/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "DPFrequency"
//#define LOG_NDEBUG 0
#include <log/log.h>
#include "DPFrequency.h"
#include <algorithm>
namespace dp_fx {
using Eigen::MatrixXd;
#define MAX_BLOCKSIZE 16384 //For this implementation
#define MIN_BLOCKSIZE 8
#define CIRCULAR_BUFFER_UPSAMPLE 4 //4 times buffer size
static constexpr float MIN_ENVELOPE = 1e-6f; //-120 dB
//helper functionS
static inline bool isPowerOf2(unsigned long n) {
return (n & (n - 1)) == 0;
}
static constexpr float EPSILON = 0.0000001f;
static inline bool isZero(float f) {
return fabs(f) <= EPSILON;
}
template <class T>
bool compareEquality(T a, T b) {
return (a == b);
}
template <> bool compareEquality<float>(float a, float b) {
return isZero(a - b);
}
//TODO: avoid using macro for estimating change and assignment.
#define IS_CHANGED(c, a, b) { c |= !compareEquality(a,b); \
(a) = (b); }
//ChannelBuffers helper
void ChannelBuffer::initBuffers(unsigned int blockSize, unsigned int overlapSize,
unsigned int halfFftSize, unsigned int samplingRate, DPBase &dpBase) {
ALOGV("ChannelBuffer::initBuffers blockSize %d, overlap %d, halfFft %d",
blockSize, overlapSize, halfFftSize);
mSamplingRate = samplingRate;
mBlockSize = blockSize;
cBInput.resize(mBlockSize * CIRCULAR_BUFFER_UPSAMPLE);
cBOutput.resize(mBlockSize * CIRCULAR_BUFFER_UPSAMPLE);
//fill input with half block size...
for (unsigned int k = 0; k < mBlockSize/2; k++) {
cBInput.write(0);
}
//temp vectors
input.resize(mBlockSize);
output.resize(mBlockSize);
outTail.resize(overlapSize);
//module vectors
mPreEqFactorVector.resize(halfFftSize, 1.0);
mPostEqFactorVector.resize(halfFftSize, 1.0);
mPreEqBands.resize(dpBase.getPreEqBandCount());
mMbcBands.resize(dpBase.getMbcBandCount());
mPostEqBands.resize(dpBase.getPostEqBandCount());
ALOGV("mPreEqBands %zu, mMbcBands %zu, mPostEqBands %zu",mPreEqBands.size(),
mMbcBands.size(), mPostEqBands.size());
DPChannel *pChannel = dpBase.getChannel(0);
if (pChannel != nullptr) {
mPreEqInUse = pChannel->getPreEq()->isInUse();
mMbcInUse = pChannel->getMbc()->isInUse();
mPostEqInUse = pChannel->getPostEq()->isInUse();
mLimiterInUse = pChannel->getLimiter()->isInUse();
}
mLimiterParams.linkGroup = -1; //no group.
}
void ChannelBuffer::computeBinStartStop(BandParams &bp, size_t binStart) {
bp.binStart = binStart;
bp.binStop = (int)(0.5 + bp.freqCutoffHz * mBlockSize / mSamplingRate);
}
//== LinkedLimiters Helper
void LinkedLimiters::reset() {
mGroupsMap.clear();
}
void LinkedLimiters::update(int32_t group, int index) {
mGroupsMap[group].push_back(index);
}
void LinkedLimiters::remove(int index) {
//check all groups and if index is found, remove it.
//if group is empty afterwards, remove it.
for (auto it = mGroupsMap.begin(); it != mGroupsMap.end(); ) {
for (auto itIndex = it->second.begin(); itIndex != it->second.end(); ) {
if (*itIndex == index) {
itIndex = it->second.erase(itIndex);
} else {
++itIndex;
}
}
if (it->second.size() == 0) {
it = mGroupsMap.erase(it);
} else {
++it;
}
}
}
//== DPFrequency
void DPFrequency::reset() {
}
size_t DPFrequency::getMinBockSize() {
return MIN_BLOCKSIZE;
}
size_t DPFrequency::getMaxBockSize() {
return MAX_BLOCKSIZE;
}
void DPFrequency::configure(size_t blockSize, size_t overlapSize,
size_t samplingRate) {
ALOGV("configure");
mBlockSize = blockSize;
if (mBlockSize > MAX_BLOCKSIZE) {
mBlockSize = MAX_BLOCKSIZE;
} else if (mBlockSize < MIN_BLOCKSIZE) {
mBlockSize = MIN_BLOCKSIZE;
} else {
if (!isPowerOf2(blockSize)) {
//find next highest power of 2.
