//===- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// Module.h This file contains the declarations for the Module class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_MODULE_H
#define LLVM_IR_MODULE_H
#include "llvm-c/Types.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/CodeGen.h"
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
namespace llvm {
class Error;
class FunctionType;
class GVMaterializer;
class LLVMContext;
class MemoryBuffer;
class RandomNumberGenerator;
template <class PtrType> class SmallPtrSetImpl;
class StructType;
/// A Module instance is used to store all the information related to an
/// LLVM module. Modules are the top level container of all other LLVM
/// Intermediate Representation (IR) objects. Each module directly contains a
/// list of globals variables, a list of functions, a list of libraries (or
/// other modules) this module depends on, a symbol table, and various data
/// about the target's characteristics.
///
/// A module maintains a GlobalValRefMap object that is used to hold all
/// constant references to global variables in the module. When a global
/// variable is destroyed, it should have no entries in the GlobalValueRefMap.
/// @brief The main container class for the LLVM Intermediate Representation.
class Module {
/// @name Types And Enumerations
/// @{
public:
/// The type for the list of global variables.
using GlobalListType = SymbolTableList<GlobalVariable>;
/// The type for the list of functions.
using FunctionListType = SymbolTableList<Function>;
/// The type for the list of aliases.
using AliasListType = SymbolTableList<GlobalAlias>;
/// The type for the list of ifuncs.
using IFuncListType = SymbolTableList<GlobalIFunc>;
/// The type for the list of named metadata.
using NamedMDListType = ilist<NamedMDNode>;
/// The type of the comdat "symbol" table.
using ComdatSymTabType = StringMap<Comdat>;
/// The Global Variable iterator.
using global_iterator = GlobalListType::iterator;
/// The Global Variable constant iterator.
using const_global_iterator = GlobalListType::const_iterator;
/// The Function iterators.
using iterator = FunctionListType::iterator;
/// The Function constant iterator
using const_iterator = FunctionListType::const_iterator;
/// The Function reverse iterator.
using reverse_iterator = FunctionListType::reverse_iterator;
/// The Function constant reverse iterator.
using const_reverse_iterator = FunctionListType::const_reverse_iterator;
/// The Global Alias iterators.
using alias_iterator = AliasListType::iterator;
/// The Global Alias constant iterator
using const_alias_iterator = AliasListType::const_iterator;
/// The Global IFunc iterators.
using ifunc_iterator = IFuncListType::iterator;
/// The Global IFunc constant iterator
using const_ifunc_iterator = IFuncListType::const_iterator;
/// The named metadata iterators.
using named_metadata_iterator = NamedMDListType::iterator;
/// The named metadata constant iterators.
using const_named_metadata_iterator = NamedMDListType::const_iterator;
/// This enumeration defines the supported behaviors of module flags.
enum ModFlagBehavior {
/// Emits an error if two values disagree, otherwise the resulting value is
/// that of the operands.
Error = 1,
/// Emits a warning if two values disagree. The result value will be the
/// operand for the flag from the first module being linked.
Warning = 2,
/// Adds a requirement that another module flag be present and have a
/// specified value after linking is performed. The value must be a metadata
/// pair, where the first element of the pair is the ID of the module flag
/// to be restricted, and the second element of the pair is the value the
/// module flag should be restricted to. This behavior can be used to
/// restrict the allowable results (via triggering of an error) of linking
/// IDs with the **Override** behavior.
Require = 3,
/// Uses the specified value, regardless of the behavior or value of the
/// other module. If both modules specify **Override**, but the values
/// differ, an error will be emitted.
Override = 4,
/// Appends the two values, which are required to be metadata nodes.
Append = 5,
/// Appends the two values, which are required to be metadata
/// nodes. However, duplicate entries in the second list are dropped
/// during the append operation.
AppendUnique = 6,
/// Takes the max of the two values, which are required to be integers.
