Calculate what to divide by to scale counts.
///
/// Given the maximum count, calculate a divisor that will scale all the
/// weights to strictly less than std::numeric_limits<uint32_t>::max().
static inline uint64_t calculateCountScale(uint64_t MaxCount) {
return MaxCount < std::numeric_limits<uint32_t>::max()
? 1
: MaxCount / std::numeric_limits<uint32_t>::max() + 1;
}
/// \brief Scale an individual branch count.
///
/// Scale a 64-bit weight down to 32-bits using \c Scale.
///
static inline uint32_t scaleBranchCount(uint64_t Count, uint64_t Scale) {
uint64_t Scaled = Count / Scale;
assert(Scaled <= std::numeric_limits<uint32_t>::max() && "overflow 32-bits");
return Scaled;
}
} // end namespace llvm
#endif // LLVM_TRANSFORMS_INSTRUMENTATION_H