/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <climits>
#include <iostream>
#include <iterator>
#include <sstream>
#include "Generator.h"
#include "Specification.h"
#include "Utilities.h"
using namespace std;
const unsigned int kMinimumApiLevelForTests = 11;
const unsigned int kApiLevelWithFirst64Bit = 21;
// Used to map the built-in types to their mangled representations
struct BuiltInMangling {
const char* token[3]; // The last two entries can be nullptr
const char* equivalence; // The mangled equivalent
};
BuiltInMangling builtInMangling[] = {
{{"long", "long"}, "x"},
{{"unsigned", "long", "long"}, "y"},
{{"long"}, "l"},
{{"unsigned", "long"}, "m"},
{{"int"}, "i"},
{{"unsigned", "int"}, "j"},
{{"short"}, "s"},
{{"unsigned", "short"}, "t"},
{{"char"}, "c"},
{{"unsigned", "char"}, "h"},
{{"signed", "char"}, "a"},
{{"void"}, "v"},
{{"wchar_t"}, "w"},
{{"bool"}, "b"},
{{"__fp16"}, "Dh"},
{{"float"}, "f"},
{{"double"}, "d"},
};
/* For the given API level and bitness (e.g. 32 or 64 bit), try to find a
* substitution for the provided type name, as would be done (mostly) by a
* preprocessor. Returns empty string if there's no substitution.
*/
static string findSubstitute(const string& typeName, unsigned int apiLevel, int intSize) {
const auto& types = systemSpecification.getTypes();
const auto type = types.find(typeName);
if (type != types.end()) {
for (TypeSpecification* spec : type->second->getSpecifications()) {
// Verify this specification applies
const VersionInfo info = spec->getVersionInfo();
if (!info.includesVersion(apiLevel) || (info.intSize != 0 && info.intSize != intSize)) {
continue;
}
switch (spec->getKind()) {
case SIMPLE: {
return spec->getSimpleType();
}
case RS_OBJECT: {
// Do nothing for RS object types.
break;
}
case STRUCT: {
return spec->getStructName();
}
case ENUM:
// Do nothing
break;
}
}
}
return "";
}
/* Expand the typedefs found in 'type' into their equivalents and tokenize
* the resulting list. 'apiLevel' and 'intSize' specifies the API level and bitness
* we are currently processing.
*/
list<string> expandTypedefs(const string type, unsigned int apiLevel, int intSize, string& vectorSize) {
// Split the string in tokens.
istringstream stream(type);
list<string> tokens{istream_iterator<string>{stream}, istream_iterator<string>{}};
// Try to substitue each token.
for (auto i = tokens.begin(); i != tokens.end();) {
const string substitute = findSubstitute(*i, apiLevel, intSize);
if (substitute.empty()) {
// No substitution possible, just go to the next token.
i++;
} else {
// Split the replacement string in tokens.
/* Get the new vector size. This is for the case of the type being for example
* rs_quaternion* == float4*, where we need the vector size to be 4 for the
* purposes of mangling, although the parameter itself is not determined to be
* a vector. */
string unused;
string newVectorSize;
getVectorSizeAndBaseType(*i, newVectorSize, unused);
istringstream vectorSizeBuf(vectorSize);
int vectorSizeVal;
vectorSizeBuf >> vectorSizeVal;
istringstream newVectorSizeBuf(newVectorSize);
int newVectorSizeVal;
newVectorSizeBuf >> newVectorSizeVal;
if (newVectorSizeVal > vectorSizeVal)
vectorSize = newVectorSize;
istringstream stream(substitute);
list<string> newTokens{istream_iterator<string>{stream}, istream_iterator<string>{}};
// Replace the token with the substitution. Don't advance, as the new substitution
// might itself be replaced.
// hold previous node
auto prev = i;
// insert new nodes after node i
tokens.splice(++i, std::move(newTokens));
// remove previous node and set i to beginning of inserted nodes
i = tokens.erase(prev);
}
}
return tokens;
}
// Remove the first element of the list if it equals 'prefix'. Return true in that case.
static bool eatFront(list<string>* tokens, const char* prefix) {
if (tokens->front() == prefix) {
tokens->pop_front();
return true;
}
return false;
}
/* Search the table of translations for the built-ins for the mangling that
* corresponds to this list of tokens. If a match is found, consume these tokens
* and return a pointer to the string. If not, return nullptr.
