C++程序  |  1765行  |  71.29 KB

/*
 * Copyright 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <algorithm>

#include <grallocusage/GrallocUsageConversion.h>
#include <log/log.h>
#include <ui/BufferQueueDefs.h>
#include <sync/sync.h>
#include <utils/StrongPointer.h>
#include <utils/Vector.h>
#include <system/window.h>
#include <android/hardware/graphics/common/1.0/types.h>

#include "driver.h"

using android::hardware::graphics::common::V1_0::BufferUsage;

// TODO(jessehall): Currently we don't have a good error code for when a native
// window operation fails. Just returning INITIALIZATION_FAILED for now. Later
// versions (post SDK 0.9) of the API/extension have a better error code.
// When updating to that version, audit all error returns.
namespace vulkan {
namespace driver {

namespace {

const VkSurfaceTransformFlagsKHR kSupportedTransforms =
    VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
    VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
    VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
    VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
    // TODO(jessehall): See TODO in TranslateNativeToVulkanTransform.
    // VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
    // VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
    // VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
    // VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
    VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;

VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) {
    // Native and Vulkan transforms are isomorphic, but are represented
    // differently. Vulkan transforms are built up of an optional horizontal
    // mirror, followed by a clockwise 0/90/180/270-degree rotation. Native
    // transforms are built up from a horizontal flip, vertical flip, and
    // 90-degree rotation, all optional but always in that order.

    // TODO(jessehall): For now, only support pure rotations, not
    // flip or flip-and-rotate, until I have more time to test them and build
    // sample code. As far as I know we never actually use anything besides
    // pure rotations anyway.

    switch (native) {
        case 0:  // 0x0
            return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
        // case NATIVE_WINDOW_TRANSFORM_FLIP_H:  // 0x1
        //     return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR;
        // case NATIVE_WINDOW_TRANSFORM_FLIP_V:  // 0x2
        //     return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR;
        case NATIVE_WINDOW_TRANSFORM_ROT_180:  // FLIP_H | FLIP_V
            return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR;
        case NATIVE_WINDOW_TRANSFORM_ROT_90:  // 0x4
            return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR;
        // case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90:
        //     return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR;
        // case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90:
        //     return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR;
        case NATIVE_WINDOW_TRANSFORM_ROT_270:  // FLIP_H | FLIP_V | ROT_90
            return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR;
        case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY:
        default:
            return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
    }
}

int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) {
    switch (transform) {
        case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
            return NATIVE_WINDOW_TRANSFORM_ROT_270;
        case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
            return NATIVE_WINDOW_TRANSFORM_ROT_180;
        case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
            return NATIVE_WINDOW_TRANSFORM_ROT_90;
        // TODO(jessehall): See TODO in TranslateNativeToVulkanTransform.
        // case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
        //     return NATIVE_WINDOW_TRANSFORM_FLIP_H;
        // case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
        //     return NATIVE_WINDOW_TRANSFORM_FLIP_H |
        //            NATIVE_WINDOW_TRANSFORM_ROT_90;
        // case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
        //     return NATIVE_WINDOW_TRANSFORM_FLIP_V;
        // case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
        //     return NATIVE_WINDOW_TRANSFORM_FLIP_V |
        //            NATIVE_WINDOW_TRANSFORM_ROT_90;
        case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
        case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
        default:
            return 0;
    }
}

class TimingInfo {
   public:
    TimingInfo() = default;
    TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId)
        : vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0},
          native_frame_id_(nativeFrameId) {}
    bool ready() const {
        return (timestamp_desired_present_time_ !=
                        NATIVE_WINDOW_TIMESTAMP_PENDING &&
                timestamp_actual_present_time_ !=
                        NATIVE_WINDOW_TIMESTAMP_PENDING &&
                timestamp_render_complete_time_ !=
                        NATIVE_WINDOW_TIMESTAMP_PENDING &&
                timestamp_composition_latch_time_ !=
                        NATIVE_WINDOW_TIMESTAMP_PENDING);
    }
    void calculate(int64_t rdur) {
        bool anyTimestampInvalid =
                (timestamp_actual_present_time_ ==
                        NATIVE_WINDOW_TIMESTAMP_INVALID) ||
                (timestamp_render_complete_time_ ==
                        NATIVE_WINDOW_TIMESTAMP_INVALID) ||
                (timestamp_composition_latch_time_ ==
                        NATIVE_WINDOW_TIMESTAMP_INVALID);
        if (anyTimestampInvalid) {
            ALOGE("Unexpectedly received invalid timestamp.");
            vals_.actualPresentTime = 0;
            vals_.earliestPresentTime = 0;
            vals_.presentMargin = 0;
            return;
        }

        vals_.actualPresentTime =
                static_cast<uint64_t>(timestamp_actual_present_time_);
        int64_t margin = (timestamp_composition_latch_time_ -
                           timestamp_render_complete_time_);
        // Calculate vals_.earliestPresentTime, and potentially adjust
        // vals_.presentMargin.  The initial value of vals_.earliestPresentTime
        // is vals_.actualPresentTime.  If we can subtract rdur (the duration
        // of a refresh cycle) from vals_.earliestPresentTime (and also from
        // vals_.presentMargin) and still leave a positive margin, then we can
        // report to the application that it could have presented earlier than
        // it did (per the extension specification).  If for some reason, we
        // can do this subtraction repeatedly, we do, since
        // vals_.earliestPresentTime really is supposed to be the "earliest".
        int64_t early_time = timestamp_actual_present_time_;
        while ((margin > rdur) &&
               ((early_time - rdur) > timestamp_composition_latch_time_)) {
            early_time -= rdur;
            margin -= rdur;
        }
        vals_.earliestPresentTime = static_cast<uint64_t>(early_time);
        vals_.presentMargin = static_cast<uint64_t>(margin);
    }
    void get_values(VkPastPresentationTimingGOOGLE* values) const {
        *values = vals_;
    }

   public:
    VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 };

    uint64_t native_frame_id_ { 0 };
    int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING };
    int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
    int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
    int64_t timestamp_composition_latch_time_
            { NATIVE_WINDOW_TIMESTAMP_PENDING };
};

// ----------------------------------------------------------------------------

struct Surface {
    android::sp<ANativeWindow> window;
    VkSwapchainKHR swapchain_handle;
    uint64_t consumer_usage;
};

VkSurfaceKHR HandleFromSurface(Surface* surface) {
    return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface));
}

Surface* SurfaceFromHandle(VkSurfaceKHR handle) {
    return reinterpret_cast<Surface*>(handle);
}

// Maximum number of TimingInfo structs to keep per swapchain:
enum { MAX_TIMING_INFOS = 10 };
// Minimum number of frames to look for in the past (so we don't cause
// syncronous requests to Surface Flinger):
enum { MIN_NUM_FRAMES_AGO = 5 };

struct Swapchain {
    Swapchain(Surface& surface_,
              uint32_t num_images_,
              VkPresentModeKHR present_mode)
        : surface(surface_),
          num_images(num_images_),
          mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR),
          frame_timestamps_enabled(false),
          shared(present_mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
                 present_mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
        ANativeWindow* window = surface.window.get();
        native_window_get_refresh_cycle_duration(
            window,
            &refresh_duration);
    }

