//===- ScheduleDAGILP.h - ILP metric for ScheduleDAGInstrs ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Definition of an ILP metric for machine level instruction scheduling.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDFS_H
#define LLVM_CODEGEN_SCHEDULEDFS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include <cassert>
#include <cstdint>
#include <vector>
namespace llvm {
class raw_ostream;
/// \brief Represent the ILP of the subDAG rooted at a DAG node.
///
/// ILPValues summarize the DAG subtree rooted at each node. ILPValues are
/// valid for all nodes regardless of their subtree membership.
///
/// When computed using bottom-up DFS, this metric assumes that the DAG is a
/// forest of trees with roots at the bottom of the schedule branching upward.
struct ILPValue {
unsigned InstrCount;
/// Length may either correspond to depth or height, depending on direction,
/// and cycles or nodes depending on context.
unsigned Length;
ILPValue(unsigned count, unsigned length):
InstrCount(count), Length(length) {}
// Order by the ILP metric's value.
bool operator<(ILPValue RHS) const {
return (uint64_t)InstrCount * RHS.Length
< (uint64_t)Length * RHS.InstrCount;
}
bool operator>(ILPValue RHS) const {
return RHS < *this;
}
bool operator<=(ILPValue RHS) const {
return (uint64_t)InstrCount * RHS.Length
<= (uint64_t)Length * RHS.InstrCount;
}
bool operator>=(ILPValue RHS) const {
return RHS <= *this;
}
void print(raw_ostream &OS) const;
void dump() const;
};
/// \brief Compute the values of each DAG node for various metrics during DFS.
class SchedDFSResult {
friend class SchedDFSImpl;
static const unsigned InvalidSubtreeID = ~0u;
/// \brief Per-SUnit data computed during DFS for various metrics.
///
/// A node's SubtreeID is set to itself when it is visited to indicate that it
/// is the root of a subtree. Later it is set to its parent to indicate an
/// interior node. Finally, it is set to a representative subtree ID during
/// finalization.
struct NodeData {
unsigned InstrCount = 0;
unsigned SubtreeID = InvalidSubtreeID;
NodeData() = default;
};
/// \brief Per-Subtree data computed during DFS.
struct TreeData {
unsigned ParentTreeID = InvalidSubtreeID;
unsigned SubInstrCount = 0;
TreeData() = default;
};
/// \brief Record a connection between subtrees and the connection level.
struct Connection {
unsigned TreeID;
unsigned Level;
Connection(unsigned tree, unsigned level): TreeID(tree), Level(level) {}
};
bool IsBottomUp;
unsigned SubtreeLimit;
/// DFS results for each SUnit in this DAG.
std::vector<NodeData> DFSNodeData;
// Store per-tree data indexed on tree ID,
SmallVector<TreeData, 16> DFSTreeData;
// For each subtree discovered during DFS, record its connections to other
// subtrees.
std::vector<SmallVector<Connection, 4>> SubtreeConnections;
/// Cache the current connection level of each subtree.
/// This mutable array is updated during scheduling.
std::vector<unsigned> SubtreeConnectLevels;
public:
SchedDFSResult(bool IsBU, unsigned lim)
: IsBottomUp(IsBU), SubtreeLimit(lim) {}
/// \brief Get the node cutoff before subtrees are considered significant.
unsigned getSubtreeLimit() const { return SubtreeLimit; }
/// \brief Return true if this DFSResult is uninitialized.
///
/// resize() initializes DFSResult, while compute() populates it.
bool empty() const { return DFSNodeData.empty(); }
/// \brief Clear the results.
void clear() {
DFSNodeData.clear();
DFSTreeData.clear();
SubtreeConnections.clear();
SubtreeConnectLevels.clear();
}
/// \brief Initialize the result data with the size of the DAG.
void resize(unsigned NumSUnits) {
DFSNodeData.resize(NumSUnits);
}
/// \brief Compute various metrics for the DAG with given roots.
void compute(ArrayRef<SUnit> SUnits);
/// \brief Get the number of instructions in the given subtree and its
/// children.
unsigned getNumInstrs(const SUnit *SU) const {
return DFSNodeData[SU->NodeNum].InstrCount;
}
/// \brief Get the number of instructions in the given subtree not including
/// children.
unsigned getNumSubInstrs(unsigned SubtreeID) const {
return DFSTreeData[SubtreeID].SubInstrCount;
}
/// \brief Get the ILP value for a DAG node.
///
/// A leaf node has an ILP of 1/1.
ILPValue getILP(const SUnit *SU) const {
return ILPValue(DFSNodeData[SU->NodeNum].InstrCount, 1 + SU->getDepth());
}
/// \brief The number of subtrees detected in this DAG.
unsigned getNumSubtrees() const { return SubtreeConnectLevels.size(); }
/// \brief Get the ID of the subtree the given DAG node belongs to.
///
/// For convenience, if DFSResults have not been computed yet, give everything
/// tree ID 0.
unsigned getSubtreeID(const SUnit *SU) const {
if (empty())
return 0;
assert(SU->NodeNum < DFSNodeData.size() && "New Node");
return DFSNodeData[SU->NodeNum].SubtreeID;
}
/// \brief Get the connection level of a subtree.
///
/// For bottom-up trees, the connection level is the latency depth (in cycles)
/// of the deepest connection to another subtree.
unsigned getSubtreeLevel(unsigned SubtreeID) const {
return SubtreeConnectLevels[SubtreeID];
}
/// \brief Scheduler callback to update SubtreeConnectLevels when a tree is
/// initially scheduled.
void scheduleTree(unsigned SubtreeID);
};
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val);
} // end namespace llvm
#endif // LLVM_CODEGEN_SCHEDULEDFS_H