C++程序  |  330行  |  13.76 KB

/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "VectorDrawableUtils.h"

#include "PathParser.h"

#include <math.h>
#include <utils/Log.h>

namespace android {
namespace uirenderer {

class PathResolver {
public:
    float currentX = 0;
    float currentY = 0;
    float ctrlPointX = 0;
    float ctrlPointY = 0;
    float currentSegmentStartX = 0;
    float currentSegmentStartY = 0;
    void addCommand(SkPath* outPath, char previousCmd, char cmd, const std::vector<float>* points,
                    size_t start, size_t end);
};

bool VectorDrawableUtils::canMorph(const PathData& morphFrom, const PathData& morphTo) {
    if (morphFrom.verbs.size() != morphTo.verbs.size()) {
        return false;
    }

    for (unsigned int i = 0; i < morphFrom.verbs.size(); i++) {
        if (morphFrom.verbs[i] != morphTo.verbs[i] ||
            morphFrom.verbSizes[i] != morphTo.verbSizes[i]) {
            return false;
        }
    }
    return true;
}

bool VectorDrawableUtils::interpolatePathData(PathData* outData, const PathData& morphFrom,
                                              const PathData& morphTo, float fraction) {
    if (!canMorph(morphFrom, morphTo)) {
        return false;
    }
    interpolatePaths(outData, morphFrom, morphTo, fraction);
    return true;
}

/**
* Convert an array of PathVerb to Path.
*/
void VectorDrawableUtils::verbsToPath(SkPath* outPath, const PathData& data) {
    PathResolver resolver;
    char previousCommand = 'm';
    size_t start = 0;
    outPath->reset();
    for (unsigned int i = 0; i < data.verbs.size(); i++) {
        size_t verbSize = data.verbSizes[i];
        resolver.addCommand(outPath, previousCommand, data.verbs[i], &data.points, start,
                            start + verbSize);
        previousCommand = data.verbs[i];
        start += verbSize;
    }
}

/**
 * The current PathVerb will be interpolated between the
 * <code>nodeFrom</code> and <code>nodeTo</code> according to the
 * <code>fraction</code>.
 *
 * @param nodeFrom The start value as a PathVerb.
 * @param nodeTo The end value as a PathVerb
 * @param fraction The fraction to interpolate.
 */
void VectorDrawableUtils::interpolatePaths(PathData* outData, const PathData& from,
                                           const PathData& to, float fraction) {
    outData->points.resize(from.points.size());
    outData->verbSizes = from.verbSizes;
    outData->verbs = from.verbs;

    for (size_t i = 0; i < from.points.size(); i++) {
        outData->points[i] = from.points[i] * (1 - fraction) + to.points[i] * fraction;
    }
}

// Use the given verb, and points in the range [start, end) to insert a command into the SkPath.
void PathResolver::addCommand(SkPath* outPath, char previousCmd, char cmd,
                              const std::vector<float>* points, size_t start, size_t end) {
    int incr = 2;
    float reflectiveCtrlPointX;
    float reflectiveCtrlPointY;

    switch (cmd) {
        case 'z':
        case 'Z':
            outPath->close();
            // Path is closed here, but we need to move the pen to the
            // closed position. So we cache the segment's starting position,
            // and restore it here.
            currentX = currentSegmentStartX;
            currentY = currentSegmentStartY;
            ctrlPointX = currentSegmentStartX;
            ctrlPointY = currentSegmentStartY;
            outPath->moveTo(currentX, currentY);
            break;
        case 'm':
        case 'M':
        case 'l':
        case 'L':
        case 't':
        case 'T':
            incr = 2;
            break;
        case 'h':
        case 'H':
        case 'v':
        case 'V':
            incr = 1;
            break;
        case 'c':
        case 'C':
            incr = 6;
            break;
        case 's':
        case 'S':
        case 'q':
        case 'Q':
            incr = 4;
            break;
        case 'a':
        case 'A':
            incr = 7;
            break;
    }

    for (unsigned int k = start; k < end; k += incr) {
        switch (cmd) {
            case 'm':  // moveto - Start a new sub-path (relative)
                currentX += points->at(k + 0);
                currentY += points->at(k + 1);
                if (k > start) {
                    // According to the spec, if a moveto is followed by multiple
                    // pairs of coordinates, the subsequent pairs are treated as
                    // implicit lineto commands.
                    outPath->rLineTo(points->at(k + 0), points->at(k + 1));
                } else {
                    outPath->rMoveTo(points->at(k + 0), points->at(k + 1));
                    currentSegmentStartX = currentX;
                    currentSegmentStartY = currentY;
                }
                break;
            case 'M':  // moveto - Start a new sub-path
                currentX = points->at(k + 0);
                currentY = points->at(k + 1);
                if (k > start) {
                    // According to the spec, if a moveto is followed by multiple
                    // pairs of coordinates, the subsequent pairs are treated as
                    // implicit lineto commands.
                    outPath->lineTo(points->at(k + 0), points->at(k + 1));
                } else {
                    outPath->moveTo(points->at(k + 0), points->at(k + 1));
                    currentSegmentStartX = currentX;
                    currentSegmentStartY = currentY;
                }
                break;
            case 'l':  // lineto - Draw a line from the current point (relative)
                outPath->rLineTo(points->at(k + 0), points->at(k + 1));
                currentX += points->at(k + 0);
                currentY += points->at(k + 1);
                break;
            case 'L':  // lineto - Draw a line from the current point
                outPath->lineTo(points->at(k + 0), points->at(k + 1));
                currentX = points->at(k + 0);
                currentY = points->at(k + 1);
                break;
            case 'h':  // horizontal lineto - Draws a horizontal line (relative)
                outPath->rLineTo(points->at(k + 0), 0);
                currentX += points->at(k + 0);
                break;
            case 'H':  // horizontal lineto - Draws a horizontal line
                outPath->lineTo(points->at(k + 0), currentY);
                currentX = points->at(k + 0);
                break;
            case 'v':  // vertical lineto - Draws a vertical line from the current point (r)
                outPath->rLineTo(0, points->at(k + 0));
                currentY += points->at(k + 0);
                break;
            case 'V':  // vertical lineto - Draws a vertical line from the current point
                outPath->lineTo(currentX, points->at(k + 0));
                currentY = points->at(k + 0);
                break;
            case 'c':  // curveto - Draws a cubic Bézier curve (relative)
                outPath->rCubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
                                  points->at(k + 3), points->at(k + 4), points->at(k + 5));