    Surface& surface;
    uint32_t num_images;
    bool mailbox_mode;
    bool frame_timestamps_enabled;
    int64_t refresh_duration;
    bool shared;

    struct Image {
        Image() : image(VK_NULL_HANDLE), dequeue_fence(-1), dequeued(false) {}
        VkImage image;
        android::sp<ANativeWindowBuffer> buffer;
        // The fence is only valid when the buffer is dequeued, and should be
        // -1 any other time. When valid, we own the fd, and must ensure it is
        // closed: either by closing it explicitly when queueing the buffer,
        // or by passing ownership e.g. to ANativeWindow::cancelBuffer().
        int dequeue_fence;
        bool dequeued;
    } images[android::BufferQueueDefs::NUM_BUFFER_SLOTS];

    android::Vector<TimingInfo> timing;
};

VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) {
    return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain));
}

Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) {
    return reinterpret_cast<Swapchain*>(handle);
}

void ReleaseSwapchainImage(VkDevice device,
                           ANativeWindow* window,
                           int release_fence,
                           Swapchain::Image& image) {
    ALOG_ASSERT(release_fence == -1 || image.dequeued,
                "ReleaseSwapchainImage: can't provide a release fence for "
                "non-dequeued images");

    if (image.dequeued) {
        if (release_fence >= 0) {
            // We get here from vkQueuePresentKHR. The application is
            // responsible for creating an execution dependency chain from
            // vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR
            // (release_fence), so we can drop the dequeue_fence here.
            if (image.dequeue_fence >= 0)
                close(image.dequeue_fence);
        } else {
            // We get here during swapchain destruction, or various serious
            // error cases e.g. when we can't create the release_fence during
            // vkQueuePresentKHR. In non-error cases, the dequeue_fence should
            // have already signalled, since the swapchain images are supposed
            // to be idle before the swapchain is destroyed. In error cases,
            // there may be rendering in flight to the image, but since we
            // weren't able to create a release_fence, waiting for the
            // dequeue_fence is about the best we can do.
            release_fence = image.dequeue_fence;
        }
        image.dequeue_fence = -1;

        if (window) {
            window->cancelBuffer(window, image.buffer.get(), release_fence);
        } else {
            if (release_fence >= 0) {
                sync_wait(release_fence, -1 /* forever */);
                close(release_fence);
            }
        }

        image.dequeued = false;
    }

    if (image.image) {
        GetData(device).driver.DestroyImage(device, image.image, nullptr);
        image.image = VK_NULL_HANDLE;
    }

    image.buffer.clear();
}

void OrphanSwapchain(VkDevice device, Swapchain* swapchain) {
    if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain))
        return;
    for (uint32_t i = 0; i < swapchain->num_images; i++) {
        if (!swapchain->images[i].dequeued)
            ReleaseSwapchainImage(device, nullptr, -1, swapchain->images[i]);
    }
    swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
    swapchain->timing.clear();
}

uint32_t get_num_ready_timings(Swapchain& swapchain) {
    if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) {
        return 0;
    }

    uint32_t num_ready = 0;
    const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1;
    for (uint32_t i = 0; i < num_timings; i++) {
        TimingInfo& ti = swapchain.timing.editItemAt(i);
        if (ti.ready()) {
            // This TimingInfo is ready to be reported to the user.  Add it
            // to the num_ready.
            num_ready++;
            continue;
        }
        // This TimingInfo is not yet ready to be reported to the user,
        // and so we should look for any available timestamps that
        // might make it ready.
        int64_t desired_present_time = 0;
        int64_t render_complete_time = 0;
        int64_t composition_latch_time = 0;
        int64_t actual_present_time = 0;
        // Obtain timestamps:
        int ret = native_window_get_frame_timestamps(
            swapchain.surface.window.get(), ti.native_frame_id_,
            &desired_present_time, &render_complete_time,
            &composition_latch_time,
            NULL,  //&first_composition_start_time,
            NULL,  //&last_composition_start_time,
            NULL,  //&composition_finish_time,
            // TODO(ianelliott): Maybe ask if this one is
            // supported, at startup time (since it may not be
            // supported):
            &actual_present_time,
            NULL,  //&dequeue_ready_time,
            NULL /*&reads_done_time*/);

        if (ret != android::NO_ERROR) {
            continue;
        }

        // Record the timestamp(s) we received, and then see if this TimingInfo
        // is ready to be reported to the user:
        ti.timestamp_desired_present_time_ = desired_present_time;
        ti.timestamp_actual_present_time_ = actual_present_time;
        ti.timestamp_render_complete_time_ = render_complete_time;
        ti.timestamp_composition_latch_time_ = composition_latch_time;

        if (ti.ready()) {
            // The TimingInfo has received enough timestamps, and should now
            // use those timestamps to calculate the info that should be
            // reported to the user:
            ti.calculate(swapchain.refresh_duration);
            num_ready++;
        }
    }
    return num_ready;
}

// TODO(ianelliott): DEAL WITH RETURN VALUE (e.g. VK_INCOMPLETE)!!!
void copy_ready_timings(Swapchain& swapchain,
                        uint32_t* count,
                        VkPastPresentationTimingGOOGLE* timings) {
    if (swapchain.timing.empty()) {
        *count = 0;
        return;
    }

    size_t last_ready = swapchain.timing.size() - 1;
    while (!swapchain.timing[last_ready].ready()) {
        if (last_ready == 0) {
            *count = 0;
            return;
        }
        last_ready--;
    }

    uint32_t num_copied = 0;
    size_t num_to_remove = 0;
    for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) {
        const TimingInfo& ti = swapchain.timing[i];
        if (ti.ready()) {
            ti.get_values(&timings[num_copied]);
            num_copied++;
        }
        num_to_remove++;
    }

    // Discard old frames that aren't ready if newer frames are ready.
    // We don't expect to get the timing info for those old frames.
    swapchain.timing.removeItemsAt(0, num_to_remove);

    *count = num_copied;
}

android_pixel_format GetNativePixelFormat(VkFormat format) {
    android_pixel_format native_format = HAL_PIXEL_FORMAT_RGBA_8888;
    switch (format) {
        case VK_FORMAT_R8G8B8A8_UNORM:
        case VK_FORMAT_R8G8B8A8_SRGB:
            native_format = HAL_PIXEL_FORMAT_RGBA_8888;
            break;
        case VK_FORMAT_R5G6B5_UNORM_PACK16:
            native_format = HAL_PIXEL_FORMAT_RGB_565;
            break;
        case VK_FORMAT_R16G16B16A16_SFLOAT:
            native_format = HAL_PIXEL_FORMAT_RGBA_FP16;
            break;
        case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
            native_format = HAL_PIXEL_FORMAT_RGBA_1010102;
            break;
        default:
            ALOGV("unsupported swapchain format %d", format);
            break;
    }
    return native_format;
}