Max = 7,
// Markers:
ModFlagBehaviorFirstVal = Error,
ModFlagBehaviorLastVal = Max
};
/// Checks if Metadata represents a valid ModFlagBehavior, and stores the
/// converted result in MFB.
static bool isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB);
struct ModuleFlagEntry {
ModFlagBehavior Behavior;
MDString *Key;
Metadata *Val;
ModuleFlagEntry(ModFlagBehavior B, MDString *K, Metadata *V)
: Behavior(B), Key(K), Val(V) {}
};
/// @}
/// @name Member Variables
/// @{
private:
LLVMContext &Context; ///< The LLVMContext from which types and
///< constants are allocated.
GlobalListType GlobalList; ///< The Global Variables in the module
FunctionListType FunctionList; ///< The Functions in the module
AliasListType AliasList; ///< The Aliases in the module
IFuncListType IFuncList; ///< The IFuncs in the module
NamedMDListType NamedMDList; ///< The named metadata in the module
std::string GlobalScopeAsm; ///< Inline Asm at global scope.
ValueSymbolTable *ValSymTab; ///< Symbol table for values
ComdatSymTabType ComdatSymTab; ///< Symbol table for COMDATs
std::unique_ptr<MemoryBuffer>
OwnedMemoryBuffer; ///< Memory buffer directly owned by this
///< module, for legacy clients only.
std::unique_ptr<GVMaterializer>
Materializer; ///< Used to materialize GlobalValues
std::string ModuleID; ///< Human readable identifier for the module
std::string SourceFileName; ///< Original source file name for module,
///< recorded in bitcode.
std::string TargetTriple; ///< Platform target triple Module compiled on
///< Format: (arch)(sub)-(vendor)-(sys0-(abi)
void *NamedMDSymTab; ///< NamedMDNode names.
DataLayout DL; ///< DataLayout associated with the module
friend class Constant;
/// @}
/// @name Constructors
/// @{
public:
/// The Module constructor. Note that there is no default constructor. You
/// must provide a name for the module upon construction.
explicit Module(StringRef ModuleID, LLVMContext& C);
/// The module destructor. This will dropAllReferences.
~Module();
/// @}
/// @name Module Level Accessors
/// @{
/// Get the module identifier which is, essentially, the name of the module.
/// @returns the module identifier as a string
const std::string &getModuleIdentifier() const { return ModuleID; }
/// Get the module's original source file name. When compiling from
/// bitcode, this is taken from a bitcode record where it was recorded.
/// For other compiles it is the same as the ModuleID, which would
/// contain the source file name.
const std::string &getSourceFileName() const { return SourceFileName; }
/// \brief Get a short "name" for the module.
///
/// This is useful for debugging or logging. It is essentially a convenience
/// wrapper around getModuleIdentifier().
StringRef getName() const { return ModuleID; }
/// Get the data layout string for the module's target platform. This is
/// equivalent to getDataLayout()->getStringRepresentation().
const std::string &getDataLayoutStr() const {
return DL.getStringRepresentation();
}
/// Get the data layout for the module's target platform.
const DataLayout &getDataLayout() const;
/// Get the target triple which is a string describing the target host.
/// @returns a string containing the target triple.
const std::string &getTargetTriple() const { return TargetTriple; }
/// Get the global data context.
/// @returns LLVMContext - a container for LLVM's global information
LLVMContext &getContext() const { return Context; }
/// Get any module-scope inline assembly blocks.
/// @returns a string containing the module-scope inline assembly blocks.
const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; }
/// Get a RandomNumberGenerator salted for use with this module. The
/// RNG can be seeded via -rng-seed=<uint64> and is salted with the
/// ModuleID and the provided pass salt. The returned RNG should not
/// be shared across threads or passes.
///
/// A unique RNG per pass ensures a reproducible random stream even
/// when other randomness consuming passes are added or removed. In
/// addition, the random stream will be reproducible across LLVM
/// versions when the pass does not change.