                ctrlPointX = currentX + points->at(k + 2);
                ctrlPointY = currentY + points->at(k + 3);
                currentX += points->at(k + 4);
                currentY += points->at(k + 5);

                break;
            case 'C':  // curveto - Draws a cubic Bézier curve
                outPath->cubicTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
                                 points->at(k + 3), points->at(k + 4), points->at(k + 5));
                currentX = points->at(k + 4);
                currentY = points->at(k + 5);
                ctrlPointX = points->at(k + 2);
                ctrlPointY = points->at(k + 3);
                break;
            case 's':  // smooth curveto - Draws a cubic Bézier curve (reflective cp)
                reflectiveCtrlPointX = 0;
                reflectiveCtrlPointY = 0;
                if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' ||
                    previousCmd == 'S') {
                    reflectiveCtrlPointX = currentX - ctrlPointX;
                    reflectiveCtrlPointY = currentY - ctrlPointY;
                }
                outPath->rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
                                  points->at(k + 1), points->at(k + 2), points->at(k + 3));
                ctrlPointX = currentX + points->at(k + 0);
                ctrlPointY = currentY + points->at(k + 1);
                currentX += points->at(k + 2);
                currentY += points->at(k + 3);
                break;
            case 'S':  // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
                reflectiveCtrlPointX = currentX;
                reflectiveCtrlPointY = currentY;
                if (previousCmd == 'c' || previousCmd == 's' || previousCmd == 'C' ||
                    previousCmd == 'S') {
                    reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
                    reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
                }
                outPath->cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
                                 points->at(k + 1), points->at(k + 2), points->at(k + 3));
                ctrlPointX = points->at(k + 0);
                ctrlPointY = points->at(k + 1);
                currentX = points->at(k + 2);
                currentY = points->at(k + 3);
                break;
            case 'q':  // Draws a quadratic Bézier (relative)
                outPath->rQuadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
                                 points->at(k + 3));
                ctrlPointX = currentX + points->at(k + 0);
                ctrlPointY = currentY + points->at(k + 1);
                currentX += points->at(k + 2);
                currentY += points->at(k + 3);
                break;
            case 'Q':  // Draws a quadratic Bézier
                outPath->quadTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
                                points->at(k + 3));
                ctrlPointX = points->at(k + 0);
                ctrlPointY = points->at(k + 1);
                currentX = points->at(k + 2);
                currentY = points->at(k + 3);
                break;
            case 't':  // Draws a quadratic Bézier curve(reflective control point)(relative)
                reflectiveCtrlPointX = 0;
                reflectiveCtrlPointY = 0;
                if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' ||
                    previousCmd == 'T') {
                    reflectiveCtrlPointX = currentX - ctrlPointX;
                    reflectiveCtrlPointY = currentY - ctrlPointY;
                }
                outPath->rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
                                 points->at(k + 1));
                ctrlPointX = currentX + reflectiveCtrlPointX;
                ctrlPointY = currentY + reflectiveCtrlPointY;
                currentX += points->at(k + 0);
                currentY += points->at(k + 1);
                break;
            case 'T':  // Draws a quadratic Bézier curve (reflective control point)
                reflectiveCtrlPointX = currentX;
                reflectiveCtrlPointY = currentY;
                if (previousCmd == 'q' || previousCmd == 't' || previousCmd == 'Q' ||
                    previousCmd == 'T') {
                    reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
                    reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
                }
                outPath->quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY, points->at(k + 0),
                                points->at(k + 1));
                ctrlPointX = reflectiveCtrlPointX;
                ctrlPointY = reflectiveCtrlPointY;
                currentX = points->at(k + 0);
                currentY = points->at(k + 1);
                break;
            case 'a':  // Draws an elliptical arc
                // (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
                outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
                               (SkPath::ArcSize) (points->at(k + 3) != 0),
                               (SkPath::Direction) (points->at(k + 4) == 0), 
                               points->at(k + 5) + currentX, points->at(k + 6) + currentY);
                currentX += points->at(k + 5);
                currentY += points->at(k + 6);
                ctrlPointX = currentX;
                ctrlPointY = currentY;
                break;
            case 'A':  // Draws an elliptical arc
                outPath->arcTo(points->at(k + 0), points->at(k + 1), points->at(k + 2),
                               (SkPath::ArcSize) (points->at(k + 3) != 0),
                               (SkPath::Direction) (points->at(k + 4) == 0), 
                               points->at(k + 5), points->at(k + 6));
                currentX = points->at(k + 5);
                currentY = points->at(k + 6);
                ctrlPointX = currentX;
                ctrlPointY = currentY;
                break;
            default:
                LOG_ALWAYS_FATAL("Unsupported command: %c", cmd);
                break;
        }
        previousCmd = cmd;
    }
}

}  // namespace uirenderer
}  // namespace android