mBlockSize = 1 << (32 - __builtin_clz(blockSize));
}
}
mHalfFFTSize = 1 + mBlockSize / 2; //including Nyquist bin
mOverlapSize = std::min(overlapSize, mBlockSize/2);
int channelcount = getChannelCount();
mSamplingRate = samplingRate;
mChannelBuffers.resize(channelcount);
for (int ch = 0; ch < channelcount; ch++) {
mChannelBuffers[ch].initBuffers(mBlockSize, mOverlapSize, mHalfFFTSize,
mSamplingRate, *this);
}
//effective number of frames processed per second
mBlocksPerSecond = (float)mSamplingRate / (mBlockSize - mOverlapSize);
fill_window(mVWindow, RDSP_WINDOW_HANNING_FLAT_TOP, mBlockSize, mOverlapSize);
//compute window rms for energy compensation
mWindowRms = 0;
for (size_t i = 0; i < mVWindow.size(); i++) {
mWindowRms += mVWindow[i] * mVWindow[i];
}
//Making sure window rms is not zero.
mWindowRms = std::max(sqrt(mWindowRms / mVWindow.size()), MIN_ENVELOPE);
}
void DPFrequency::updateParameters(ChannelBuffer &cb, int channelIndex) {
DPChannel *pChannel = getChannel(channelIndex);
if (pChannel == nullptr) {
ALOGE("Error: updateParameters null DPChannel %d", channelIndex);
return;
}
//===Input Gain and preEq
{
bool changed = false;
IS_CHANGED(changed, cb.inputGainDb, pChannel->getInputGain());
//===EqPre
if (cb.mPreEqInUse) {
DPEq *pPreEq = pChannel->getPreEq();
if (pPreEq == nullptr) {
ALOGE("Error: updateParameters null PreEq for channel: %d", channelIndex);
return;
}
IS_CHANGED(changed, cb.mPreEqEnabled, pPreEq->isEnabled());
if (cb.mPreEqEnabled) {
for (unsigned int b = 0; b < getPreEqBandCount(); b++) {
DPEqBand *pEqBand = pPreEq->getBand(b);
if (pEqBand == nullptr) {
ALOGE("Error: updateParameters null PreEqBand for band %d", b);
return; //failed.
}
ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPreEqBands[b];
IS_CHANGED(changed, pEqBandParams->enabled, pEqBand->isEnabled());
IS_CHANGED(changed, pEqBandParams->freqCutoffHz,
pEqBand->getCutoffFrequency());
IS_CHANGED(changed, pEqBandParams->gainDb, pEqBand->getGain());
}
}
}
if (changed) {
float inputGainFactor = dBtoLinear(cb.inputGainDb);
if (cb.mPreEqInUse && cb.mPreEqEnabled) {
ALOGV("preEq changed, recomputing! channel %d", channelIndex);
size_t binNext = 0;
for (unsigned int b = 0; b < getPreEqBandCount(); b++) {
ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPreEqBands[b];
//frequency translation
cb.computeBinStartStop(*pEqBandParams, binNext);
binNext = pEqBandParams->binStop + 1;
float factor = dBtoLinear(pEqBandParams->gainDb);
if (!pEqBandParams->enabled) {
factor = inputGainFactor;
}
for (size_t k = pEqBandParams->binStart;
k <= pEqBandParams->binStop && k < mHalfFFTSize; k++) {
cb.mPreEqFactorVector[k] = factor * inputGainFactor;
}
}
} else {
ALOGV("only input gain changed, recomputing!");
//populate PreEq factor with input gain factor.
for (size_t k = 0; k < mHalfFFTSize; k++) {
cb.mPreEqFactorVector[k] = inputGainFactor;
}
}
}
} //inputGain and preEq
//===EqPost
if (cb.mPostEqInUse) {
bool changed = false;
DPEq *pPostEq = pChannel->getPostEq();
if (pPostEq == nullptr) {
ALOGE("Error: updateParameters null postEq for channel: %d", channelIndex);
return; //failed.