RandomNumberGenerator *createRNG(const Pass* P) const;
/// @}
/// @name Module Level Mutators
/// @{
/// Set the module identifier.
void setModuleIdentifier(StringRef ID) { ModuleID = ID; }
/// Set the module's original source file name.
void setSourceFileName(StringRef Name) { SourceFileName = Name; }
/// Set the data layout
void setDataLayout(StringRef Desc);
void setDataLayout(const DataLayout &Other);
/// Set the target triple.
void setTargetTriple(StringRef T) { TargetTriple = T; }
/// Set the module-scope inline assembly blocks.
/// A trailing newline is added if the input doesn't have one.
void setModuleInlineAsm(StringRef Asm) {
GlobalScopeAsm = Asm;
if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
GlobalScopeAsm += '\n';
}
/// Append to the module-scope inline assembly blocks.
/// A trailing newline is added if the input doesn't have one.
void appendModuleInlineAsm(StringRef Asm) {
GlobalScopeAsm += Asm;
if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
GlobalScopeAsm += '\n';
}
/// @}
/// @name Generic Value Accessors
/// @{
/// Return the global value in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalValue *getNamedValue(StringRef Name) const;
/// Return a unique non-zero ID for the specified metadata kind. This ID is
/// uniqued across modules in the current LLVMContext.
unsigned getMDKindID(StringRef Name) const;
/// Populate client supplied SmallVector with the name for custom metadata IDs
/// registered in this LLVMContext.
void getMDKindNames(SmallVectorImpl<StringRef> &Result) const;
/// Populate client supplied SmallVector with the bundle tags registered in
/// this LLVMContext. The bundle tags are ordered by increasing bundle IDs.
/// \see LLVMContext::getOperandBundleTagID
void getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const;
/// Return the type with the specified name, or null if there is none by that
/// name.
StructType *getTypeByName(StringRef Name) const;
std::vector<StructType *> getIdentifiedStructTypes() const;
/// @}
/// @name Function Accessors
/// @{
/// Look up the specified function in the module symbol table. Four
/// possibilities:
/// 1. If it does not exist, add a prototype for the function and return it.
/// 2. If it exists, and has a local linkage, the existing function is
/// renamed and a new one is inserted.
/// 3. Otherwise, if the existing function has the correct prototype, return
/// the existing function.
/// 4. Finally, the function exists but has the wrong prototype: return the
/// function with a constantexpr cast to the right prototype.
Constant *getOrInsertFunction(StringRef Name, FunctionType *T,
AttributeList AttributeList);
Constant *getOrInsertFunction(StringRef Name, FunctionType *T);
/// Look up the specified function in the module symbol table. If it does not
/// exist, add a prototype for the function and return it. This function
/// guarantees to return a constant of pointer to the specified function type
/// or a ConstantExpr BitCast of that type if the named function has a
/// different type. This version of the method takes a list of
/// function arguments, which makes it easier for clients to use.
template<typename... ArgsTy>
Constant *getOrInsertFunction(StringRef Name,
AttributeList AttributeList,
Type *RetTy, ArgsTy... Args)
{
SmallVector<Type*, sizeof...(ArgsTy)> ArgTys{Args...};
return getOrInsertFunction(Name,
FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
/// Same as above, but without the attributes.
template<typename... ArgsTy>
Constant *getOrInsertFunction(StringRef Name, Type *RetTy, ArgsTy... Args) {
return getOrInsertFunction(Name, AttributeList{}, RetTy, Args...);
}
/// Look up the specified function in the module symbol table. If it does not
/// exist, return null.
Function *getFunction(StringRef Name) const;
/// @}
/// @name Global Variable Accessors
/// @{
/// Look up the specified global variable in the module symbol table. If it
/// does not exist, return null. If AllowInternal is set to true, this
/// function will return types that have InternalLinkage. By default, these
/// types are not returned.
