/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <dlfcn.h>
#include <cutils/log.h>
#include "AkmSensor.h"
#define AKMD_DEFAULT_INTERVAL 200000000
/*****************************************************************************/
AkmSensor::AkmSensor()
: SensorBase(NULL, "compass"),
mPendingMask(0),
mInputReader(32)
{
for (int i=0; i<numSensors; i++) {
mEnabled[i] = 0;
mDelay[i] = -1;
}
memset(mPendingEvents, 0, sizeof(mPendingEvents));
mPendingEvents[Accelerometer].version = sizeof(sensors_event_t);
mPendingEvents[Accelerometer].sensor = ID_A;
mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER;
mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
mPendingEvents[MagneticField].version = sizeof(sensors_event_t);
mPendingEvents[MagneticField].sensor = ID_M;
mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD;
mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
mPendingEvents[Orientation ].version = sizeof(sensors_event_t);
mPendingEvents[Orientation ].sensor = ID_O;
mPendingEvents[Orientation ].type = SENSOR_TYPE_ORIENTATION;
mPendingEvents[Orientation ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
if (data_fd) {
strcpy(input_sysfs_path, "/sys/class/compass/akm8975/");
input_sysfs_path_len = strlen(input_sysfs_path);
} else {
input_sysfs_path[0] = '\0';
input_sysfs_path_len = 0;
}
}
AkmSensor::~AkmSensor()
{
for (int i=0; i<numSensors; i++) {
setEnable(i, 0);
}
}
int AkmSensor::setEnable(int32_t handle, int enabled)
{
int id = handle2id(handle);
int err = 0;
char buffer[2];
switch (id) {
case Accelerometer:
strcpy(&input_sysfs_path[input_sysfs_path_len], "enable_acc");
break;
case MagneticField:
strcpy(&input_sysfs_path[input_sysfs_path_len], "enable_mag");
break;
case Orientation:
strcpy(&input_sysfs_path[input_sysfs_path_len], "enable_ori");
break;
default:
ALOGE("AkmSensor: unknown handle (%d)", handle);
return -EINVAL;
}
buffer[0] = '\0';
buffer[1] = '\0';
if (mEnabled[id] <= 0) {
if(enabled) buffer[0] = '1';
} else if (mEnabled[id] == 1) {
if(!enabled) buffer[0] = '0';
}
if (buffer[0] != '\0') {
err = write_sys_attribute(input_sysfs_path, buffer, 1);
if (err != 0) {
return err;
}
ALOGD("AkmSensor: set %s to %s",
&input_sysfs_path[input_sysfs_path_len], buffer);
/* for AKMD specification */
if (buffer[0] == '1') {
setDelay(handle, AKMD_DEFAULT_INTERVAL);
} else {
setDelay(handle, -1);
}
}
if (enabled) {
(mEnabled[id])++;
if (mEnabled[id] > 32767) mEnabled[id] = 32767;
} else {
(mEnabled[id])--;
if (mEnabled[id] < 0) mEnabled[id] = 0;
}
ALOGD("AkmSensor: mEnabled[%d] = %d", id, mEnabled[id]);
return err;
}
int AkmSensor::setDelay(int32_t handle, int64_t ns)
{
int id = handle2id(handle);
int err = 0;
char buffer[32];
int bytes;
if (ns < -1 || 2147483647 < ns) {
ALOGE("AkmSensor: invalid delay (%" PRIi64 ")", ns);
return -EINVAL;
}
switch (id) {
case Accelerometer:
strcpy(&input_sysfs_path[input_sysfs_path_len], "delay_acc");
break;
case MagneticField:
strcpy(&input_sysfs_path[input_sysfs_path_len], "delay_mag");
break;
case Orientation:
strcpy(&input_sysfs_path[input_sysfs_path_len], "delay_ori");
break;
default:
ALOGE("AkmSensor: unknown handle (%d)", handle);
return -EINVAL;
}
if (ns != mDelay[id]) {
bytes = sprintf(buffer, "%" PRIi64, ns);
