C++程序  |  547行  |  19.6 KB

#ifndef ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_
#define ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_

#include <ui/GraphicBuffer.h>
#include "DisplayHardware/ComposerHal.h"
#include "hwc_types.h"

#include <dvr/dvr_shared_buffers.h>
#include <hardware/gralloc.h>
#include <log/log.h>

#include <array>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <optional>
#include <thread>
#include <tuple>
#include <vector>

#include <dvr/dvr_config.h>
#include <dvr/dvr_vsync.h>
#include <pdx/file_handle.h>
#include <pdx/rpc/variant.h>
#include <private/dvr/buffer_hub_client.h>
#include <private/dvr/shared_buffer_helpers.h>

#include "acquired_buffer.h"
#include "display_surface.h"

// Hardware composer HAL doesn't define HWC_TRANSFORM_NONE as of this writing.
#ifndef HWC_TRANSFORM_NONE
#define HWC_TRANSFORM_NONE static_cast<hwc_transform_t>(0)
#endif

namespace android {
namespace dvr {

// Basic display metrics for physical displays.
struct DisplayParams {
  hwc2_display_t id;
  bool is_primary;

  int width;
  int height;

  struct {
    int x;
    int y;
  } dpi;

  int vsync_period_ns;
};

// Layer represents the connection between a hardware composer layer and the
// source supplying buffers for the layer's contents.
class Layer {
 public:
  Layer() = default;

  // Sets up the layer to use a display surface as its content source. The Layer
  // automatically handles ACQUIRE/RELEASE phases for the surface's buffer train
  // every frame.
  //
  // |composer| The composer instance.
  // |display_params| Info about the display to use.
  // |blending| receives HWC_BLENDING_* values.
  // |composition_type| receives either HWC_FRAMEBUFFER for most layers or
  // HWC_FRAMEBUFFER_TARGET (unless you know what you are doing).
  // |index| is the index of this surface in the DirectDisplaySurface array.
  Layer(Hwc2::Composer* composer, const DisplayParams& display_params,
        const std::shared_ptr<DirectDisplaySurface>& surface,
        HWC::BlendMode blending, HWC::Composition composition_type,
        size_t z_order);

  // Sets up the layer to use a direct buffer as its content source. No special
  // handling of the buffer is performed; responsibility for updating or
  // changing the buffer each frame is on the caller.
  //
  // |composer| The composer instance.
  // |display_params| Info about the display to use.
  // |blending| receives HWC_BLENDING_* values.
  // |composition_type| receives either HWC_FRAMEBUFFER for most layers or
  // HWC_FRAMEBUFFER_TARGET (unless you know what you are doing).
  Layer(Hwc2::Composer* composer, const DisplayParams& display_params,
        const std::shared_ptr<IonBuffer>& buffer, HWC::BlendMode blending,
        HWC::Composition composition_type, size_t z_order);

  Layer(Layer&&);
  Layer& operator=(Layer&&);

  ~Layer();

  // Releases any shared pointers and fence handles held by this instance.
  void Reset();

  // Layers that use a direct IonBuffer should call this each frame to update
  // which buffer will be used for the next PostLayers.
  void UpdateBuffer(const std::shared_ptr<IonBuffer>& buffer);

  // Sets up the hardware composer layer for the next frame. When the layer is
  // associated with a display surface, this method automatically ACQUIRES a new
  // buffer if one is available.
  void Prepare();

  // After calling prepare, if this frame is to be dropped instead of passing
  // along to the HWC, call Drop to close the contained fence(s).
  void Drop();

  // Performs fence bookkeeping after the frame has been posted to hardware
  // composer.
  void Finish(int release_fence_fd);

  // Sets the blending for the layer. |blending| receives HWC_BLENDING_* values.
  void SetBlending(HWC::BlendMode blending);

  // Sets the z-order of this layer
  void SetZOrder(size_t z_order);

  // Gets the current IonBuffer associated with this layer. Ownership of the
  // buffer DOES NOT pass to the caller and the pointer is not guaranteed to
  // remain valid across calls to Layer::Setup(), Layer::Prepare(), or
  // Layer::Reset(). YOU HAVE BEEN WARNED.
  IonBuffer* GetBuffer();