android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace) {
    switch (colorspace) {
        case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
            return HAL_DATASPACE_V0_SRGB;
        case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
            return HAL_DATASPACE_DISPLAY_P3;
        case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
            return HAL_DATASPACE_V0_SCRGB_LINEAR;
        case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
            return HAL_DATASPACE_V0_SCRGB;
        case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
            return HAL_DATASPACE_DCI_P3_LINEAR;
        case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
            return HAL_DATASPACE_DCI_P3;
        case VK_COLOR_SPACE_BT709_LINEAR_EXT:
            return HAL_DATASPACE_V0_SRGB_LINEAR;
        case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
            return HAL_DATASPACE_V0_SRGB;
        case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
            return HAL_DATASPACE_BT2020_LINEAR;
        case VK_COLOR_SPACE_HDR10_ST2084_EXT:
            return static_cast<android_dataspace>(
                HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
                HAL_DATASPACE_RANGE_FULL);
        case VK_COLOR_SPACE_DOLBYVISION_EXT:
            return static_cast<android_dataspace>(
                HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
                HAL_DATASPACE_RANGE_FULL);
        case VK_COLOR_SPACE_HDR10_HLG_EXT:
            return static_cast<android_dataspace>(
                HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_HLG |
                HAL_DATASPACE_RANGE_FULL);
        case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
            return static_cast<android_dataspace>(
                HAL_DATASPACE_STANDARD_ADOBE_RGB |
                HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL);
        case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
            return HAL_DATASPACE_ADOBE_RGB;

        // Pass through is intended to allow app to provide data that is passed
        // to the display system without modification.
        case VK_COLOR_SPACE_PASS_THROUGH_EXT:
            return HAL_DATASPACE_ARBITRARY;

        default:
            // This indicates that we don't know about the
            // dataspace specified and we should indicate that
            // it's unsupported
            return HAL_DATASPACE_UNKNOWN;
    }
}

}  // anonymous namespace

VKAPI_ATTR
VkResult CreateAndroidSurfaceKHR(
    VkInstance instance,
    const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
    const VkAllocationCallbacks* allocator,
    VkSurfaceKHR* out_surface) {
    if (!allocator)
        allocator = &GetData(instance).allocator;
    void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface),
                                         alignof(Surface),
                                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    if (!mem)
        return VK_ERROR_OUT_OF_HOST_MEMORY;
    Surface* surface = new (mem) Surface;

    surface->window = pCreateInfo->window;
    surface->swapchain_handle = VK_NULL_HANDLE;
    int err = native_window_get_consumer_usage(surface->window.get(),
                                               &surface->consumer_usage);
    if (err != android::NO_ERROR) {
        ALOGE("native_window_get_consumer_usage() failed: %s (%d)",
              strerror(-err), err);
        surface->~Surface();
        allocator->pfnFree(allocator->pUserData, surface);
        return VK_ERROR_INITIALIZATION_FAILED;
    }

    // TODO(jessehall): Create and use NATIVE_WINDOW_API_VULKAN.
    err =
        native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err),
              err);
        surface->~Surface();
        allocator->pfnFree(allocator->pUserData, surface);
        return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
    }

    *out_surface = HandleFromSurface(surface);
    return VK_SUCCESS;
}

VKAPI_ATTR
void DestroySurfaceKHR(VkInstance instance,
                       VkSurfaceKHR surface_handle,
                       const VkAllocationCallbacks* allocator) {
    Surface* surface = SurfaceFromHandle(surface_handle);
    if (!surface)
        return;
    native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL);
    ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE,
             "destroyed VkSurfaceKHR 0x%" PRIx64
             " has active VkSwapchainKHR 0x%" PRIx64,
             reinterpret_cast<uint64_t>(surface_handle),
             reinterpret_cast<uint64_t>(surface->swapchain_handle));
    surface->~Surface();
    if (!allocator)
        allocator = &GetData(instance).allocator;
    allocator->pfnFree(allocator->pUserData, surface);
}

VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/,
                                            uint32_t /*queue_family*/,
                                            VkSurfaceKHR surface_handle,
                                            VkBool32* supported) {
    const Surface* surface = SurfaceFromHandle(surface_handle);
    if (!surface) {
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    const ANativeWindow* window = surface->window.get();

    int query_value;
    int err = window->query(window, NATIVE_WINDOW_FORMAT, &query_value);
    if (err != 0 || query_value < 0) {
        ALOGE("NATIVE_WINDOW_FORMAT query failed: %s (%d) value=%d",
              strerror(-err), err, query_value);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    android_pixel_format native_format =
        static_cast<android_pixel_format>(query_value);

    bool format_supported = false;
    switch (native_format) {
        case HAL_PIXEL_FORMAT_RGBA_8888:
        case HAL_PIXEL_FORMAT_RGB_565:
            format_supported = true;
            break;
        default:
            break;
    }

    // USAGE_CPU_READ_MASK 0xFUL
    // USAGE_CPU_WRITE_MASK (0xFUL << 4)
    // The currently used bits are as below:
    // USAGE_CPU_READ_RARELY = 2UL
    // USAGE_CPU_READ_OFTEN = 3UL
    // USAGE_CPU_WRITE_RARELY = (2UL << 4)
    // USAGE_CPU_WRITE_OFTEN = (3UL << 4)
    *supported = static_cast<VkBool32>(format_supported ||
                                       (surface->consumer_usage & 0xFFUL) == 0);

    return VK_SUCCESS;
}

VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR(
    VkPhysicalDevice /*pdev*/,
    VkSurfaceKHR surface,
    VkSurfaceCapabilitiesKHR* capabilities) {
    int err;
    ANativeWindow* window = SurfaceFromHandle(surface)->window.get();

    int width, height;
    err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
    if (err != 0) {
        ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
    if (err != 0) {
        ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    int transform_hint;
    err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
    if (err != 0) {
        ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    // TODO(jessehall): Figure out what the min/max values should be.
    int max_buffer_count;
    err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &max_buffer_count);
    if (err != 0) {
        ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    capabilities->minImageCount = max_buffer_count == 1 ? 1 : 2;
    capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);

    capabilities->currentExtent =
        VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)};

    // TODO(jessehall): Figure out what the max extent should be. Maximum
    // texture dimension maybe?
    capabilities->minImageExtent = VkExtent2D{1, 1};
    capabilities->maxImageExtent = VkExtent2D{4096, 4096};

    capabilities->maxImageArrayLayers = 1;

    capabilities->supportedTransforms = kSupportedTransforms;
    capabilities->currentTransform =
        TranslateNativeToVulkanTransform(transform_hint);

    // On Android, window composition is a WindowManager property, not something
    // associated with the bufferqueue. It can't be changed from here.
    capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;

    // TODO(jessehall): I think these are right, but haven't thought hard about
    // it. Do we need to query the driver for support of any of these?
    // Currently not included:
    // - VK_IMAGE_USAGE_DEPTH_STENCIL_BIT: definitely not
    // - VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT: definitely not
    capabilities->supportedUsageFlags =
        VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
        VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
        VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
        VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;

    return VK_SUCCESS;
}

VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,
                                            VkSurfaceKHR surface_handle,
                                            uint32_t* count,
                                            VkSurfaceFormatKHR* formats) {
    const InstanceData& instance_data = GetData(pdev);

