/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Class used to build a model through a succession of successive calls
// to the NN API.
#ifndef ANDROID_ML_NN_RUNTIME_MODEL_BUILDER_H
#define ANDROID_ML_NN_RUNTIME_MODEL_BUILDER_H
#include "HalInterfaces.h"
#include "Memory.h"
#include "NeuralNetworks.h"
#include "Utils.h"
namespace android {
namespace nn {
class CompilationBuilder;
class Device;
class ExecutionPlan;
class Memory;
class ModelBuilder {
public:
// Adds an operand to the model.
int addOperand(const ANeuralNetworksOperandType& type);
int setOperandValue(uint32_t index, const void* buffer, size_t length);
int setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
size_t length);
int addOperation(ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs,
uint32_t outputCount, const uint32_t* outputs);
int identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount,
const uint32_t* outputs);
int relaxComputationFloat32toFloat16(bool allow);
bool isComputationFloat32RelaxedToFloat16() const { return mRelaxComputationFloat32toFloat16; }
int finish();
bool isFinished() const { return mCompletedModel; }
int createCompilation(CompilationBuilder** compilation);
void setHidlModel(Model* model) const;
uint32_t operandCount() const {
// We don't allow more than uint32_t worth of operands
return static_cast<uint32_t>(mOperands.size());
}
uint32_t operationCount() const {
// We don't allow more than uint32_t worth of operations
return static_cast<uint32_t>(mOperations.size());
}
uint32_t inputCount() const { return static_cast<uint32_t>(mInputIndexes.size()); }
uint32_t outputCount() const { return static_cast<uint32_t>(mOutputIndexes.size()); }
uint32_t getInputOperandIndex(uint32_t i) const { return mInputIndexes[i]; }
const Operand& getInputOperand(uint32_t i) const {
return mOperands[getInputOperandIndex(i)];
}
uint32_t getOutputOperandIndex(uint32_t i) const { return mOutputIndexes[i]; }
const Operand& getOutputOperand(uint32_t i) const {
return mOperands[getOutputOperandIndex(i)];
}
const Operand& getOperand(uint32_t index) const { return mOperands[index]; }
const Operation& getOperation(uint32_t index) const { return mOperations[index]; }
const MemoryTracker& getMemories() const { return mMemories; }
const std::vector<Operation>& getOperations() const { return mOperations; }
const uint8_t* getPointerToOperandValue(uint32_t offset) const {
return mSmallOperandValues.data() + offset;
}
int partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices,
uint32_t preference, ExecutionPlan* plan) const;
private:
// TODO: move partitionTheWork, findBestDeviceForEachOperation,
// sortIntoRunOrder to CompilationBuilder?
int findBestDeviceForEachOperation(uint32_t preference,
const std::vector<std::shared_ptr<Device>>& devices,
const size_t deviceCount,
std::vector<int>* bestDeviceForOperation) const;
PerformanceInfo getPerformanceInfo(const std::shared_ptr<Device> device,
uint32_t operationIndex) const;
// Return true if either mCompleteModel or mInvalidModel is true.
bool badState(const char* name);
// Sorts the operations to be in the correct order for single threaded
// node-at-a-time execution.
void sortIntoRunOrder();
// Copies the large values to a shared memory, if we have any.
int copyLargeValuesToSharedMemory();
// The operations of the graph.
std::vector<Operation> mOperations;
// The description of the operands of the graph.
std::vector<Operand> mOperands;
// Specifies where to find the list of indexes identifying
// the inputs and outputs of the model. The offset is into
// the mOperandIndexes table.
std::vector<uint32_t> mInputIndexes;
std::vector<uint32_t> mOutputIndexes;
MemoryTracker mMemories;
// The value of the small operands that are defined at model
// creation time.
std::vector<uint8_t> mSmallOperandValues;
struct LargeValue {
uint32_t operandIndex;
const void* buffer;
};
// Operand index and buffer pointer for all the large operand values of this model.
std::vector<LargeValue> mLargeOperandValues;
// The shared memory region that will contain the large values.
Memory mLargeValueMemory;
// Once the model has been finished, we should not allow further
// modifications to the model.
mutable bool mCompletedModel = false;
// Any invalid manipulation of the model will mark the model invalid.
// No further modifications are allowed to the model.
mutable bool mInvalidModel = false;
// 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
// precision as low as that of the IEEE 754 16-bit floating-point format.
// 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
// range and precision of the IEEE 754 32-bit floating-point format.
bool mRelaxComputationFloat32toFloat16 = false;
};
} // namespace nn
} // namespace android
#endif // ANDROID_ML_NN_RUNTIME_MODEL_BUILDER_H