  HWC::Composition GetCompositionType() const { return composition_type_; }
  HWC::Layer GetLayerHandle() const { return hardware_composer_layer_; }
  bool IsLayerSetup() const { return !source_.empty(); }

  int GetSurfaceId() const {
    int surface_id = -1;
    pdx::rpc::IfAnyOf<SourceSurface>::Call(
        &source_, [&surface_id](const SourceSurface& surface_source) {
          surface_id = surface_source.GetSurfaceId();
        });
    return surface_id;
  }

  int GetBufferId() const {
    int buffer_id = -1;
    pdx::rpc::IfAnyOf<SourceSurface>::Call(
        &source_, [&buffer_id](const SourceSurface& surface_source) {
          buffer_id = surface_source.GetBufferId();
        });
    return buffer_id;
  }

  // Compares Layers by surface id.
  bool operator<(const Layer& other) const {
    return GetSurfaceId() < other.GetSurfaceId();
  }
  bool operator<(int surface_id) const { return GetSurfaceId() < surface_id; }

  void IgnoreBadDisplayErrorsOnDestroy(bool ignore) {
    ignore_bad_display_errors_on_destroy_ = ignore;
  }

 private:
  void CommonLayerSetup();

  // Applies all of the settings to this layer using the hwc functions
  void UpdateLayerSettings();

  // Applies visibility settings that may have changed.
  void UpdateVisibilitySettings();

  // Checks whether the buffer, given by id, is associated with the given slot
  // in the HWC buffer cache. If the slot is not associated with the given
  // buffer the cache is updated to establish the association and the buffer
  // should be sent to HWC using setLayerBuffer. Returns true if the association
  // was already established, false if not. A buffer_id of -1 is never
  // associated and always returns false.
  bool CheckAndUpdateCachedBuffer(std::size_t slot, int buffer_id);

  // Composer instance.
  Hwc2::Composer* composer_ = nullptr;

  // Parameters of the display to use for this layer.
  DisplayParams display_params_;

  // The hardware composer layer and metrics to use during the prepare cycle.
  hwc2_layer_t hardware_composer_layer_ = 0;

  // Layer properties used to setup the hardware composer layer during the
  // Prepare phase.
  size_t z_order_ = 0;
  HWC::BlendMode blending_ = HWC::BlendMode::None;
  HWC::Composition composition_type_ = HWC::Composition::Invalid;
  HWC::Composition target_composition_type_ = HWC::Composition::Device;

  // State when the layer is connected to a surface. Provides the same interface
  // as SourceBuffer to simplify internal use by Layer.
  struct SourceSurface {
    std::shared_ptr<DirectDisplaySurface> surface;
    AcquiredBuffer acquired_buffer;
    pdx::LocalHandle release_fence;

    SourceSurface(const std::shared_ptr<DirectDisplaySurface>& surface)
        : surface(surface) {}

    // Attempts to acquire a new buffer from the surface and return a tuple with
    // width, height, buffer handle, and fence. If a new buffer is not available
    // the previous buffer is returned or an empty value if no buffer has ever
    // been posted. When a new buffer is acquired the previous buffer's release
    // fence is passed out automatically.
    std::tuple<int, int, int, sp<GraphicBuffer>, pdx::LocalHandle, std::size_t>
    Acquire() {
      if (surface->IsBufferAvailable()) {
        acquired_buffer.Release(std::move(release_fence));
        acquired_buffer = surface->AcquireCurrentBuffer();
        ATRACE_ASYNC_END("BufferPost", acquired_buffer.buffer()->id());
      }
      if (!acquired_buffer.IsEmpty()) {
        return std::make_tuple(
            acquired_buffer.buffer()->width(),
            acquired_buffer.buffer()->height(), acquired_buffer.buffer()->id(),
            acquired_buffer.buffer()->buffer()->buffer(),
            acquired_buffer.ClaimAcquireFence(), acquired_buffer.slot());
      } else {
        return std::make_tuple(0, 0, -1, nullptr, pdx::LocalHandle{}, 0);
      }
    }

    void Finish(pdx::LocalHandle fence) { release_fence = std::move(fence); }

    // Gets a pointer to the current acquired buffer or returns nullptr if there
    // isn't one.
    IonBuffer* GetBuffer() {
      if (acquired_buffer.IsAvailable())
        return acquired_buffer.buffer()->buffer();
      else
        return nullptr;
    }