}
IS_CHANGED(changed, cb.mPostEqEnabled, pPostEq->isEnabled());
if (cb.mPostEqEnabled) {
for (unsigned int b = 0; b < getPostEqBandCount(); b++) {
DPEqBand *pEqBand = pPostEq->getBand(b);
if (pEqBand == nullptr) {
ALOGE("Error: updateParameters PostEqBand NULL for band %d", b);
return; //failed.
}
ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPostEqBands[b];
IS_CHANGED(changed, pEqBandParams->enabled, pEqBand->isEnabled());
IS_CHANGED(changed, pEqBandParams->freqCutoffHz,
pEqBand->getCutoffFrequency());
IS_CHANGED(changed, pEqBandParams->gainDb, pEqBand->getGain());
}
if (changed) {
ALOGV("postEq changed, recomputing! channel %d", channelIndex);
size_t binNext = 0;
for (unsigned int b = 0; b < getPostEqBandCount(); b++) {
ChannelBuffer::EqBandParams *pEqBandParams = &cb.mPostEqBands[b];
//frequency translation
cb.computeBinStartStop(*pEqBandParams, binNext);
binNext = pEqBandParams->binStop + 1;
float factor = dBtoLinear(pEqBandParams->gainDb);
if (!pEqBandParams->enabled) {
factor = 1.0;
}
for (size_t k = pEqBandParams->binStart;
k <= pEqBandParams->binStop && k < mHalfFFTSize; k++) {
cb.mPostEqFactorVector[k] = factor;
}
}
}
} //enabled
}
//===MBC
if (cb.mMbcInUse) {
DPMbc *pMbc = pChannel->getMbc();
if (pMbc == nullptr) {
ALOGE("Error: updateParameters Mbc NULL for channel: %d", channelIndex);
return;
}
cb.mMbcEnabled = pMbc->isEnabled();
if (cb.mMbcEnabled) {
bool changed = false;
for (unsigned int b = 0; b < getMbcBandCount(); b++) {
DPMbcBand *pMbcBand = pMbc->getBand(b);
if (pMbcBand == nullptr) {
ALOGE("Error: updateParameters MbcBand NULL for band %d", b);
return; //failed.
}
ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[b];
pMbcBandParams->enabled = pMbcBand->isEnabled();
IS_CHANGED(changed, pMbcBandParams->freqCutoffHz,
pMbcBand->getCutoffFrequency());
pMbcBandParams->gainPreDb = pMbcBand->getPreGain();
pMbcBandParams->gainPostDb = pMbcBand->getPostGain();
pMbcBandParams->attackTimeMs = pMbcBand->getAttackTime();
pMbcBandParams->releaseTimeMs = pMbcBand->getReleaseTime();
pMbcBandParams->ratio = pMbcBand->getRatio();
pMbcBandParams->thresholdDb = pMbcBand->getThreshold();
pMbcBandParams->kneeWidthDb = pMbcBand->getKneeWidth();
pMbcBandParams->noiseGateThresholdDb = pMbcBand->getNoiseGateThreshold();
pMbcBandParams->expanderRatio = pMbcBand->getExpanderRatio();
}
if (changed) {
ALOGV("mbc changed, recomputing! channel %d", channelIndex);
size_t binNext= 0;
for (unsigned int b = 0; b < getMbcBandCount(); b++) {
ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[b];
pMbcBandParams->previousEnvelope = 0;
//frequency translation
cb.computeBinStartStop(*pMbcBandParams, binNext);
binNext = pMbcBandParams->binStop + 1;
}
}
}
}
//===Limiter
if (cb.mLimiterInUse) {
bool changed = false;
DPLimiter *pLimiter = pChannel->getLimiter();
if (pLimiter == nullptr) {
ALOGE("Error: updateParameters Limiter NULL for channel: %d", channelIndex);
return;
}
cb.mLimiterEnabled = pLimiter->isEnabled();
if (cb.mLimiterEnabled) {
IS_CHANGED(changed, cb.mLimiterParams.linkGroup ,
(int32_t)pLimiter->getLinkGroup());
cb.mLimiterParams.attackTimeMs = pLimiter->getAttackTime();
cb.mLimiterParams.releaseTimeMs = pLimiter->getReleaseTime();
cb.mLimiterParams.ratio = pLimiter->getRatio();
cb.mLimiterParams.thresholdDb = pLimiter->getThreshold();
cb.mLimiterParams.postGainDb = pLimiter->getPostGain();
}
if (changed) {
ALOGV("limiter changed, recomputing linkGroups for %d", channelIndex);
mLinkedLimiters.remove(channelIndex); //in case it was already there.