    // TODO(jessehall): Fill out the set of supported formats. Longer term, add
    // a new gralloc method to query whether a (format, usage) pair is
    // supported, and check that for each gralloc format that corresponds to a
    // Vulkan format. Shorter term, just add a few more formats to the ones
    // hardcoded below.

    const VkSurfaceFormatKHR kFormats[] = {
        {VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
        {VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
        {VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
    };
    const uint32_t kNumFormats = sizeof(kFormats) / sizeof(kFormats[0]);
    uint32_t total_num_formats = kNumFormats;

    bool wide_color_support = false;
    Surface& surface = *SurfaceFromHandle(surface_handle);
    int err = native_window_get_wide_color_support(surface.window.get(),
                                                   &wide_color_support);
    if (err) {
        // Not allowed to return a more sensible error code, so do this
        return VK_ERROR_OUT_OF_HOST_MEMORY;
    }
    ALOGV("wide_color_support is: %d", wide_color_support);
    wide_color_support =
        wide_color_support &&
        instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace);

    const VkSurfaceFormatKHR kWideColorFormats[] = {
        {VK_FORMAT_R8G8B8A8_UNORM,
         VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT},
        {VK_FORMAT_R8G8B8A8_SRGB,
         VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT},
    };
    const uint32_t kNumWideColorFormats =
        sizeof(kWideColorFormats) / sizeof(kWideColorFormats[0]);
    if (wide_color_support) {
        total_num_formats += kNumWideColorFormats;
    }

    VkResult result = VK_SUCCESS;
    if (formats) {
        uint32_t out_count = 0;
        uint32_t transfer_count = 0;
        if (*count < total_num_formats)
            result = VK_INCOMPLETE;
        transfer_count = std::min(*count, kNumFormats);
        std::copy(kFormats, kFormats + transfer_count, formats);
        out_count += transfer_count;
        if (wide_color_support) {
            transfer_count = std::min(*count - out_count, kNumWideColorFormats);
            std::copy(kWideColorFormats, kWideColorFormats + transfer_count,
                      formats + out_count);
            out_count += transfer_count;
        }
        *count = out_count;
    } else {
        *count = total_num_formats;
    }
    return result;
}

VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceCapabilities2KHR(
    VkPhysicalDevice physicalDevice,
    const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
    VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
    VkResult result = GetPhysicalDeviceSurfaceCapabilitiesKHR(
        physicalDevice, pSurfaceInfo->surface,
        &pSurfaceCapabilities->surfaceCapabilities);

    VkSurfaceCapabilities2KHR* caps = pSurfaceCapabilities;
    while (caps->pNext) {
        caps = reinterpret_cast<VkSurfaceCapabilities2KHR*>(caps->pNext);

        switch (caps->sType) {
            case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: {
                VkSharedPresentSurfaceCapabilitiesKHR* shared_caps =
                    reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(
                        caps);
                // Claim same set of usage flags are supported for
                // shared present modes as for other modes.
                shared_caps->sharedPresentSupportedUsageFlags =
                    pSurfaceCapabilities->surfaceCapabilities
                        .supportedUsageFlags;
            } break;

            default:
                // Ignore all other extension structs
                break;
        }
    }

    return result;
}

VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceFormats2KHR(
    VkPhysicalDevice physicalDevice,
    const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
    uint32_t* pSurfaceFormatCount,
    VkSurfaceFormat2KHR* pSurfaceFormats) {
    if (!pSurfaceFormats) {
        return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice,
                                                  pSurfaceInfo->surface,
                                                  pSurfaceFormatCount, nullptr);
    } else {
        // temp vector for forwarding; we'll marshal it into the pSurfaceFormats
        // after the call.
        android::Vector<VkSurfaceFormatKHR> surface_formats;
        surface_formats.resize(*pSurfaceFormatCount);
        VkResult result = GetPhysicalDeviceSurfaceFormatsKHR(
            physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount,
            &surface_formats.editItemAt(0));

        if (result == VK_SUCCESS || result == VK_INCOMPLETE) {
            // marshal results individually due to stride difference.
            // completely ignore any chained extension structs.
            uint32_t formats_to_marshal = *pSurfaceFormatCount;
            for (uint32_t i = 0u; i < formats_to_marshal; i++) {
                pSurfaceFormats[i].surfaceFormat = surface_formats[i];
            }
        }

        return result;
    }
}

VKAPI_ATTR
VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,
                                                 VkSurfaceKHR surface,
                                                 uint32_t* count,
                                                 VkPresentModeKHR* modes) {
    int err;
    int query_value;
    ANativeWindow* window = SurfaceFromHandle(surface)->window.get();

    err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &query_value);
    if (err != 0 || query_value < 0) {
        ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) value=%d",
              strerror(-err), err, query_value);
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);

    err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value);
    if (err != 0 || query_value < 0) {
        ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d",
              strerror(-err), err, query_value);
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    uint32_t max_buffer_count = static_cast<uint32_t>(query_value);

    android::Vector<VkPresentModeKHR> present_modes;
    if (min_undequeued_buffers + 1 < max_buffer_count)
        present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR);
    present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);

    VkPhysicalDevicePresentationPropertiesANDROID present_properties;
    if (QueryPresentationProperties(pdev, &present_properties)) {
        if (present_properties.sharedImage) {
            present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
            present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
        }
    }

    uint32_t num_modes = uint32_t(present_modes.size());

    VkResult result = VK_SUCCESS;
    if (modes) {
        if (*count < num_modes)
            result = VK_INCOMPLETE;
        *count = std::min(*count, num_modes);
        std::copy(present_modes.begin(), present_modes.begin() + int(*count), modes);
    } else {
        *count = num_modes;
    }
    return result;
}

VKAPI_ATTR
VkResult GetDeviceGroupPresentCapabilitiesKHR(
    VkDevice,
    VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) {
    ALOGV_IF(pDeviceGroupPresentCapabilities->sType !=
                 VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR,
             "vkGetDeviceGroupPresentCapabilitiesKHR: invalid "
             "VkDeviceGroupPresentCapabilitiesKHR structure type %d",
             pDeviceGroupPresentCapabilities->sType);

    memset(pDeviceGroupPresentCapabilities->presentMask, 0,
           sizeof(pDeviceGroupPresentCapabilities->presentMask));

    // assume device group of size 1
    pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0;
    pDeviceGroupPresentCapabilities->modes =
        VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;

    return VK_SUCCESS;
}

VKAPI_ATTR
VkResult GetDeviceGroupSurfacePresentModesKHR(
    VkDevice,
    VkSurfaceKHR,
    VkDeviceGroupPresentModeFlagsKHR* pModes) {
    *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
    return VK_SUCCESS;
}

VKAPI_ATTR
VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,
                                               VkSurfaceKHR surface,
                                               uint32_t* pRectCount,
                                               VkRect2D* pRects) {
    if (!pRects) {
        *pRectCount = 1;
    } else {
        uint32_t count = std::min(*pRectCount, 1u);
        bool incomplete = *pRectCount < 1;