    // Returns the surface id of the surface.
    int GetSurfaceId() const { return surface->surface_id(); }

    // Returns the buffer id for the current buffer.
    int GetBufferId() const {
      if (acquired_buffer.IsAvailable())
        return acquired_buffer.buffer()->id();
      else
        return -1;
    }
  };

  // State when the layer is connected to a buffer. Provides the same interface
  // as SourceSurface to simplify internal use by Layer.
  struct SourceBuffer {
    std::shared_ptr<IonBuffer> buffer;

    std::tuple<int, int, int, sp<GraphicBuffer>, pdx::LocalHandle, std::size_t>
    Acquire() {
      if (buffer)
        return std::make_tuple(buffer->width(), buffer->height(), -1,
                               buffer->buffer(), pdx::LocalHandle{}, 0);
      else
        return std::make_tuple(0, 0, -1, nullptr, pdx::LocalHandle{}, 0);
    }

    void Finish(pdx::LocalHandle /*fence*/) {}

    IonBuffer* GetBuffer() { return buffer.get(); }

    int GetSurfaceId() const { return -1; }
    int GetBufferId() const { return -1; }
  };

  // The underlying hardware composer layer is supplied buffers either from a
  // surface buffer train or from a buffer directly.
  pdx::rpc::Variant<SourceSurface, SourceBuffer> source_;

  pdx::LocalHandle acquire_fence_;
  bool surface_rect_functions_applied_ = false;
  bool pending_visibility_settings_ = true;

  // Map of buffer slot assignments that have already been established with HWC:
  // slot -> buffer_id. When this map contains a matching slot and buffer_id the
  // buffer argument to setLayerBuffer may be nullptr to avoid the cost of
  // importing a buffer HWC already knows about.
  std::map<std::size_t, int> cached_buffer_map_;

  // When calling destroyLayer() on an external display that's been removed we
  // typically get HWC2_ERROR_BAD_DISPLAY errors. If
  // ignore_bad_display_errors_on_destroy_ is true, don't log the bad display
  // errors, since they're expected.
  bool ignore_bad_display_errors_on_destroy_ = false;

  Layer(const Layer&) = delete;
  void operator=(const Layer&) = delete;
};

// HardwareComposer encapsulates the hardware composer HAL, exposing a
// simplified API to post buffers to the display.
//
// HardwareComposer is accessed by both the vr flinger dispatcher thread and the
// surface flinger main thread, in addition to internally running a separate
// thread for compositing/EDS and posting layers to the HAL. When changing how
// variables are used or adding new state think carefully about which threads
// will access the state and whether it needs to be synchronized.
class HardwareComposer {
 public:
  // Type for vsync callback.
  using VSyncCallback = std::function<void(int64_t, int64_t, uint32_t)>;
  using RequestDisplayCallback = std::function<void(bool)>;

  HardwareComposer();
  ~HardwareComposer();

  bool Initialize(Hwc2::Composer* composer,
                  hwc2_display_t primary_display_id,
                  RequestDisplayCallback request_display_callback);

  bool IsInitialized() const { return initialized_; }

  // Start the post thread if there's work to do (i.e. visible layers). This
  // should only be called from surface flinger's main thread.
  void Enable();
  // Pause the post thread, blocking until the post thread has signaled that
  // it's paused. This should only be called from surface flinger's main thread.
  void Disable();

  // Called on a binder thread.
  void OnBootFinished();

  std::string Dump();

  void SetVSyncCallback(VSyncCallback callback);

  const DisplayParams& GetPrimaryDisplayParams() const {
    return primary_display_;
  }

