/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_VOLUME_SHAPER_H
#define ANDROID_VOLUME_SHAPER_H
#include <cmath>
#include <list>
#include <math.h>
#include <sstream>
#include <binder/Parcel.h>
#include <media/Interpolator.h>
#include <utils/Mutex.h>
#include <utils/RefBase.h>
#pragma push_macro("LOG_TAG")
#undef LOG_TAG
#define LOG_TAG "VolumeShaper"
// turn on VolumeShaper logging
#define VS_LOGGING 0
#define VS_LOG(...) ALOGD_IF(VS_LOGGING, __VA_ARGS__)
namespace android {
namespace media {
// The native VolumeShaper class mirrors the java VolumeShaper class;
// in addition, the native class contains implementation for actual operation.
//
// VolumeShaper methods are not safe for multiple thread access.
// Use VolumeHandler for thread-safe encapsulation of multiple VolumeShapers.
//
// Classes below written are to avoid naked pointers so there are no
// explicit destructors required.
class VolumeShaper {
public:
// S and T are like template typenames (matching the Interpolator<S, T>)
using S = float; // time type
using T = float; // volume type
// Curve and dimension information
// TODO: member static const or constexpr float initialization not permitted in C++11
#define MIN_CURVE_TIME 0.f // type S: start of VolumeShaper curve (normalized)
#define MAX_CURVE_TIME 1.f // type S: end of VolumeShaper curve (normalized)
#define MIN_LINEAR_VOLUME 0.f // type T: silence / mute audio
#define MAX_LINEAR_VOLUME 1.f // type T: max volume, unity gain
#define MAX_LOG_VOLUME 0.f // type T: max volume, unity gain in dBFS
/* kSystemVolumeShapersMax is the maximum number of system VolumeShapers.
* Each system VolumeShapers has a predefined Id, which ranges from 0
* to kSystemVolumeShapersMax - 1 and is unique for its usage.
*
* "1" is reserved for system ducking.
*/
static const int kSystemVolumeShapersMax = 16;
/* kUserVolumeShapersMax is the maximum number of application
* VolumeShapers for a player/track. Application VolumeShapers are
* assigned on creation by the client, and have Ids ranging
* from kSystemVolumeShapersMax to INT32_MAX.
*
* The number of user/application volume shapers is independent to the
* system volume shapers. If an application tries to create more than
* kUserVolumeShapersMax to a player, then the apply() will fail.
* This prevents exhausting server side resources by a potentially malicious
* application.
*/
static const int kUserVolumeShapersMax = 16;
/* VolumeShaper::Status is equivalent to status_t if negative
* but if non-negative represents the id operated on.
* It must be expressible as an int32_t for binder purposes.
*/
using Status = status_t;
// Local definition for clamp as std::clamp is included in C++17 only.
// TODO: use the std::clamp version when Android build uses C++17.
template<typename R>
static constexpr const R &clamp(const R &v, const R &lo, const R &hi) {
return (v < lo) ? lo : (hi < v) ? hi : v;
}
/* VolumeShaper.Configuration derives from the Interpolator class and adds
* parameters relating to the volume shape.
*
* This parallels the Java implementation and the enums must match.
* See "frameworks/base/media/java/android/media/VolumeShaper.java" for
* details on the Java implementation.
*/
class Configuration : public Interpolator<S, T>, public RefBase, public Parcelable {
public:
// Must match with VolumeShaper.java in frameworks/base.
enum Type : int32_t {
TYPE_ID,
TYPE_SCALE,
};
// Must match with VolumeShaper.java in frameworks/base.
enum OptionFlag : int32_t {
OPTION_FLAG_NONE = 0,
OPTION_FLAG_VOLUME_IN_DBFS = (1 << 0),
OPTION_FLAG_CLOCK_TIME = (1 << 1),
OPTION_FLAG_ALL = (OPTION_FLAG_VOLUME_IN_DBFS | OPTION_FLAG_CLOCK_TIME),
};
// Bring from base class; must match with VolumeShaper.java in frameworks/base.
using InterpolatorType = Interpolator<S, T>::InterpolatorType;
Configuration()
: Interpolator<S, T>()
, RefBase()
, mType(TYPE_SCALE)
, mId(-1)
, mOptionFlags(OPTION_FLAG_NONE)
, mDurationMs(1000.) {
}
explicit Configuration(const Configuration &configuration)
: Interpolator<S, T>(*static_cast<const Interpolator<S, T> *>(&configuration))
, RefBase()
, mType(configuration.mType)
, mId(configuration.mId)
, mOptionFlags(configuration.mOptionFlags)
, mDurationMs(configuration.mDurationMs) {
}
Type getType() const {
return mType;
}
status_t setType(Type type) {
switch (type) {
case TYPE_ID:
case TYPE_SCALE:
mType = type;
return NO_ERROR;
default:
ALOGE("invalid Type: %d", type);
return BAD_VALUE;
}
}
OptionFlag getOptionFlags() const {
return mOptionFlags;
}
status_t setOptionFlags(OptionFlag optionFlags) {
if ((optionFlags & ~OPTION_FLAG_ALL) != 0) {
ALOGE("optionFlags has invalid bits: %#x", optionFlags);
return BAD_VALUE;
}
mOptionFlags = optionFlags;
return NO_ERROR;
}
double getDurationMs() const {
return mDurationMs;
}
status_t setDurationMs(double durationMs) {
if (durationMs > 0.) {
mDurationMs = durationMs;
return NO_ERROR;
}
// zero, negative, or nan. These values not possible from Java.
return BAD_VALUE;
}
int32_t getId() const {
return mId;
}
void setId(int32_t id) {
// We permit a negative id here (representing invalid).
mId = id;
}
/* Adjust the volume to be in linear range from MIN_LINEAR_VOLUME to MAX_LINEAR_VOLUME
* and compensate for log dbFS volume as needed.