GlobalVariable *getGlobalVariable(StringRef Name) const {
return getGlobalVariable(Name, false);
}
GlobalVariable *getGlobalVariable(StringRef Name, bool AllowInternal) const;
GlobalVariable *getGlobalVariable(StringRef Name,
bool AllowInternal = false) {
return static_cast<const Module *>(this)->getGlobalVariable(Name,
AllowInternal);
}
/// Return the global variable in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
const GlobalVariable *getNamedGlobal(StringRef Name) const {
return getGlobalVariable(Name, true);
}
GlobalVariable *getNamedGlobal(StringRef Name) {
return const_cast<GlobalVariable *>(
static_cast<const Module *>(this)->getNamedGlobal(Name));
}
/// Look up the specified global in the module symbol table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct declaration, return
/// the existing global.
Constant *getOrInsertGlobal(StringRef Name, Type *Ty);
/// @}
/// @name Global Alias Accessors
/// @{
/// Return the global alias in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalAlias *getNamedAlias(StringRef Name) const;
/// @}
/// @name Global IFunc Accessors
/// @{
/// Return the global ifunc in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalIFunc *getNamedIFunc(StringRef Name) const;
/// @}
/// @name Named Metadata Accessors
/// @{
/// Return the first NamedMDNode in the module with the specified name. This
/// method returns null if a NamedMDNode with the specified name is not found.
NamedMDNode *getNamedMetadata(const Twine &Name) const;
/// Return the named MDNode in the module with the specified name. This method
/// returns a new NamedMDNode if a NamedMDNode with the specified name is not
/// found.
NamedMDNode *getOrInsertNamedMetadata(StringRef Name);
/// Remove the given NamedMDNode from this module and delete it.
void eraseNamedMetadata(NamedMDNode *NMD);
/// @}
/// @name Comdat Accessors
/// @{
/// Return the Comdat in the module with the specified name. It is created
/// if it didn't already exist.
Comdat *getOrInsertComdat(StringRef Name);
/// @}
/// @name Module Flags Accessors
/// @{
/// Returns the module flags in the provided vector.
void getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const;
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Metadata *getModuleFlag(StringRef Key) const;
/// Returns the NamedMDNode in the module that represents module-level flags.
/// This method returns null if there are no module-level flags.
NamedMDNode *getModuleFlagsMetadata() const;
/// Returns the NamedMDNode in the module that represents module-level flags.
/// If module-level flags aren't found, it creates the named metadata that
/// contains them.
NamedMDNode *getOrInsertModuleFlagsMetadata();
/// Add a module-level flag to the module-level flags metadata. It will create
/// the module-level flags named metadata if it doesn't already exist.
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Constant *Val);
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val);
void addModuleFlag(MDNode *Node);
/// @}
/// @name Materialization
/// @{
/// Sets the GVMaterializer to GVM. This module must not yet have a
/// Materializer. To reset the materializer for a module that already has one,
/// call materializeAll first. Destroying this module will destroy
/// its materializer without materializing any more GlobalValues. Without
/// destroying the Module, there is no way to detach or destroy a materializer
/// without materializing all the GVs it controls, to avoid leaving orphan
/// unmaterialized GVs.
void setMaterializer(GVMaterializer *GVM);
/// Retrieves the GVMaterializer, if any, for this Module.
GVMaterializer *getMaterializer() const { return Materializer.get(); }
bool isMaterialized() const { return !getMaterializer(); }
/// Make sure the GlobalValue is fully read.
llvm::Error materialize(GlobalValue *GV);
/// Make sure all GlobalValues in this Module are fully read and clear the
/// Materializer.
llvm::Error materializeAll();
llvm::Error materializeMetadata();
/// @}
/// @name Direct access to the globals list, functions list, and symbol table
/// @{
/// Get the Module's list of global variables (constant).
const GlobalListType &getGlobalList() const { return GlobalList; }
/// Get the Module's list of global variables.