  // Sets the display surfaces to compose the hardware layer stack.
  void SetDisplaySurfaces(
      std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces);

  int OnNewGlobalBuffer(DvrGlobalBufferKey key, IonBuffer& ion_buffer);
  void OnDeletedGlobalBuffer(DvrGlobalBufferKey key);

 private:
  DisplayParams GetDisplayParams(Hwc2::Composer* composer,
      hwc2_display_t display, bool is_primary);

  // Turn display vsync on/off. Returns true on success, false on failure.
  bool EnableVsync(const DisplayParams& display, bool enabled);
  // Turn display power on/off. Returns true on success, false on failure.
  bool SetPowerMode(const DisplayParams& display, bool active);
  // Convenience function to turn a display on/off. Turns both power and vsync
  // on/off. Returns true on success, false on failure.
  bool EnableDisplay(const DisplayParams& display, bool enabled);

  class ComposerCallback : public Hwc2::IComposerCallback {
   public:
    ComposerCallback() = default;
    hardware::Return<void> onHotplug(Hwc2::Display display,
                                     Connection conn) override;
    hardware::Return<void> onRefresh(Hwc2::Display display) override;
    hardware::Return<void> onVsync(Hwc2::Display display,
                                   int64_t timestamp) override;

    bool GotFirstHotplug() { return got_first_hotplug_; }

    struct Displays {
      hwc2_display_t primary_display = 0;
      std::optional<hwc2_display_t> external_display;
      bool external_display_was_hotplugged = false;
    };

    Displays GetDisplays();
    pdx::Status<int64_t> GetVsyncTime(hwc2_display_t display);

   private:
    struct DisplayInfo {
      hwc2_display_t id = 0;
      pdx::LocalHandle driver_vsync_event_fd;
      int64_t callback_vsync_timestamp{0};
    };

    DisplayInfo* GetDisplayInfo(hwc2_display_t display);

    std::mutex mutex_;

    bool got_first_hotplug_ = false;
    DisplayInfo primary_display_;
    std::optional<DisplayInfo> external_display_;
    bool external_display_was_hotplugged_ = false;
  };

  HWC::Error Validate(hwc2_display_t display);
  HWC::Error Present(hwc2_display_t display);

  void PostLayers(hwc2_display_t display);
  void PostThread();

  // The post thread has two controlling states:
  // 1. Idle: no work to do (no visible surfaces).
  // 2. Suspended: explicitly halted (system is not in VR mode).
  // When either #1 or #2 is true then the post thread is quiescent, otherwise
  // it is active.
  using PostThreadStateType = uint32_t;
  struct PostThreadState {
    enum : PostThreadStateType {
      Active = 0,
      Idle = (1 << 0),
      Suspended = (1 << 1),
      Quit = (1 << 2),
    };
  };

  void UpdatePostThreadState(uint32_t state, bool suspend);

  // Blocks until either event_fd becomes readable, or we're interrupted by a
  // control thread, or timeout_ms is reached before any events occur. Any
  // errors are returned as negative errno values, with -ETIMEDOUT returned in
  // the case of a timeout. If we're interrupted, kPostThreadInterrupted will be
  // returned.
  int PostThreadPollInterruptible(const pdx::LocalHandle& event_fd,
                                  int requested_events, int timeout_ms);

  // WaitForPredictedVSync and SleepUntil are blocking calls made on the post
  // thread that can be interrupted by a control thread. If interrupted, these
  // calls return kPostThreadInterrupted.
  int ReadWaitPPState();
  pdx::Status<int64_t> WaitForPredictedVSync();
  int SleepUntil(int64_t wakeup_timestamp);

  // Initialize any newly connected displays, and set target_display_ to the
  // display we should render to. Returns true if target_display_
  // changed. Called only from the post thread.
  bool UpdateTargetDisplay();

  // Reconfigures the layer stack if the display surfaces changed since the last
  // frame. Called only from the post thread.
  void UpdateLayerConfig();

