//===- InputTree.h --------------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef MCLD_INPUTTREE_H_
#define MCLD_INPUTTREE_H_
#include "mcld/ADT/BinTree.h"
#include "mcld/ADT/TypeTraits.h"
#include "mcld/MC/Input.h"
#include "mcld/Support/Path.h"
#include <string>
namespace mcld {
/** \class template<typename Traits, typename Iterator>
* PolicyIterator<mcld::Input>
* \brief PolicyIterator<mcld::Input> is a partially specific PolicyIterator
*/
template <typename Traits, typename IteratorType>
class PolicyIterator<mcld::Input, Traits, IteratorType>
: public PolicyIteratorBase<Input, Traits, IteratorType> {
public:
typedef PolicyIterator<Input, Traits, IteratorType> Self;
typedef PolicyIteratorBase<Input, Traits, IteratorType> Base;
typedef PolicyIterator<Input, typename Traits::nonconst_traits, IteratorType>
iterator;
typedef PolicyIterator<Input, typename Traits::const_traits, IteratorType>
const_iterator;
public:
PolicyIterator() : Base() {}
PolicyIterator(const iterator& X) : Base(X.m_pNode) {}
explicit PolicyIterator(NodeBase* X) : Base(X) {}
virtual ~PolicyIterator() {}
bool isGroup() const { return !Base::hasData() && !Base::isRoot(); }
Self& operator++() {
IteratorType::advance();
// skip the Group node
while (isGroup())
IteratorType::advance();
return *this;
}
Self operator++(int) {
Self tmp(*this);
IteratorType::advance();
// skip the Group node
while (isGroup())
IteratorType::advance();
return tmp;
}
};
template <>
class BinaryTree<Input> : public BinaryTreeBase<Input> {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef Input value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef const value_type* const_pointer;
typedef const value_type& const_reference;
typedef BinaryTree<Input> Self;
typedef TreeIterator<value_type, NonConstTraits<value_type> > iterator;
typedef TreeIterator<value_type, ConstTraits<value_type> > const_iterator;
typedef PolicyIterator<value_type, NonConstTraits<value_type>, DFSIterator>
dfs_iterator;
typedef PolicyIterator<value_type, ConstTraits<value_type>, DFSIterator>
const_dfs_iterator;
typedef PolicyIterator<value_type, NonConstTraits<value_type>, BFSIterator>
bfs_iterator;
typedef PolicyIterator<value_type, ConstTraits<value_type>, BFSIterator>
const_bfs_iterator;
protected:
typedef Node<value_type> node_type;
public:
// ----- constructors and destructor ----- //
BinaryTree() : BinaryTreeBase<Input>() {}
~BinaryTree() {}
// ----- iterators ----- //
bfs_iterator bfs_begin() {
bfs_iterator it = bfs_iterator(BinaryTreeBase<Input>::m_Root.node.left);
if (it.isGroup())
++it;
return it;
}
bfs_iterator bfs_end() {
return bfs_iterator(BinaryTreeBase<Input>::m_Root.node.right);
}
const_bfs_iterator bfs_begin() const {
const_bfs_iterator it =
const_bfs_iterator(BinaryTreeBase<Input>::m_Root.node.left);
if (it.isGroup())
++it;
return it;
}
const_bfs_iterator bfs_end() const {
return const_bfs_iterator(BinaryTreeBase<Input>::m_Root.node.right);
}
dfs_iterator dfs_begin() {
dfs_iterator it = dfs_iterator(BinaryTreeBase<Input>::m_Root.node.left);
if (it.isGroup())
++it;
return it;
}
dfs_iterator dfs_end() {
return dfs_iterator(BinaryTreeBase<Input>::m_Root.node.right);
}
const_dfs_iterator dfs_begin() const {
const_dfs_iterator it =
const_dfs_iterator(BinaryTreeBase<Input>::m_Root.node.left);
if (it.isGroup())
++it;
return it;
}
const_dfs_iterator dfs_end() const {
return const_dfs_iterator(BinaryTreeBase<Input>::m_Root.node.right);
}
iterator root() { return iterator(&(BinaryTreeBase<Input>::m_Root.node)); }
const_iterator root() const {
// FIXME: provide the iterater constructors for constant NodeBase instead of
// using const_cast
return const_iterator(
const_cast<NodeBase*>(&BinaryTreeBase<Input>::m_Root.node));
}
iterator begin() {
iterator it = iterator(BinaryTreeBase<Input>::m_Root.node.left);
return it;
}
iterator end() { return iterator(BinaryTreeBase<Input>::m_Root.node.right); }
const_iterator begin() const {
return const_iterator(BinaryTreeBase<Input>::m_Root.node.left);
}
const_iterator end() const {
return const_iterator(BinaryTreeBase<Input>::m_Root.node.right);
}
// ----- modifiers ----- //
/// join - create a leaf node and merge it in the tree.