        *pRectCount = count;

        if (incomplete) {
            return VK_INCOMPLETE;
        }

        int err;
        ANativeWindow* window = SurfaceFromHandle(surface)->window.get();

        int width = 0, height = 0;
        err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
        if (err != 0) {
            ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
                  strerror(-err), err);
        }
        err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
        if (err != 0) {
            ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
                  strerror(-err), err);
        }

        // TODO: Return something better than "whole window"
        pRects[0].offset.x = 0;
        pRects[0].offset.y = 0;
        pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width),
                                      static_cast<uint32_t>(height)};
    }
    return VK_SUCCESS;
}

VKAPI_ATTR
VkResult CreateSwapchainKHR(VkDevice device,
                            const VkSwapchainCreateInfoKHR* create_info,
                            const VkAllocationCallbacks* allocator,
                            VkSwapchainKHR* swapchain_handle) {
    int err;
    VkResult result = VK_SUCCESS;

    ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64
          " minImageCount=%u imageFormat=%u imageColorSpace=%u"
          " imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u"
          " oldSwapchain=0x%" PRIx64,
          reinterpret_cast<uint64_t>(create_info->surface),
          create_info->minImageCount, create_info->imageFormat,
          create_info->imageColorSpace, create_info->imageExtent.width,
          create_info->imageExtent.height, create_info->imageUsage,
          create_info->preTransform, create_info->presentMode,
          reinterpret_cast<uint64_t>(create_info->oldSwapchain));

    if (!allocator)
        allocator = &GetData(device).allocator;

    android_pixel_format native_pixel_format =
        GetNativePixelFormat(create_info->imageFormat);
    android_dataspace native_dataspace =
        GetNativeDataspace(create_info->imageColorSpace);
    if (native_dataspace == HAL_DATASPACE_UNKNOWN) {
        ALOGE(
            "CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) "
            "failed: Unsupported color space",
            create_info->imageColorSpace);
        return VK_ERROR_INITIALIZATION_FAILED;
    }

    ALOGV_IF(create_info->imageArrayLayers != 1,
             "swapchain imageArrayLayers=%u not supported",
             create_info->imageArrayLayers);
    ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0,
             "swapchain preTransform=%#x not supported",
             create_info->preTransform);
    ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR ||
               create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ||
               create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
               create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR),
             "swapchain presentMode=%u not supported",
             create_info->presentMode);

    Surface& surface = *SurfaceFromHandle(create_info->surface);

    if (surface.swapchain_handle != create_info->oldSwapchain) {
        ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64
              " because it already has active swapchain 0x%" PRIx64
              " but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64,
              reinterpret_cast<uint64_t>(create_info->surface),
              reinterpret_cast<uint64_t>(surface.swapchain_handle),
              reinterpret_cast<uint64_t>(create_info->oldSwapchain));
        return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
    }
    if (create_info->oldSwapchain != VK_NULL_HANDLE)
        OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain));

    // -- Reset the native window --
    // The native window might have been used previously, and had its properties
    // changed from defaults. That will affect the answer we get for queries
    // like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we
    // attempt such queries.

    // The native window only allows dequeueing all buffers before any have
    // been queued, since after that point at least one is assumed to be in
    // non-FREE state at any given time. Disconnecting and re-connecting
    // orphans the previous buffers, getting us back to the state where we can
    // dequeue all buffers.
    err = native_window_api_disconnect(surface.window.get(),
                                       NATIVE_WINDOW_API_EGL);
    ALOGW_IF(err != 0, "native_window_api_disconnect failed: %s (%d)",
             strerror(-err), err);
    err =
        native_window_api_connect(surface.window.get(), NATIVE_WINDOW_API_EGL);
    ALOGW_IF(err != 0, "native_window_api_connect failed: %s (%d)",
             strerror(-err), err);

    err = native_window_set_buffer_count(surface.window.get(), 0);
    if (err != 0) {
        ALOGE("native_window_set_buffer_count(0) failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    int swap_interval =
        create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1;
    err = surface.window->setSwapInterval(surface.window.get(), swap_interval);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window->setSwapInterval(1) failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    err = native_window_set_shared_buffer_mode(surface.window.get(), false);
    if (err != 0) {
        ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    err = native_window_set_auto_refresh(surface.window.get(), false);
    if (err != 0) {
        ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    // -- Configure the native window --

    const auto& dispatch = GetData(device).driver;

    err = native_window_set_buffers_format(surface.window.get(),
                                           native_pixel_format);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_buffers_format(%d) failed: %s (%d)",
              native_pixel_format, strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    err = native_window_set_buffers_data_space(surface.window.get(),
                                               native_dataspace);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)",
              native_dataspace, strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    err = native_window_set_buffers_dimensions(
        surface.window.get(), static_cast<int>(create_info->imageExtent.width),
        static_cast<int>(create_info->imageExtent.height));
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)",
              create_info->imageExtent.width, create_info->imageExtent.height,
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    // VkSwapchainCreateInfo::preTransform indicates the transformation the app
    // applied during rendering. native_window_set_transform() expects the
    // inverse: the transform the app is requesting that the compositor perform
    // during composition. With native windows, pre-transform works by rendering
    // with the same transform the compositor is applying (as in Vulkan), but
    // then requesting the inverse transform, so that when the compositor does
    // it's job the two transforms cancel each other out and the compositor ends
    // up applying an identity transform to the app's buffer.
    err = native_window_set_buffers_transform(
        surface.window.get(),
        InvertTransformToNative(create_info->preTransform));
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)",
              InvertTransformToNative(create_info->preTransform),
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    err = native_window_set_scaling_mode(
        surface.window.get(), NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)",
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0;
    if (create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
        create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
        swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID;
        err = native_window_set_shared_buffer_mode(surface.window.get(), true);
        if (err != 0) {
            ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err);
            return VK_ERROR_SURFACE_LOST_KHR;
        }
    }

    if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
        err = native_window_set_auto_refresh(surface.window.get(), true);
        if (err != 0) {
            ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err);
            return VK_ERROR_SURFACE_LOST_KHR;
        }
    }

    int query_value;
    err = surface.window->query(surface.window.get(),
                                NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
                                &query_value);
    if (err != 0 || query_value < 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err,
              query_value);
        return VK_ERROR_SURFACE_LOST_KHR;
    }
    uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
    uint32_t num_images =
        (create_info->minImageCount - 1) + min_undequeued_buffers;