GlobalListType &getGlobalList() { return GlobalList; }
static GlobalListType Module::*getSublistAccess(GlobalVariable*) {
return &Module::GlobalList;
}
/// Get the Module's list of functions (constant).
const FunctionListType &getFunctionList() const { return FunctionList; }
/// Get the Module's list of functions.
FunctionListType &getFunctionList() { return FunctionList; }
static FunctionListType Module::*getSublistAccess(Function*) {
return &Module::FunctionList;
}
/// Get the Module's list of aliases (constant).
const AliasListType &getAliasList() const { return AliasList; }
/// Get the Module's list of aliases.
AliasListType &getAliasList() { return AliasList; }
static AliasListType Module::*getSublistAccess(GlobalAlias*) {
return &Module::AliasList;
}
/// Get the Module's list of ifuncs (constant).
const IFuncListType &getIFuncList() const { return IFuncList; }
/// Get the Module's list of ifuncs.
IFuncListType &getIFuncList() { return IFuncList; }
static IFuncListType Module::*getSublistAccess(GlobalIFunc*) {
return &Module::IFuncList;
}
/// Get the Module's list of named metadata (constant).
const NamedMDListType &getNamedMDList() const { return NamedMDList; }
/// Get the Module's list of named metadata.
NamedMDListType &getNamedMDList() { return NamedMDList; }
static NamedMDListType Module::*getSublistAccess(NamedMDNode*) {
return &Module::NamedMDList;
}
/// Get the symbol table of global variable and function identifiers
const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; }
/// Get the Module's symbol table of global variable and function identifiers.
ValueSymbolTable &getValueSymbolTable() { return *ValSymTab; }
/// Get the Module's symbol table for COMDATs (constant).
const ComdatSymTabType &getComdatSymbolTable() const { return ComdatSymTab; }
/// Get the Module's symbol table for COMDATs.
ComdatSymTabType &getComdatSymbolTable() { return ComdatSymTab; }
/// @}
/// @name Global Variable Iteration
/// @{
global_iterator global_begin() { return GlobalList.begin(); }
const_global_iterator global_begin() const { return GlobalList.begin(); }
global_iterator global_end () { return GlobalList.end(); }
const_global_iterator global_end () const { return GlobalList.end(); }
bool global_empty() const { return GlobalList.empty(); }
iterator_range<global_iterator> globals() {
return make_range(global_begin(), global_end());
}
iterator_range<const_global_iterator> globals() const {
return make_range(global_begin(), global_end());
}
/// @}
/// @name Function Iteration
/// @{
iterator begin() { return FunctionList.begin(); }
const_iterator begin() const { return FunctionList.begin(); }
iterator end () { return FunctionList.end(); }
const_iterator end () const { return FunctionList.end(); }
reverse_iterator rbegin() { return FunctionList.rbegin(); }
const_reverse_iterator rbegin() const{ return FunctionList.rbegin(); }
reverse_iterator rend() { return FunctionList.rend(); }
const_reverse_iterator rend() const { return FunctionList.rend(); }
size_t size() const { return FunctionList.size(); }
bool empty() const { return FunctionList.empty(); }
iterator_range<iterator> functions() {
return make_range(begin(), end());
}
iterator_range<const_iterator> functions() const {
return make_range(begin(), end());
}
/// @}
/// @name Alias Iteration
/// @{
alias_iterator alias_begin() { return AliasList.begin(); }
const_alias_iterator alias_begin() const { return AliasList.begin(); }
alias_iterator alias_end () { return AliasList.end(); }
const_alias_iterator alias_end () const { return AliasList.end(); }
size_t alias_size () const { return AliasList.size(); }
bool alias_empty() const { return AliasList.empty(); }
iterator_range<alias_iterator> aliases() {
return make_range(alias_begin(), alias_end());
}
iterator_range<const_alias_iterator> aliases() const {
return make_range(alias_begin(), alias_end());
}
/// @}
/// @name IFunc Iteration
/// @{
ifunc_iterator ifunc_begin() { return IFuncList.begin(); }
const_ifunc_iterator ifunc_begin() const { return IFuncList.begin(); }
ifunc_iterator ifunc_end () { return IFuncList.end(); }