// This version of join determines the direction on compilation time.
// @param DIRECT the direction of the connecting edge of the parent node.
// @param position the parent node
// @param value the value being pushed.
template <size_t DIRECT>
BinaryTree& join(TreeIteratorBase& pPosition, const Input& value) {
node_type* node = BinaryTreeBase<Input>::createNode();
node->data = const_cast<Input*>(&value);
if (pPosition.isRoot())
pPosition.hook<TreeIteratorBase::Leftward>(node);
else
pPosition.hook<DIRECT>(node);
return *this;
}
/// merge - merge the tree
// @param DIRECT the direction of the connecting edge of the parent node.
// @param position the parent node
// @param the tree being joined.
// @return the joined tree
template <size_t DIRECT>
BinaryTree& merge(TreeIteratorBase& pPosition, BinaryTree& pTree) {
if (this == &pTree)
return *this;
if (!pTree.empty()) {
pPosition.hook<DIRECT>(pTree.m_Root.node.left);
BinaryTreeBase<Input>::m_Root.summon(pTree.BinaryTreeBase<Input>::m_Root);
BinaryTreeBase<Input>::m_Root.delegate(pTree.m_Root);
pTree.m_Root.node.left = pTree.m_Root.node.right = &pTree.m_Root.node;
}
return *this;
}
};
/** \class InputTree
* \brief InputTree is the input tree to contains all inputs from the
* command line.
*
* InputTree, of course, is uncopyable.
*
* @see Input
*/
class InputTree : public BinaryTree<Input> {
private:
typedef BinaryTree<Input> BinTreeTy;
public:
enum Direction {
Inclusive = TreeIteratorBase::Leftward,
Positional = TreeIteratorBase::Rightward
};
typedef BinaryTree<Input>::iterator iterator;
typedef BinaryTree<Input>::const_iterator const_iterator;
public:
/** \class Mover
* \brief Mover provides the interface for moving iterator forward.
*
* Mover is a function object (functor). @ref Mover::move moves
* iterator forward in certain direction. @ref Mover::connect
* connects two nodes of the given iterators togather.
*/
struct Mover {
virtual void connect(TreeIteratorBase& pFrom, NodeBase* pTo) const = 0;
virtual void move(TreeIteratorBase& pNode) const = 0;
virtual ~Mover() {}
};
/** \class Succeeder
* \brief class Succeeder moves the iterator afterward.
*/
struct Succeeder : public Mover {
void connect(TreeIteratorBase& pFrom, NodeBase* pTo) const {
pFrom.hook<Positional>(pTo);
}
void move(TreeIteratorBase& pNode) const { pNode.move<Positional>(); }
};
/** \class Includer
* \brief class Includer moves the iterator downward.
*/
struct Includer : public Mover {
void connect(TreeIteratorBase& pFrom, NodeBase* pTo) const {
pFrom.hook<Inclusive>(pTo);
}
void move(TreeIteratorBase& pNode) const { pNode.move<Inclusive>(); }
};
public:
static Succeeder Afterward;
static Includer Downward;
public:
using BinTreeTy::merge;
// ----- modify ----- //
template <size_t DIRECT>
InputTree& enterGroup(TreeIteratorBase pRoot);
template <size_t DIRECT>
InputTree& insert(TreeIteratorBase pRoot, Input& pInput);
InputTree& merge(TreeIteratorBase pRoot,
const Mover& pMover,
InputTree& pTree);
InputTree& insert(TreeIteratorBase pRoot, const Mover& pMover, Input& pInput);
InputTree& enterGroup(TreeIteratorBase pRoot, const Mover& pMover);
};
bool isGroup(const InputTree::iterator& pos);
bool isGroup(const InputTree::const_iterator& pos);
bool isGroup(const InputTree::dfs_iterator& pos);
bool isGroup(const InputTree::const_dfs_iterator& pos);
bool isGroup(const InputTree::bfs_iterator& pos);
bool isGroup(const InputTree::const_bfs_iterator& pos);
} // namespace mcld
//===----------------------------------------------------------------------===//
// template member functions
//===----------------------------------------------------------------------===//
template <size_t DIRECT>
mcld::InputTree& mcld::InputTree::enterGroup(mcld::TreeIteratorBase pRoot) {
BinTreeTy::node_type* node = createNode();
if (pRoot.isRoot())
pRoot.hook<TreeIteratorBase::Leftward>(node);
else
pRoot.hook<DIRECT>(node);
return *this;
}
template <size_t DIRECT>
mcld::InputTree& mcld::InputTree::insert(mcld::TreeIteratorBase pRoot,
mcld::Input& pInput) {
BinTreeTy::node_type* node = createNode();
node->data = &pInput;
if (pRoot.isRoot())
pRoot.hook<TreeIteratorBase::Leftward>(node);
else
pRoot.hook<DIRECT>(node);
return *this;
}
#endif // MCLD_INPUTTREE_H_