mLinkedLimiters.update(cb.mLimiterParams.linkGroup, channelIndex);
}
}
//=== Output Gain
cb.outputGainDb = pChannel->getOutputGain();
}
size_t DPFrequency::processSamples(const float *in, float *out, size_t samples) {
const float *pIn = in;
float *pOut = out;
int channelCount = mChannelBuffers.size();
if (channelCount < 1) {
ALOGW("warning: no Channels ready for processing");
return 0;
}
//**Check if parameters have changed and update
for (int ch = 0; ch < channelCount; ch++) {
updateParameters(mChannelBuffers[ch], ch);
}
//**separate into channels
for (size_t k = 0; k < samples; k += channelCount) {
for (int ch = 0; ch < channelCount; ch++) {
mChannelBuffers[ch].cBInput.write(*pIn++);
}
}
//**process all channelBuffers
processChannelBuffers(mChannelBuffers);
//** estimate how much data is available in ALL channels
size_t available = mChannelBuffers[0].cBOutput.availableToRead();
for (int ch = 1; ch < channelCount; ch++) {
available = std::min(available, mChannelBuffers[ch].cBOutput.availableToRead());
}
//** make sure to output just what the buffer can handle
if (available > samples/channelCount) {
available = samples/channelCount;
}
//**Prepend zeroes if necessary
size_t fill = samples - (channelCount * available);
for (size_t k = 0; k < fill; k++) {
*pOut++ = 0;
}
//**interleave channels
for (size_t k = 0; k < available; k++) {
for (int ch = 0; ch < channelCount; ch++) {
*pOut++ = mChannelBuffers[ch].cBOutput.read();
}
}
return samples;
}
size_t DPFrequency::processChannelBuffers(CBufferVector &channelBuffers) {
const int channelCount = channelBuffers.size();
size_t processedSamples = 0;
size_t processFrames = mBlockSize - mOverlapSize;
size_t available = channelBuffers[0].cBInput.availableToRead();
for (int ch = 1; ch < channelCount; ch++) {
available = std::min(available, channelBuffers[ch].cBInput.availableToRead());
}
while (available >= processFrames) {
//First pass
for (int ch = 0; ch < channelCount; ch++) {
ChannelBuffer * pCb = &channelBuffers[ch];
//move tail of previous
std::copy(pCb->input.begin() + processFrames,
pCb->input.end(),
pCb->input.begin());
//read new available data
for (unsigned int k = 0; k < processFrames; k++) {
pCb->input[mOverlapSize + k] = pCb->cBInput.read();
}
//first stages: fft, preEq, mbc, postEq and start of Limiter
processedSamples += processFirstStages(*pCb);
}
//**compute linked limiters and update levels if needed
processLinkedLimiters(channelBuffers);
//final pass.