*/
static const char* findManglingOfBuiltInType(list<string>* tokens) {
for (const BuiltInMangling& a : builtInMangling) {
auto t = tokens->begin();
auto end = tokens->end();
bool match = true;
// We match up to three tokens.
for (int i = 0; i < 3; i++) {
if (!a.token[i]) {
// No more tokens
break;
}
if (t == end || *t++ != a.token[i]) {
match = false;
}
}
if (match) {
tokens->erase(tokens->begin(), t);
return a.equivalence;
}
}
return nullptr;
}
// Mangle a long name by prefixing it with its length, e.g. "13rs_allocation".
static inline string mangleLongName(const string& name) {
return to_string(name.size()) + name;
}
/* Mangle the type name that's represented by the vector size and list of tokens.
* The mangling will be returned in full form in 'mangling'. 'compressedMangling'
* will have the compressed equivalent. This is built using the 'previousManglings'
* list. false is returned if an error is encountered.
*
* This function is recursive because compression is possible at each level of the definition.
* See http://mentorembedded.github.io/cxx-abi/abi.html#mangle.type for a description
* of the Itanium mangling used by llvm.
*
* This function mangles correctly the types currently used by RenderScript. It does
* not currently mangle more complicated types like function pointers, namespaces,
* or other C++ types. In particular, we don't deal correctly with parenthesis.
*/
static bool mangleType(string vectorSize, list<string>* tokens, vector<string>* previousManglings,
string* mangling, string* compressedMangling) {
string delta; // The part of the mangling we're generating for this recursion.
bool isTerminal = false; // True if this iteration parses a terminal node in the production.
bool canBeCompressed = true; // Will be false for manglings of builtins.
if (tokens->back() == "*") {
delta = "P";
tokens->pop_back();
} else if (eatFront(tokens, "const")) {
delta = "K";
} else if (eatFront(tokens, "volatile")) {
delta = "V";
} else if (vectorSize != "1" && vectorSize != "") {
// For vector, prefix with the abbreviation for a vector, including the size.
delta = "Dv" + vectorSize + "_";
vectorSize.clear(); // Reset to mark the size as consumed.
} else if (eatFront(tokens, "struct")) {
// For a structure, we just use the structure name
if (tokens->size() == 0) {
cerr << "Expected a name after struct\n";
return false;
}
delta = mangleLongName(tokens->front());
isTerminal = true;
tokens->pop_front();
} else if (eatFront(tokens, "...")) {
delta = "z";
isTerminal = true;
} else {
const char* c = findManglingOfBuiltInType(tokens);
if (c) {
// It's a basic type. We don't use those directly for compression.
delta = c;
isTerminal = true;
canBeCompressed = false;
} else if (tokens->size() > 0) {
// It's a complex type name.
delta = mangleLongName(tokens->front());
isTerminal = true;
tokens->pop_front();
}
}
if (isTerminal) {
// If we're the terminal node, there should be nothing left to mangle.
if (tokens->size() > 0) {
cerr << "Expected nothing else but found";
for (const auto& t : *tokens) {
cerr << " " << t;
}
cerr << "\n";
return false;
}
*mangling = delta;
*compressedMangling = delta;
} else {
// We're not terminal. Recurse and prefix what we've translated this pass.
if (tokens->size() == 0) {
cerr << "Expected a more complete type\n";
return false;
}
string rest, compressedRest;
if (!mangleType(vectorSize, tokens, previousManglings, &rest, &compressedRest)) {
return false;
}
*mangling = delta + rest;
*compressedMangling = delta + compressedRest;
}
/* If it's a built-in type, we don't look at previously emitted ones and we
* don't keep track of it.
*/
if (!canBeCompressed) {
return true;
}
// See if we've encountered this mangling before.
for (size_t i = 0; i < previousManglings->size(); ++i) {
if ((*previousManglings)[i] == *mangling) {
// We have a match, construct an index reference to that previously emitted mangling.
ostringstream stream2;
stream2 << 'S';
if (i > 0) {
stream2 << (char)('0' + i - 1);
}
stream2 << '_';
*compressedMangling = stream2.str();
return true;
}
}
// We have not encountered this before. Add it to the list.
previousManglings->push_back(*mangling);
return true;
}
// Write to the stream the mangled representation of each parameter.
static bool writeParameters(ostringstream* stream, const std::vector<ParameterDefinition*>& params,
unsigned int apiLevel, int intSize) {
if (params.empty()) {
*stream << "v";
return true;
}
/* We keep track of the previously generated parameter types, as type mangling
* is compressed by reusing previous manglings.