    // Lower layer insists that we have at least two buffers. This is wasteful
    // and we'd like to relax it in the shared case, but not all the pieces are
    // in place for that to work yet. Note we only lie to the lower layer-- we
    // don't want to give the app back a swapchain with extra images (which they
    // can't actually use!).
    err = native_window_set_buffer_count(surface.window.get(), std::max(2u, num_images));
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", num_images,
              strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    int32_t legacy_usage = 0;
    if (dispatch.GetSwapchainGrallocUsage2ANDROID) {
        uint64_t consumer_usage, producer_usage;
        result = dispatch.GetSwapchainGrallocUsage2ANDROID(
            device, create_info->imageFormat, create_info->imageUsage,
            swapchain_image_usage, &consumer_usage, &producer_usage);
        if (result != VK_SUCCESS) {
            ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result);
            return VK_ERROR_SURFACE_LOST_KHR;
        }
        legacy_usage =
            android_convertGralloc1To0Usage(producer_usage, consumer_usage);
    } else if (dispatch.GetSwapchainGrallocUsageANDROID) {
        result = dispatch.GetSwapchainGrallocUsageANDROID(
            device, create_info->imageFormat, create_info->imageUsage,
            &legacy_usage);
        if (result != VK_SUCCESS) {
            ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result);
            return VK_ERROR_SURFACE_LOST_KHR;
        }
    }
    uint64_t native_usage = static_cast<uint64_t>(legacy_usage);

    bool createProtectedSwapchain = false;
    if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
        createProtectedSwapchain = true;
        native_usage |= BufferUsage::PROTECTED;
    }
    err = native_window_set_usage(surface.window.get(), native_usage);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    // -- Allocate our Swapchain object --
    // After this point, we must deallocate the swapchain on error.

    void* mem = allocator->pfnAllocation(allocator->pUserData,
                                         sizeof(Swapchain), alignof(Swapchain),
                                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    if (!mem)
        return VK_ERROR_OUT_OF_HOST_MEMORY;
    Swapchain* swapchain =
        new (mem) Swapchain(surface, num_images, create_info->presentMode);

    // -- Dequeue all buffers and create a VkImage for each --
    // Any failures during or after this must cancel the dequeued buffers.

    VkSwapchainImageCreateInfoANDROID swapchain_image_create = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
        .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID,
#pragma clang diagnostic pop
        .pNext = nullptr,
        .usage = swapchain_image_usage,
    };
    VkNativeBufferANDROID image_native_buffer = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
        .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
#pragma clang diagnostic pop
        .pNext = &swapchain_image_create,
    };
    VkImageCreateInfo image_create = {
        .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
        .pNext = &image_native_buffer,
        .imageType = VK_IMAGE_TYPE_2D,
        .format = create_info->imageFormat,
        .extent = {0, 0, 1},
        .mipLevels = 1,
        .arrayLayers = 1,
        .samples = VK_SAMPLE_COUNT_1_BIT,
        .tiling = VK_IMAGE_TILING_OPTIMAL,
        .usage = create_info->imageUsage,
        .flags = createProtectedSwapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
        .sharingMode = create_info->imageSharingMode,
        .queueFamilyIndexCount = create_info->queueFamilyIndexCount,
        .pQueueFamilyIndices = create_info->pQueueFamilyIndices,
    };

    for (uint32_t i = 0; i < num_images; i++) {
        Swapchain::Image& img = swapchain->images[i];

        ANativeWindowBuffer* buffer;
        err = surface.window->dequeueBuffer(surface.window.get(), &buffer,
                                            &img.dequeue_fence);
        if (err != 0) {
            // TODO(jessehall): Improve error reporting. Can we enumerate
            // possible errors and translate them to valid Vulkan result codes?
            ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err);
            result = VK_ERROR_SURFACE_LOST_KHR;
            break;
        }
        img.buffer = buffer;
        img.dequeued = true;

        image_create.extent =
            VkExtent3D{static_cast<uint32_t>(img.buffer->width),
                       static_cast<uint32_t>(img.buffer->height),
                       1};
        image_native_buffer.handle = img.buffer->handle;
        image_native_buffer.stride = img.buffer->stride;
        image_native_buffer.format = img.buffer->format;
        image_native_buffer.usage = int(img.buffer->usage);
        android_convertGralloc0To1Usage(int(img.buffer->usage),
            &image_native_buffer.usage2.producer,
            &image_native_buffer.usage2.consumer);

        result =
            dispatch.CreateImage(device, &image_create, nullptr, &img.image);
        if (result != VK_SUCCESS) {
            ALOGD("vkCreateImage w/ native buffer failed: %u", result);
            break;
        }
    }

    // -- Cancel all buffers, returning them to the queue --
    // If an error occurred before, also destroy the VkImage and release the
    // buffer reference. Otherwise, we retain a strong reference to the buffer.
    //
    // TODO(jessehall): The error path here is the same as DestroySwapchain,
    // but not the non-error path. Should refactor/unify.
    for (uint32_t i = 0; i < num_images; i++) {
        Swapchain::Image& img = swapchain->images[i];
        if (img.dequeued) {
            if (!swapchain->shared) {
                surface.window->cancelBuffer(surface.window.get(), img.buffer.get(),
                                             img.dequeue_fence);
                img.dequeue_fence = -1;
                img.dequeued = false;
            }
        }
        if (result != VK_SUCCESS) {
            if (img.image)
                dispatch.DestroyImage(device, img.image, nullptr);
        }
    }

    if (result != VK_SUCCESS) {
        swapchain->~Swapchain();
        allocator->pfnFree(allocator->pUserData, swapchain);
        return result;
    }

    surface.swapchain_handle = HandleFromSwapchain(swapchain);
    *swapchain_handle = surface.swapchain_handle;
    return VK_SUCCESS;
}

VKAPI_ATTR
void DestroySwapchainKHR(VkDevice device,
                         VkSwapchainKHR swapchain_handle,
                         const VkAllocationCallbacks* allocator) {
    const auto& dispatch = GetData(device).driver;
    Swapchain* swapchain = SwapchainFromHandle(swapchain_handle);
    if (!swapchain)
        return;
    bool active = swapchain->surface.swapchain_handle == swapchain_handle;
    ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr;

    if (swapchain->frame_timestamps_enabled) {
        native_window_enable_frame_timestamps(window, false);
    }
    for (uint32_t i = 0; i < swapchain->num_images; i++)
        ReleaseSwapchainImage(device, window, -1, swapchain->images[i]);
    if (active)
        swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
    if (!allocator)
        allocator = &GetData(device).allocator;
    swapchain->~Swapchain();
    allocator->pfnFree(allocator->pUserData, swapchain);
}

VKAPI_ATTR
VkResult GetSwapchainImagesKHR(VkDevice,
                               VkSwapchainKHR swapchain_handle,
                               uint32_t* count,
                               VkImage* images) {
    Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
    ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle,
             "getting images for non-active swapchain 0x%" PRIx64
             "; only dequeued image handles are valid",
             reinterpret_cast<uint64_t>(swapchain_handle));
    VkResult result = VK_SUCCESS;
    if (images) {
        uint32_t n = swapchain.num_images;
        if (*count < swapchain.num_images) {
            n = *count;
            result = VK_INCOMPLETE;
        }
        for (uint32_t i = 0; i < n; i++)
            images[i] = swapchain.images[i].image;
        *count = n;
    } else {
        *count = swapchain.num_images;
    }
    return result;
}

VKAPI_ATTR
VkResult AcquireNextImageKHR(VkDevice device,
                             VkSwapchainKHR swapchain_handle,
                             uint64_t timeout,
                             VkSemaphore semaphore,
                             VkFence vk_fence,
                             uint32_t* image_index) {
    Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
    ANativeWindow* window = swapchain.surface.window.get();
    VkResult result;
    int err;

    if (swapchain.surface.swapchain_handle != swapchain_handle)
        return VK_ERROR_OUT_OF_DATE_KHR;