const_ifunc_iterator ifunc_end () const { return IFuncList.end(); }
size_t ifunc_size () const { return IFuncList.size(); }
bool ifunc_empty() const { return IFuncList.empty(); }
iterator_range<ifunc_iterator> ifuncs() {
return make_range(ifunc_begin(), ifunc_end());
}
iterator_range<const_ifunc_iterator> ifuncs() const {
return make_range(ifunc_begin(), ifunc_end());
}
/// @}
/// @name Convenience iterators
/// @{
using global_object_iterator =
concat_iterator<GlobalObject, iterator, global_iterator>;
using const_global_object_iterator =
concat_iterator<const GlobalObject, const_iterator,
const_global_iterator>;
iterator_range<global_object_iterator> global_objects() {
return concat<GlobalObject>(functions(), globals());
}
iterator_range<const_global_object_iterator> global_objects() const {
return concat<const GlobalObject>(functions(), globals());
}
global_object_iterator global_object_begin() {
return global_objects().begin();
}
global_object_iterator global_object_end() { return global_objects().end(); }
const_global_object_iterator global_object_begin() const {
return global_objects().begin();
}
const_global_object_iterator global_object_end() const {
return global_objects().end();
}
using global_value_iterator =
concat_iterator<GlobalValue, iterator, global_iterator, alias_iterator,
ifunc_iterator>;
using const_global_value_iterator =
concat_iterator<const GlobalValue, const_iterator, const_global_iterator,
const_alias_iterator, const_ifunc_iterator>;
iterator_range<global_value_iterator> global_values() {
return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs());
}
iterator_range<const_global_value_iterator> global_values() const {
return concat<const GlobalValue>(functions(), globals(), aliases(),
ifuncs());
}
global_value_iterator global_value_begin() { return global_values().begin(); }
global_value_iterator global_value_end() { return global_values().end(); }
const_global_value_iterator global_value_begin() const {
return global_values().begin();
}
const_global_value_iterator global_value_end() const {
return global_values().end();
}
/// @}
/// @name Named Metadata Iteration
/// @{
named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); }
const_named_metadata_iterator named_metadata_begin() const {
return NamedMDList.begin();
}
named_metadata_iterator named_metadata_end() { return NamedMDList.end(); }
const_named_metadata_iterator named_metadata_end() const {
return NamedMDList.end();
}
size_t named_metadata_size() const { return NamedMDList.size(); }
bool named_metadata_empty() const { return NamedMDList.empty(); }
iterator_range<named_metadata_iterator> named_metadata() {
return make_range(named_metadata_begin(), named_metadata_end());
}
iterator_range<const_named_metadata_iterator> named_metadata() const {
return make_range(named_metadata_begin(), named_metadata_end());
}
/// An iterator for DICompileUnits that skips those marked NoDebug.
class debug_compile_units_iterator
: public std::iterator<std::input_iterator_tag, DICompileUnit *> {
NamedMDNode *CUs;
unsigned Idx;
void SkipNoDebugCUs();
public:
explicit debug_compile_units_iterator(NamedMDNode *CUs, unsigned Idx)
: CUs(CUs), Idx(Idx) {
SkipNoDebugCUs();
}
debug_compile_units_iterator &operator++() {
++Idx;
SkipNoDebugCUs();
return *this;
}
debug_compile_units_iterator operator++(int) {
debug_compile_units_iterator T(*this);
++Idx;
return T;
}
bool operator==(const debug_compile_units_iterator &I) const {
return Idx == I.Idx;
}
bool operator!=(const debug_compile_units_iterator &I) const {
return Idx != I.Idx;
}
DICompileUnit *operator*() const;
DICompileUnit *operator->() const;
};
debug_compile_units_iterator debug_compile_units_begin() const {
auto *CUs = getNamedMetadata("llvm.dbg.cu");
return debug_compile_units_iterator(CUs, 0);
}
debug_compile_units_iterator debug_compile_units_end() const {
auto *CUs = getNamedMetadata("llvm.dbg.cu");
return debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0);
}
/// Return an iterator for all DICompileUnits listed in this Module's
/// llvm.dbg.cu named metadata node and aren't explicitly marked as
/// NoDebug.