*/
vector<string> previousManglings;
for (ParameterDefinition* p : params) {
// Expand the typedefs and create a tokenized list.
string vectorSize = p->mVectorSize;
list<string> tokens = expandTypedefs(p->rsType, apiLevel, intSize, vectorSize);
if (p->isOutParameter) {
tokens.push_back("*");
}
string mangling, compressedMangling;
if (!mangleType(vectorSize, &tokens, &previousManglings, &mangling,
&compressedMangling)) {
return false;
}
*stream << compressedMangling;
}
return true;
}
/* Add the mangling for this permutation of the function. apiLevel and intSize is used
* to select the correct type when expanding complex type.
*/
static bool addFunctionManglingToSet(const FunctionPermutation& permutation,
bool overloadable, unsigned int apiLevel,
int intSize, set<string>* allManglings) {
const string& functionName = permutation.getName();
string mangling;
if (overloadable) {
ostringstream stream;
stream << "_Z" << mangleLongName(functionName);
if (!writeParameters(&stream, permutation.getParams(), apiLevel, intSize)) {
cerr << "Error mangling " << functionName << ". See above message.\n";
return false;
}
mangling = stream.str();
} else {
mangling = functionName;
}
allManglings->insert(mangling);
return true;
}
/* Add to the set the mangling of each function prototype that can be generated from this
* specification, i.e. for all the versions covered and for 32/64 bits. We call this
* for each API level because the implementation of a type may have changed in the range
* of API levels covered.
*/
static bool addManglingsForSpecification(const FunctionSpecification& spec,
unsigned int lastApiLevel,
set<string>* allManglings) {
// If the function is inlined, we won't generate an unresolved external for that.
if (spec.hasInline()) {
return true;
}
const VersionInfo info = spec.getVersionInfo();
unsigned int minApiLevel, maxApiLevel;
minApiLevel = info.minVersion ? info.minVersion : kMinimumApiLevelForTests;
maxApiLevel = info.maxVersion ? info.maxVersion : lastApiLevel;
const bool overloadable = spec.isOverloadable();
/* We track success rather than aborting early in case of failure so that we
* generate all the error messages.
*/
bool success = true;
// Use 64-bit integer here for the loop count to avoid overflow
// (minApiLevel == maxApiLevel == UINT_MAX for unreleased API)
for (int64_t apiLevel = minApiLevel; apiLevel <= maxApiLevel; ++apiLevel) {
for (auto permutation : spec.getPermutations()) {
if (info.intSize == 0 || info.intSize == 32) {
if (!addFunctionManglingToSet(*permutation, overloadable,
apiLevel, 32, allManglings)) {
success = false;
}
}
if (apiLevel >= kApiLevelWithFirst64Bit && (info.intSize == 0 || info.intSize == 64)) {
if (!addFunctionManglingToSet(*permutation, overloadable,
apiLevel, 64, allManglings)) {
success = false;
}
}
}
}
return success;
}
/* Generate the white list file of the mangled function prototypes. This generated list is used
* to validate unresolved external references. 'lastApiLevel' is the largest api level found in
* all spec files.
*/
static bool generateWhiteListFile(unsigned int lastApiLevel) {
bool success = true;
// We generate all the manglings in a set to remove duplicates and to order them.
set<string> allManglings;
for (auto f : systemSpecification.getFunctions()) {
const Function* function = f.second;
for (auto spec : function->getSpecifications()) {
// Compiler intrinsics are not runtime APIs. Do not include them in the whitelist.
if (spec->isIntrinsic()) {
continue;
}
if (!addManglingsForSpecification(*spec, lastApiLevel,
&allManglings)) {
success = false; // We continue so we can generate all errors.
}
}
}
if (success) {
GeneratedFile file;
if (!file.start(".", "RSStubsWhiteList.cpp")) {
return false;
}
file.writeNotices();
file << "#include \"RSStubsWhiteList.h\"\n\n";
file << "std::vector<std::string> stubList = {\n";
for (const auto& e : allManglings) {
file << "\"" << e << "\",\n";
}
file << "};\n";
}
return success;
}
// Add a uniquely named variable definition to the file and return its name.
static const string addVariable(GeneratedFile* file, unsigned int* variableNumber) {
const string name = "buf" + to_string((*variableNumber)++);
/* Some data structures like rs_tm can't be exported. We'll just use a dumb buffer
* and cast its address later on.