    ALOGW_IF(
        timeout != UINT64_MAX,
        "vkAcquireNextImageKHR: non-infinite timeouts not yet implemented");

    if (swapchain.shared) {
        // In shared mode, we keep the buffer dequeued all the time, so we don't
        // want to dequeue a buffer here. Instead, just ask the driver to ensure
        // the semaphore and fence passed to us will be signalled.
        *image_index = 0;
        result = GetData(device).driver.AcquireImageANDROID(
                device, swapchain.images[*image_index].image, -1, semaphore, vk_fence);
        return result;
    }

    ANativeWindowBuffer* buffer;
    int fence_fd;
    err = window->dequeueBuffer(window, &buffer, &fence_fd);
    if (err != 0) {
        // TODO(jessehall): Improve error reporting. Can we enumerate possible
        // errors and translate them to valid Vulkan result codes?
        ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
        return VK_ERROR_SURFACE_LOST_KHR;
    }

    uint32_t idx;
    for (idx = 0; idx < swapchain.num_images; idx++) {
        if (swapchain.images[idx].buffer.get() == buffer) {
            swapchain.images[idx].dequeued = true;
            swapchain.images[idx].dequeue_fence = fence_fd;
            break;
        }
    }
    if (idx == swapchain.num_images) {
        ALOGE("dequeueBuffer returned unrecognized buffer");
        window->cancelBuffer(window, buffer, fence_fd);
        return VK_ERROR_OUT_OF_DATE_KHR;
    }

    int fence_clone = -1;
    if (fence_fd != -1) {
        fence_clone = dup(fence_fd);
        if (fence_clone == -1) {
            ALOGE("dup(fence) failed, stalling until signalled: %s (%d)",
                  strerror(errno), errno);
            sync_wait(fence_fd, -1 /* forever */);
        }
    }

    result = GetData(device).driver.AcquireImageANDROID(
        device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence);
    if (result != VK_SUCCESS) {
        // NOTE: we're relying on AcquireImageANDROID to close fence_clone,
        // even if the call fails. We could close it ourselves on failure, but
        // that would create a race condition if the driver closes it on a
        // failure path: some other thread might create an fd with the same
        // number between the time the driver closes it and the time we close
        // it. We must assume one of: the driver *always* closes it even on
        // failure, or *never* closes it on failure.
        window->cancelBuffer(window, buffer, fence_fd);
        swapchain.images[idx].dequeued = false;
        swapchain.images[idx].dequeue_fence = -1;
        return result;
    }

    *image_index = idx;
    return VK_SUCCESS;
}

VKAPI_ATTR
VkResult AcquireNextImage2KHR(VkDevice device,
                              const VkAcquireNextImageInfoKHR* pAcquireInfo,
                              uint32_t* pImageIndex) {
    // TODO: this should actually be the other way around and this function
    // should handle any additional structures that get passed in
    return AcquireNextImageKHR(device, pAcquireInfo->swapchain,
                               pAcquireInfo->timeout, pAcquireInfo->semaphore,
                               pAcquireInfo->fence, pImageIndex);
}

static VkResult WorstPresentResult(VkResult a, VkResult b) {
    // See the error ranking for vkQueuePresentKHR at the end of section 29.6
    // (in spec version 1.0.14).
    static const VkResult kWorstToBest[] = {
        VK_ERROR_DEVICE_LOST,
        VK_ERROR_SURFACE_LOST_KHR,
        VK_ERROR_OUT_OF_DATE_KHR,
        VK_ERROR_OUT_OF_DEVICE_MEMORY,
        VK_ERROR_OUT_OF_HOST_MEMORY,
        VK_SUBOPTIMAL_KHR,
    };
    for (auto result : kWorstToBest) {
        if (a == result || b == result)
            return result;
    }
    ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a);
    ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b);
    return a != VK_SUCCESS ? a : b;
}

VKAPI_ATTR
VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) {
    ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
             "vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d",
             present_info->sType);

    VkDevice device = GetData(queue).driver_device;
    const auto& dispatch = GetData(queue).driver;
    VkResult final_result = VK_SUCCESS;

    // Look at the pNext chain for supported extension structs:
    const VkPresentRegionsKHR* present_regions = nullptr;
    const VkPresentTimesInfoGOOGLE* present_times = nullptr;
    const VkPresentRegionsKHR* next =
        reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext);
    while (next) {
        switch (next->sType) {
            case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
                present_regions = next;
                break;
            case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
                present_times =
                    reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next);
                break;
            default:
                ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x",
                      next->sType);
                break;
        }
        next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext);
    }
    ALOGV_IF(
        present_regions &&
            present_regions->swapchainCount != present_info->swapchainCount,
        "VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount");
    ALOGV_IF(present_times &&
                 present_times->swapchainCount != present_info->swapchainCount,
             "VkPresentTimesInfoGOOGLE::swapchainCount != "
             "VkPresentInfo::swapchainCount");
    const VkPresentRegionKHR* regions =
        (present_regions) ? present_regions->pRegions : nullptr;
    const VkPresentTimeGOOGLE* times =
        (present_times) ? present_times->pTimes : nullptr;
    const VkAllocationCallbacks* allocator = &GetData(device).allocator;
    android_native_rect_t* rects = nullptr;
    uint32_t nrects = 0;

    for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) {
        Swapchain& swapchain =
            *SwapchainFromHandle(present_info->pSwapchains[sc]);
        uint32_t image_idx = present_info->pImageIndices[sc];
        Swapchain::Image& img = swapchain.images[image_idx];
        const VkPresentRegionKHR* region =
            (regions && !swapchain.mailbox_mode) ? &regions[sc] : nullptr;
        const VkPresentTimeGOOGLE* time = (times) ? &times[sc] : nullptr;
        VkResult swapchain_result = VK_SUCCESS;
        VkResult result;
        int err;

        int fence = -1;
        result = dispatch.QueueSignalReleaseImageANDROID(
            queue, present_info->waitSemaphoreCount,
            present_info->pWaitSemaphores, img.image, &fence);
        if (result != VK_SUCCESS) {
            ALOGE("QueueSignalReleaseImageANDROID failed: %d", result);
            swapchain_result = result;
        }