  // Called on the post thread to create the Composer instance.
  void CreateComposer();

  // Called on the post thread when the post thread is resumed.
  void OnPostThreadResumed();
  // Called on the post thread when the post thread is paused or quits.
  void OnPostThreadPaused();

  // Use post_thread_wait_ to wait for a specific condition, specified by pred.
  // timeout_sec < 0 means wait indefinitely, otherwise it specifies the timeout
  // in seconds.
  // The lock must be held when this function is called.
  // Returns true if the wait was interrupted because the post thread was asked
  // to quit.
  bool PostThreadCondWait(std::unique_lock<std::mutex>& lock,
                          int timeout_sec,
                          const std::function<bool()>& pred);

  // Map the given shared memory buffer to our broadcast ring to track updates
  // to the config parameters.
  int MapConfigBuffer(IonBuffer& ion_buffer);
  void ConfigBufferDeleted();
  // Poll for config udpates.
  void UpdateConfigBuffer();

  bool initialized_;
  bool is_standalone_device_;

  std::unique_ptr<Hwc2::Composer> composer_;
  sp<ComposerCallback> composer_callback_;
  RequestDisplayCallback request_display_callback_;

  DisplayParams primary_display_;
  std::optional<DisplayParams> external_display_;
  DisplayParams* target_display_ = &primary_display_;

  // The list of surfaces we should draw. Set by the display service when
  // DirectSurfaces are added, removed, or change visibility. Written by the
  // message dispatch thread and read by the post thread.
  std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces_;
  // Set to true by the dispatch thread whenever surfaces_ changes. Set to false
  // by the post thread when the new list of surfaces is processed.
  bool surfaces_changed_ = false;

  std::vector<std::shared_ptr<DirectDisplaySurface>> current_surfaces_;

  // Layer set for handling buffer flow into hardware composer layers. This
  // vector must be sorted by surface_id in ascending order.
  std::vector<Layer> layers_;

  // Handler to hook vsync events outside of this class.
  VSyncCallback vsync_callback_;

  // The layer posting thread. This thread wakes up a short time before vsync to
  // hand buffers to hardware composer.
  std::thread post_thread_;

  // Post thread state machine and synchronization primitives.
  PostThreadStateType post_thread_state_{PostThreadState::Idle |
                                         PostThreadState::Suspended};
  std::atomic<bool> post_thread_quiescent_{true};
  bool post_thread_resumed_{false};
  pdx::LocalHandle post_thread_event_fd_;
  std::mutex post_thread_mutex_;
  std::condition_variable post_thread_wait_;
  std::condition_variable post_thread_ready_;

  // When boot is finished this will be set to true and the post thread will be
  // notified via post_thread_wait_.
  bool boot_finished_ = false;

  // VSync sleep timerfd.
  pdx::LocalHandle vsync_sleep_timer_fd_;

  // The timestamp of the last vsync.
  int64_t last_vsync_timestamp_ = 0;

  // The number of vsync intervals to predict since the last vsync.
  int vsync_prediction_interval_ = 1;

  // Vsync count since display on.
  uint32_t vsync_count_ = 0;

  // Counter tracking the number of skipped frames.
  int frame_skip_count_ = 0;

  // Fd array for tracking retire fences that are returned by hwc. This allows
  // us to detect when the display driver begins queuing frames.
  std::vector<pdx::LocalHandle> retire_fence_fds_;

  // If we are publishing vsync data, we will put it here.
  std::unique_ptr<CPUMappedBroadcastRing<DvrVsyncRing>> vsync_ring_;

  // Broadcast ring for receiving config data from the DisplayManager.
  DvrConfigRing shared_config_ring_;
  uint32_t shared_config_ring_sequence_{0};
  // Config buffer for reading from the post thread.
  DvrConfig post_thread_config_;
  std::mutex shared_config_mutex_;

  static constexpr int kPostThreadInterrupted = 1;

  HardwareComposer(const HardwareComposer&) = delete;
  void operator=(const HardwareComposer&) = delete;
};

}  // namespace dvr
}  // namespace android

#endif  // ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_