for (int ch = 0; ch < channelCount; ch++) {
ChannelBuffer * pCb = &channelBuffers[ch];
//linked limiter and ifft
processLastStages(*pCb);
//mix tail (and capture new tail
for (unsigned int k = 0; k < mOverlapSize; k++) {
pCb->output[k] += pCb->outTail[k];
pCb->outTail[k] = pCb->output[processFrames + k]; //new tail
}
//output data
for (unsigned int k = 0; k < processFrames; k++) {
pCb->cBOutput.write(pCb->output[k]);
}
}
available -= processFrames;
}
return processedSamples;
}
size_t DPFrequency::processFirstStages(ChannelBuffer &cb) {
//##apply window
Eigen::Map<Eigen::VectorXf> eWindow(&mVWindow[0], mVWindow.size());
Eigen::Map<Eigen::VectorXf> eInput(&cb.input[0], cb.input.size());
Eigen::VectorXf eWin = eInput.cwiseProduct(eWindow); //apply window
//##fft
//Note: we are using eigen with the default scaling, which ensures that
// IFFT( FFT(x) ) = x.
// TODO: optimize by using the noscale option, and compensate with dB scale offsets
mFftServer.fwd(cb.complexTemp, eWin);
size_t cSize = cb.complexTemp.size();
size_t maxBin = std::min(cSize/2, mHalfFFTSize);
//== EqPre (always runs)
for (size_t k = 0; k < maxBin; k++) {
cb.complexTemp[k] *= cb.mPreEqFactorVector[k];
}
//== MBC
if (cb.mMbcInUse && cb.mMbcEnabled) {
for (size_t band = 0; band < cb.mMbcBands.size(); band++) {
ChannelBuffer::MbcBandParams *pMbcBandParams = &cb.mMbcBands[band];
float fEnergySum = 0;
//apply pre gain.
float preGainFactor = dBtoLinear(pMbcBandParams->gainPreDb);
float preGainSquared = preGainFactor * preGainFactor;
for (size_t k = pMbcBandParams->binStart; k <= pMbcBandParams->binStop; k++) {
fEnergySum += std::norm(cb.complexTemp[k]) * preGainSquared; //mag squared
}
//Eigen FFT is full spectrum, even if the source was real data.
// Each half spectrum has half the energy. This is taken into account with the * 2
// factor in the energy computations.
// energy = sqrt(sum_components_squared) number_points
// in here, the fEnergySum is duplicated to account for the second half spectrum,
// and the windowRms is used to normalize by the expected energy reduction
// caused by the window used (expected for steady state signals)
fEnergySum = sqrt(fEnergySum * 2) / (mBlockSize * mWindowRms);
// updates computed per frame advance.
float fTheta = 0.0;
float fFAttSec = pMbcBandParams->attackTimeMs / 1000; //in seconds
float fFRelSec = pMbcBandParams->releaseTimeMs / 1000; //in seconds
if (fEnergySum > pMbcBandParams->previousEnvelope) {
fTheta = exp(-1.0 / (fFAttSec * mBlocksPerSecond));
} else {
fTheta = exp(-1.0 / (fFRelSec * mBlocksPerSecond));
}
float fEnv = (1.0 - fTheta) * fEnergySum + fTheta * pMbcBandParams->previousEnvelope;
//preserve for next iteration
pMbcBandParams->previousEnvelope = fEnv;
if (fEnv < MIN_ENVELOPE) {
fEnv = MIN_ENVELOPE;
}
const float envDb = linearToDb(fEnv);
float newLevelDb = envDb;
//using shorter variables for code clarity
const float thresholdDb = pMbcBandParams->thresholdDb;
const float ratio = pMbcBandParams->ratio;
const float kneeWidthDbHalf = pMbcBandParams->kneeWidthDb / 2;
const float noiseGateThresholdDb = pMbcBandParams->noiseGateThresholdDb;
const float expanderRatio = pMbcBandParams->expanderRatio;
//find segment
if (envDb > thresholdDb + kneeWidthDbHalf) {
//compression segment
newLevelDb = envDb + ((1 / ratio) - 1) * (envDb - thresholdDb);
} else if (envDb > thresholdDb - kneeWidthDbHalf) {
//knee-compression segment
float temp = (envDb - thresholdDb + kneeWidthDbHalf);
newLevelDb = envDb + ((1 / ratio) - 1) *
temp * temp / (kneeWidthDbHalf * 4);
} else if (envDb < noiseGateThresholdDb) {
//expander segment
newLevelDb = noiseGateThresholdDb -
expanderRatio * (noiseGateThresholdDb - envDb);
}
float newFactor = dBtoLinear(newLevelDb - envDb);
//apply post gain.