*/
*file << "char " << name << "[200];\n";
return name;
}
/* Write to the file the globals needed to make the call for this permutation. The actual
* call is stored in 'calls', as we'll need to generate all the global variable declarations
* before the function definition.
*/
static void generateTestCall(GeneratedFile* file, ostringstream* calls,
unsigned int* variableNumber,
const FunctionPermutation& permutation) {
*calls << " ";
// Handle the return type.
const auto ret = permutation.getReturn();
if (ret && ret->rsType != "void" && ret->rsType != "const void") {
*calls << "*(" << ret->rsType << "*)" << addVariable(file, variableNumber) << " = ";
}
*calls << permutation.getName() << "(";
// Generate the arguments.
const char* separator = "";
for (auto p : permutation.getParams()) {
*calls << separator;
if (p->rsType == "rs_kernel_context") {
// Special case for the kernel context, as it has a special existence.
*calls << "context";
} else if (p->rsType == "...") {
// Special case for varargs. No need for casting.
*calls << addVariable(file, variableNumber);
} else if (p->isOutParameter) {
*calls << "(" << p->rsType << "*) " << addVariable(file, variableNumber);
} else {
*calls << "*(" << p->rsType << "*)" << addVariable(file, variableNumber);
}
separator = ", ";
}
*calls << ");\n";
}
/* Generate a test file that will be used in the frameworks/compile/slang/tests unit tests.
* This file tests that all RenderScript APIs can be called for the specified API level.
* To avoid the compiler agressively pruning out our calls, we use globals as inputs and outputs.
*
* Since some structures can't be defined at the global level, we use casts of simple byte
* buffers to get around that restriction.
*
* This file can be used to verify the white list that's also generated in this file. To do so,
* run "llvm-nm -undefined-only -just-symbol-name" on the resulting bit code.
*/
static bool generateApiTesterFile(const string& slangTestDirectory, unsigned int apiLevel) {
GeneratedFile file;
if (!file.start(slangTestDirectory, "all" + to_string(apiLevel) + ".rs")) {
return false;
}
/* This unusual comment is used by slang/tests/test.py to know which parameter to pass
* to llvm-rs-cc when compiling the test.
*/
file << "// -target-api " << apiLevel << " -Wno-deprecated-declarations\n";
file.writeNotices();
file << "#pragma version(1)\n";
file << "#pragma rs java_package_name(com.example.renderscript.testallapi)\n\n";
if (apiLevel < 23) { // All rs_graphics APIs were deprecated in api level 23.
file << "#include \"rs_graphics.rsh\"\n\n";
}
/* The code below emits globals and calls to functions in parallel. We store
* the calls in a stream so that we can emit them in the file in the proper order.
*/
ostringstream calls;
unsigned int variableNumber = 0; // Used to generate unique names.
for (auto f : systemSpecification.getFunctions()) {
const Function* function = f.second;
for (auto spec : function->getSpecifications()) {
// Do not include internal APIs in the API tests.
if (spec->isInternal()) {
continue;
}
VersionInfo info = spec->getVersionInfo();
if (!info.includesVersion(apiLevel)) {
continue;
}
if (info.intSize == 32) {
calls << "#ifndef __LP64__\n";
} else if (info.intSize == 64) {
calls << "#ifdef __LP64__\n";
}
for (auto permutation : spec->getPermutations()) {
// http://b/27358969 Do not test rsForEach in the all-api test.
if (apiLevel >= 24 && permutation->getName().compare(0, 9, "rsForEach") == 0)
continue;
generateTestCall(&file, &calls, &variableNumber, *permutation);
}
if (info.intSize != 0) {
calls << "#endif\n";
}
}
}
file << "\n";
// Modify the style of kernel as required by the API level.
if (apiLevel >= 23) {
file << "void RS_KERNEL test(int in, rs_kernel_context context) {\n";
} else if (apiLevel >= 17) {
file << "void RS_KERNEL test(int in) {\n";
} else {
file << "void root(const int* in) {\n";
}
file << calls.str();
file << "}\n";
return true;
}
bool generateStubsWhiteList(const string& slangTestDirectory, unsigned int maxApiLevel) {
unsigned int lastApiLevel = min(systemSpecification.getMaximumApiLevel(), maxApiLevel);
if (!generateWhiteListFile(lastApiLevel)) {
return false;
}
// Generate a test file for each apiLevel.
for (unsigned int i = kMinimumApiLevelForTests; i <= lastApiLevel; ++i) {
if (!generateApiTesterFile(slangTestDirectory, i)) {
return false;
}
}
return true;
}