iterator_range<debug_compile_units_iterator> debug_compile_units() const {
auto *CUs = getNamedMetadata("llvm.dbg.cu");
return make_range(
debug_compile_units_iterator(CUs, 0),
debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0));
}
/// @}
/// Destroy ConstantArrays in LLVMContext if they are not used.
/// ConstantArrays constructed during linking can cause quadratic memory
/// explosion. Releasing all unused constants can cause a 20% LTO compile-time
/// slowdown for a large application.
///
/// NOTE: Constants are currently owned by LLVMContext. This can then only
/// be called where all uses of the LLVMContext are understood.
void dropTriviallyDeadConstantArrays();
/// @name Utility functions for printing and dumping Module objects
/// @{
/// Print the module to an output stream with an optional
/// AssemblyAnnotationWriter. If \c ShouldPreserveUseListOrder, then include
/// uselistorder directives so that use-lists can be recreated when reading
/// the assembly.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder = false,
bool IsForDebug = false) const;
/// Dump the module to stderr (for debugging).
void dump() const;
/// This function causes all the subinstructions to "let go" of all references
/// that they are maintaining. This allows one to 'delete' a whole class at
/// a time, even though there may be circular references... first all
/// references are dropped, and all use counts go to zero. Then everything
/// is delete'd for real. Note that no operations are valid on an object
/// that has "dropped all references", except operator delete.
void dropAllReferences();
/// @}
/// @name Utility functions for querying Debug information.
/// @{
/// \brief Returns the Number of Register ParametersDwarf Version by checking
/// module flags.
unsigned getNumberRegisterParameters() const;
/// \brief Returns the Dwarf Version by checking module flags.
unsigned getDwarfVersion() const;
/// \brief Returns the CodeView Version by checking module flags.
/// Returns zero if not present in module.
unsigned getCodeViewFlag() const;
/// @}
/// @name Utility functions for querying and setting PIC level
/// @{
/// \brief Returns the PIC level (small or large model)
PICLevel::Level getPICLevel() const;
/// \brief Set the PIC level (small or large model)
void setPICLevel(PICLevel::Level PL);
/// @}
/// @}
/// @name Utility functions for querying and setting PIE level
/// @{
/// \brief Returns the PIE level (small or large model)
PIELevel::Level getPIELevel() const;
/// \brief Set the PIE level (small or large model)
void setPIELevel(PIELevel::Level PL);
/// @}
/// @name Utility functions for querying and setting PGO summary
/// @{
/// \brief Attach profile summary metadata to this module.
void setProfileSummary(Metadata *M);
/// \brief Returns profile summary metadata
Metadata *getProfileSummary();
/// @}
/// Take ownership of the given memory buffer.
void setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB);
};
/// \brief Given "llvm.used" or "llvm.compiler.used" as a global name, collect
/// the initializer elements of that global in Set and return the global itself.
GlobalVariable *collectUsedGlobalVariables(const Module &M,
SmallPtrSetImpl<GlobalValue *> &Set,
bool CompilerUsed);
/// An raw_ostream inserter for modules.
inline raw_ostream &operator<<(raw_ostream &O, const Module &M) {
M.print(O, nullptr);
return O;
}
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module, LLVMModuleRef)
/* LLVMModuleProviderRef exists for historical reasons, but now just holds a
* Module.
*/
inline Module *unwrap(LLVMModuleProviderRef MP) {
return reinterpret_cast<Module*>(MP);
}
} // end namespace llvm
#endif // LLVM_IR_MODULE_H