/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_MEDIA_PERFORMANCEANALYSIS_H
#define ANDROID_MEDIA_PERFORMANCEANALYSIS_H
#include <deque>
#include <map>
#include <vector>
#include <media/nblog/ReportPerformance.h>
namespace android {
namespace ReportPerformance {
class PerformanceAnalysis;
// a map of PerformanceAnalysis instances
// The outer key is for the thread, the inner key for the source file location.
using PerformanceAnalysisMap = std::map<int, std::map<log_hash_t, PerformanceAnalysis>>;
class PerformanceAnalysis {
// This class stores and analyzes audio processing wakeup timestamps from NBLog
// FIXME: currently, all performance data is stored in deques. Turn these into circular
// buffers.
// TODO: add a mutex.
public:
PerformanceAnalysis() {};
friend void dump(int fd, int indent,
PerformanceAnalysisMap &threadPerformanceAnalysis);
// Called in the case of an audio on/off event, e.g., EVENT_AUDIO_STATE.
// Used to discard idle time intervals
void handleStateChange();
// Writes wakeup timestamp entry to log and runs analysis
void logTsEntry(timestamp ts);
// FIXME: make peakdetector and storeOutlierData a single function
// Input: mOutlierData. Looks at time elapsed between outliers
// finds significant changes in the distribution
// writes timestamps of significant changes to mPeakTimestamps
bool detectAndStorePeak(msInterval delta, timestamp ts);
// stores timestamps of intervals above a threshold: these are assumed outliers.
// writes to mOutlierData <time elapsed since previous outlier, outlier timestamp>
bool detectAndStoreOutlier(const msInterval diffMs);
// Generates a string of analysis of the buffer periods and prints to console
// FIXME: move this data visualization to a separate class. Model/view/controller
void reportPerformance(String8 *body, int author, log_hash_t hash,
int maxHeight = 10);
private:
// TODO use a circular buffer for the deques and vectors below
// stores outlier analysis:
// <elapsed time between outliers in ms, outlier beginning timestamp>
std::deque<std::pair<msInterval, timestamp>> mOutlierData;
// stores each timestamp at which a peak was detected
// a peak is a moment at which the average outlier interval changed significantly
std::deque<timestamp> mPeakTimestamps;
// stores buffer period histograms with timestamp of first sample
std::deque<std::pair<timestamp, Histogram>> mHists;
// Parameters used when detecting outliers
struct BufferPeriod {
double mMean = -1; // average time between audio processing wakeups
double mOutlierFactor = -1; // values > mMean * mOutlierFactor are outliers
double mOutlier = -1; // this is set to mMean * mOutlierFactor
timestamp mPrevTs = -1; // previous timestamp
} mBufferPeriod;
// capacity allocated to data structures
struct MaxLength {
size_t Hists; // number of histograms stored in memory
size_t Outliers; // number of values stored in outlier array
size_t Peaks; // number of values stored in peak array
int HistTimespanMs; // maximum histogram timespan
};
// These values allow for 10 hours of data allowing for a glitch and a peak
// as often as every 3 seconds
static constexpr MaxLength kMaxLength = {.Hists = 60, .Outliers = 12000,
.Peaks = 12000, .HistTimespanMs = 10 * kSecPerMin * kMsPerSec };
// these variables ensure continuity while analyzing the timestamp
// series one sample at a time.
// TODO: change this to a running variance/mean class
struct OutlierDistribution {
msInterval mMean = 0; // sample mean since previous peak
msInterval mSd = 0; // sample sd since previous peak
msInterval mElapsed = 0; // time since previous detected outlier
const int kMaxDeviation = 5; // standard deviations from the mean threshold
msInterval mTypicalDiff = 0; // global mean of outliers
double mN = 0; // length of sequence since the last peak
double mM2 = 0; // used to calculate sd
} mOutlierDistribution;
};
void dump(int fd, int indent, PerformanceAnalysisMap &threadPerformanceAnalysis);
void dumpLine(int fd, int indent, const String8 &body);
} // namespace ReportPerformance
} // namespace android
#endif // ANDROID_MEDIA_PERFORMANCEANALYSIS_H