err = write_sys_attribute(input_sysfs_path, buffer, bytes);
if (err == 0) {
mDelay[id] = ns;
ALOGD("AkmSensor: set %s to %f ms.",
&input_sysfs_path[input_sysfs_path_len], ns/1000000.0f);
}
}
return err;
}
int64_t AkmSensor::getDelay(int32_t handle)
{
int id = handle2id(handle);
if (id > 0) {
return mDelay[id];
} else {
return 0;
}
}
int AkmSensor::getEnable(int32_t handle)
{
int id = handle2id(handle);
if (id >= 0) {
return mEnabled[id];
} else {
return 0;
}
}
int AkmSensor::readEvents(sensors_event_t* data, int count)
{
if (count < 1)
return -EINVAL;
ssize_t n = mInputReader.fill(data_fd);
if (n < 0)
return n;
int numEventReceived = 0;
input_event const* event;
while (count && mInputReader.readEvent(&event)) {
int type = event->type;
if (type == EV_ABS) {
processEvent(event->code, event->value);
mInputReader.next();
} else if (type == EV_SYN) {
int64_t time = timevalToNano(event->time);
for (int j=0 ; count && mPendingMask && j<numSensors ; j++) {
if (mPendingMask & (1<<j)) {
mPendingMask &= ~(1<<j);
mPendingEvents[j].timestamp = time;
//ALOGD("data=%8.5f,%8.5f,%8.5f",
//mPendingEvents[j].data[0],
//mPendingEvents[j].data[1],
//mPendingEvents[j].data[2]);
if (mEnabled[j]) {
*data++ = mPendingEvents[j];
count--;
numEventReceived++;
}
}
}
if (!mPendingMask) {
mInputReader.next();
}
} else {
ALOGE("AkmSensor: unknown event (type=%d, code=%d)",
type, event->code);
mInputReader.next();
}
}
return numEventReceived;
}
int AkmSensor::setAccel(sensors_event_t* data)
{
int err;
int16_t acc[3];
acc[0] = (int16_t)(data->acceleration.x / GRAVITY_EARTH * AKSC_LSG);
acc[1] = (int16_t)(data->acceleration.y / GRAVITY_EARTH * AKSC_LSG);
acc[2] = (int16_t)(data->acceleration.z / GRAVITY_EARTH * AKSC_LSG);
strcpy(&input_sysfs_path[input_sysfs_path_len], "accel");
err = write_sys_attribute(input_sysfs_path, (char*)acc, 6);
if (err < 0) {
ALOGD("AkmSensor: %s write failed.",
&input_sysfs_path[input_sysfs_path_len]);
}
return err;
}
int AkmSensor::handle2id(int32_t handle)
{
switch (handle) {
case ID_A:
return Accelerometer;
case ID_M:
return MagneticField;
case ID_O:
return Orientation;
default:
ALOGE("AkmSensor: unknown handle (%d)", handle);
return -EINVAL;
}
}
void AkmSensor::processEvent(int code, int value)
{
switch (code) {
case EVENT_TYPE_ACCEL_X:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A;
break;
case EVENT_TYPE_ACCEL_Y:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A;
break;
case EVENT_TYPE_ACCEL_Z:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A;
break;
case EVENT_TYPE_MAGV_X:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M;
break;
case EVENT_TYPE_MAGV_Y:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M;
break;
case EVENT_TYPE_MAGV_Z:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M;
break;
case EVENT_TYPE_MAGV_STATUS:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.status = value;
break;
case EVENT_TYPE_YAW:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O;
break;
case EVENT_TYPE_PITCH:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O;
break;
case EVENT_TYPE_ROLL:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.roll = value * CONVERT_O;
break;
case EVENT_TYPE_ORIENT_STATUS:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.status = value;
break;
}
}