        if (swapchain.surface.swapchain_handle ==
            present_info->pSwapchains[sc]) {
            ANativeWindow* window = swapchain.surface.window.get();
            if (swapchain_result == VK_SUCCESS) {
                if (region) {
                    // Process the incremental-present hint for this swapchain:
                    uint32_t rcount = region->rectangleCount;
                    if (rcount > nrects) {
                        android_native_rect_t* new_rects =
                            static_cast<android_native_rect_t*>(
                                allocator->pfnReallocation(
                                    allocator->pUserData, rects,
                                    sizeof(android_native_rect_t) * rcount,
                                    alignof(android_native_rect_t),
                                    VK_SYSTEM_ALLOCATION_SCOPE_COMMAND));
                        if (new_rects) {
                            rects = new_rects;
                            nrects = rcount;
                        } else {
                            rcount = 0;  // Ignore the hint for this swapchain
                        }
                    }
                    for (uint32_t r = 0; r < rcount; ++r) {
                        if (region->pRectangles[r].layer > 0) {
                            ALOGV(
                                "vkQueuePresentKHR ignoring invalid layer "
                                "(%u); using layer 0 instead",
                                region->pRectangles[r].layer);
                        }
                        int x = region->pRectangles[r].offset.x;
                        int y = region->pRectangles[r].offset.y;
                        int width = static_cast<int>(
                            region->pRectangles[r].extent.width);
                        int height = static_cast<int>(
                            region->pRectangles[r].extent.height);
                        android_native_rect_t* cur_rect = &rects[r];
                        cur_rect->left = x;
                        cur_rect->top = y + height;
                        cur_rect->right = x + width;
                        cur_rect->bottom = y;
                    }
                    native_window_set_surface_damage(window, rects, rcount);
                }
                if (time) {
                    if (!swapchain.frame_timestamps_enabled) {
                        ALOGV(
                            "Calling "
                            "native_window_enable_frame_timestamps(true)");
                        native_window_enable_frame_timestamps(window, true);
                        swapchain.frame_timestamps_enabled = true;
                    }

                    // Record the nativeFrameId so it can be later correlated to
                    // this present.
                    uint64_t nativeFrameId = 0;
                    err = native_window_get_next_frame_id(
                            window, &nativeFrameId);
                    if (err != android::NO_ERROR) {
                        ALOGE("Failed to get next native frame ID.");
                    }

                    // Add a new timing record with the user's presentID and
                    // the nativeFrameId.
                    swapchain.timing.push_back(TimingInfo(time, nativeFrameId));
                    while (swapchain.timing.size() > MAX_TIMING_INFOS) {
                        swapchain.timing.removeAt(0);
                    }
                    if (time->desiredPresentTime) {
                        // Set the desiredPresentTime:
                        ALOGV(
                            "Calling "
                            "native_window_set_buffers_timestamp(%" PRId64 ")",
                            time->desiredPresentTime);
                        native_window_set_buffers_timestamp(
                            window,
                            static_cast<int64_t>(time->desiredPresentTime));
                    }
                }

                err = window->queueBuffer(window, img.buffer.get(), fence);
                // queueBuffer always closes fence, even on error
                if (err != 0) {
                    // TODO(jessehall): What now? We should probably cancel the
                    // buffer, I guess?
                    ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err);
                    swapchain_result = WorstPresentResult(
                        swapchain_result, VK_ERROR_OUT_OF_DATE_KHR);
                }
                if (img.dequeue_fence >= 0) {
                    close(img.dequeue_fence);
                    img.dequeue_fence = -1;
                }
                img.dequeued = false;

                // If the swapchain is in shared mode, immediately dequeue the
                // buffer so it can be presented again without an intervening
                // call to AcquireNextImageKHR. We expect to get the same buffer
                // back from every call to dequeueBuffer in this mode.
                if (swapchain.shared && swapchain_result == VK_SUCCESS) {
                    ANativeWindowBuffer* buffer;
                    int fence_fd;
                    err = window->dequeueBuffer(window, &buffer, &fence_fd);
                    if (err != 0) {
                        ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
                        swapchain_result = WorstPresentResult(swapchain_result,
                            VK_ERROR_SURFACE_LOST_KHR);
                    }
                    else if (img.buffer != buffer) {
                        ALOGE("got wrong image back for shared swapchain");
                        swapchain_result = WorstPresentResult(swapchain_result,
                            VK_ERROR_SURFACE_LOST_KHR);
                    }
                    else {
                        img.dequeue_fence = fence_fd;
                        img.dequeued = true;
                    }
                }
            }
            if (swapchain_result != VK_SUCCESS) {
                ReleaseSwapchainImage(device, window, fence, img);
                OrphanSwapchain(device, &swapchain);
            }
        } else {
            ReleaseSwapchainImage(device, nullptr, fence, img);
            swapchain_result = VK_ERROR_OUT_OF_DATE_KHR;
        }

        if (present_info->pResults)
            present_info->pResults[sc] = swapchain_result;

        if (swapchain_result != final_result)
            final_result = WorstPresentResult(final_result, swapchain_result);
    }
    if (rects) {
        allocator->pfnFree(allocator->pUserData, rects);
    }

    return final_result;
}

VKAPI_ATTR
VkResult GetRefreshCycleDurationGOOGLE(
    VkDevice,
    VkSwapchainKHR swapchain_handle,
    VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) {
    Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
    VkResult result = VK_SUCCESS;

    pDisplayTimingProperties->refreshDuration =
            static_cast<uint64_t>(swapchain.refresh_duration);

    return result;
}

VKAPI_ATTR
VkResult GetPastPresentationTimingGOOGLE(
    VkDevice,
    VkSwapchainKHR swapchain_handle,
    uint32_t* count,
    VkPastPresentationTimingGOOGLE* timings) {
    Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
    ANativeWindow* window = swapchain.surface.window.get();
    VkResult result = VK_SUCCESS;

    if (!swapchain.frame_timestamps_enabled) {
        ALOGV("Calling native_window_enable_frame_timestamps(true)");
        native_window_enable_frame_timestamps(window, true);
        swapchain.frame_timestamps_enabled = true;
    }

    if (timings) {
        // TODO(ianelliott): plumb return value (e.g. VK_INCOMPLETE)
        copy_ready_timings(swapchain, count, timings);
    } else {
        *count = get_num_ready_timings(swapchain);
    }

    return result;
}

VKAPI_ATTR
VkResult GetSwapchainStatusKHR(
    VkDevice,
    VkSwapchainKHR swapchain_handle) {
    Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
    VkResult result = VK_SUCCESS;

    if (swapchain.surface.swapchain_handle != swapchain_handle) {
        return VK_ERROR_OUT_OF_DATE_KHR;
    }

    // TODO(chrisforbes): Implement this function properly

    return result;
}

VKAPI_ATTR void SetHdrMetadataEXT(
    VkDevice,
    uint32_t swapchainCount,
    const VkSwapchainKHR* pSwapchains,
    const VkHdrMetadataEXT* pHdrMetadataEXTs) {

    for (uint32_t idx = 0; idx < swapchainCount; idx++) {
        Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]);
        if (!swapchain)
            continue;

        if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue;

        ANativeWindow* window = swapchain->surface.window.get();

        VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx];
        const android_smpte2086_metadata smpteMetdata = {
            {vulkanMetadata.displayPrimaryRed.x,
             vulkanMetadata.displayPrimaryRed.y},
            {vulkanMetadata.displayPrimaryGreen.x,
             vulkanMetadata.displayPrimaryGreen.y},
            {vulkanMetadata.displayPrimaryBlue.x,
             vulkanMetadata.displayPrimaryBlue.y},
            {vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y},
            vulkanMetadata.maxLuminance,
            vulkanMetadata.minLuminance};
        native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata);

        const android_cta861_3_metadata cta8613Metadata = {
            vulkanMetadata.maxContentLightLevel,
            vulkanMetadata.maxFrameAverageLightLevel};
        native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata);
    }

    return;
}

}  // namespace driver
}  // namespace vulkan