newFactor *= dBtoLinear(pMbcBandParams->gainPostDb);
//apply to this band
for (size_t k = pMbcBandParams->binStart; k <= pMbcBandParams->binStop; k++) {
cb.complexTemp[k] *= newFactor;
}
} //end per band process
} //end MBC
//== EqPost
if (cb.mPostEqInUse && cb.mPostEqEnabled) {
for (size_t k = 0; k < maxBin; k++) {
cb.complexTemp[k] *= cb.mPostEqFactorVector[k];
}
}
//== Limiter. First Pass
if (cb.mLimiterInUse && cb.mLimiterEnabled) {
float fEnergySum = 0;
for (size_t k = 0; k < maxBin; k++) {
fEnergySum += std::norm(cb.complexTemp[k]);
}
//see explanation above for energy computation logic
fEnergySum = sqrt(fEnergySum * 2) / (mBlockSize * mWindowRms);
float fTheta = 0.0;
float fFAttSec = cb.mLimiterParams.attackTimeMs / 1000; //in seconds
float fFRelSec = cb.mLimiterParams.releaseTimeMs / 1000; //in seconds
if (fEnergySum > cb.mLimiterParams.previousEnvelope) {
fTheta = exp(-1.0 / (fFAttSec * mBlocksPerSecond));
} else {
fTheta = exp(-1.0 / (fFRelSec * mBlocksPerSecond));
}
float fEnv = (1.0 - fTheta) * fEnergySum + fTheta * cb.mLimiterParams.previousEnvelope;
//preserve for next iteration
cb.mLimiterParams.previousEnvelope = fEnv;
const float envDb = linearToDb(fEnv);
float newFactorDb = 0;
//using shorter variables for code clarity
const float thresholdDb = cb.mLimiterParams.thresholdDb;
const float ratio = cb.mLimiterParams.ratio;
if (envDb > thresholdDb) {
//limiter segment
newFactorDb = ((1 / ratio) - 1) * (envDb - thresholdDb);
}
float newFactor = dBtoLinear(newFactorDb);
cb.mLimiterParams.newFactor = newFactor;
} //end Limiter
return mBlockSize;
}
void DPFrequency::processLinkedLimiters(CBufferVector &channelBuffers) {
const int channelCount = channelBuffers.size();
for (auto &groupPair : mLinkedLimiters.mGroupsMap) {
float minFactor = 1.0;
//estimate minfactor for all linked
for(int index : groupPair.second) {
if (index >= 0 && index < channelCount) {
minFactor = std::min(channelBuffers[index].mLimiterParams.newFactor, minFactor);
}
}
//apply minFactor
for(int index : groupPair.second) {
if (index >= 0 && index < channelCount) {
channelBuffers[index].mLimiterParams.linkFactor = minFactor;
}
}
}
}
size_t DPFrequency::processLastStages(ChannelBuffer &cb) {
float outputGainFactor = dBtoLinear(cb.outputGainDb);
//== Limiter. last Pass
if (cb.mLimiterInUse && cb.mLimiterEnabled) {
//compute factor, with post-gain
float factor = cb.mLimiterParams.linkFactor * dBtoLinear(cb.mLimiterParams.postGainDb);
outputGainFactor *= factor;
}
//apply to all if != 1.0
if (!compareEquality(outputGainFactor, 1.0f)) {
size_t cSize = cb.complexTemp.size();
size_t maxBin = std::min(cSize/2, mHalfFFTSize);
for (size_t k = 0; k < maxBin; k++) {
cb.complexTemp[k] *= outputGainFactor;
}
}
//##ifft directly to output.
Eigen::Map<Eigen::VectorXf> eOutput(&cb.output[0], cb.output.size());
mFftServer.inv(eOutput, cb.complexTemp);
return mBlockSize;
}
} //namespace dp_fx