*/
T adjustVolume(T volume) const {
if ((getOptionFlags() & OPTION_FLAG_VOLUME_IN_DBFS) != 0) {
const T out = powf(10.f, volume / 10.f);
VS_LOG("in: %f out: %f", volume, out);
volume = out;
}
return clamp(volume, MIN_LINEAR_VOLUME /* lo */, MAX_LINEAR_VOLUME /* hi */);
}
/* Check if the existing curve is valid.
*/
status_t checkCurve() const {
if (mType == TYPE_ID) return NO_ERROR;
if (this->size() < 2) {
ALOGE("curve must have at least 2 points");
return BAD_VALUE;
}
if (first().first != MIN_CURVE_TIME || last().first != MAX_CURVE_TIME) {
ALOGE("curve must start at MIN_CURVE_TIME and end at MAX_CURVE_TIME");
return BAD_VALUE;
}
if ((getOptionFlags() & OPTION_FLAG_VOLUME_IN_DBFS) != 0) {
for (const auto &pt : *this) {
if (!(pt.second <= MAX_LOG_VOLUME) /* handle nan */) {
ALOGE("positive volume dbFS");
return BAD_VALUE;
}
}
} else {
for (const auto &pt : *this) {
if (!(pt.second >= MIN_LINEAR_VOLUME)
|| !(pt.second <= MAX_LINEAR_VOLUME) /* handle nan */) {
ALOGE("volume < MIN_LINEAR_VOLUME or > MAX_LINEAR_VOLUME");
return BAD_VALUE;
}
}
}
return NO_ERROR;
}
/* Clamps the volume curve in the configuration to
* the valid range for log or linear scale.
*/
void clampVolume() {
if ((mOptionFlags & OPTION_FLAG_VOLUME_IN_DBFS) != 0) {
for (auto it = this->begin(); it != this->end(); ++it) {
if (!(it->second <= MAX_LOG_VOLUME) /* handle nan */) {
it->second = MAX_LOG_VOLUME;
}
}
} else {
for (auto it = this->begin(); it != this->end(); ++it) {
if (!(it->second >= MIN_LINEAR_VOLUME) /* handle nan */) {
it->second = MIN_LINEAR_VOLUME;
} else if (!(it->second <= MAX_LINEAR_VOLUME)) {
it->second = MAX_LINEAR_VOLUME;
}
}
}
}
/* scaleToStartVolume() is used to set the start volume of a
* new VolumeShaper curve, when replacing one VolumeShaper
* with another using the "join" (volume match) option.
*
* It works best for monotonic volume ramps or ducks.
*/
void scaleToStartVolume(T volume) {
if (this->size() < 2) {
return;
}
const T startVolume = first().second;
const T endVolume = last().second;
if (endVolume == startVolume) {
// match with linear ramp
const T offset = volume - startVolume;
static const T scale = 1.f / (MAX_CURVE_TIME - MIN_CURVE_TIME); // nominally 1.f
for (auto it = this->begin(); it != this->end(); ++it) {
it->second = it->second + offset * (MAX_CURVE_TIME - it->first) * scale;
}
} else {
const T scale = (volume - endVolume) / (startVolume - endVolume);
for (auto it = this->begin(); it != this->end(); ++it) {
it->second = scale * (it->second - endVolume) + endVolume;
}
}
clampVolume();
}
// The parcel layout must match VolumeShaper.java
status_t writeToParcel(Parcel *parcel) const override {
if (parcel == nullptr) return BAD_VALUE;
return parcel->writeInt32((int32_t)mType)
?: parcel->writeInt32(mId)
?: mType == TYPE_ID
? NO_ERROR
: parcel->writeInt32((int32_t)mOptionFlags)
?: parcel->writeDouble(mDurationMs)
?: Interpolator<S, T>::writeToParcel(parcel);
}
status_t readFromParcel(const Parcel *parcel) override {
int32_t type, optionFlags;
return parcel->readInt32(&type)
?: setType((Type)type)
?: parcel->readInt32(&mId)
?: mType == TYPE_ID
? NO_ERROR
: parcel->readInt32(&optionFlags)
?: setOptionFlags((OptionFlag)optionFlags)
?: parcel->readDouble(&mDurationMs)
?: Interpolator<S, T>::readFromParcel(*parcel)
?: checkCurve();
}
// Returns a string for debug printing.
std::string toString() const {
std::stringstream ss;
ss << "VolumeShaper::Configuration{mType=" << static_cast<int32_t>(mType);
ss << ", mId=" << mId;
if (mType != TYPE_ID) {
ss << ", mOptionFlags=" << static_cast<int32_t>(mOptionFlags);
ss << ", mDurationMs=" << mDurationMs;
ss << ", " << Interpolator<S, T>::toString().c_str();
}
ss << "}";
return ss.str();
}
private:
Type mType; // type of configuration
int32_t mId; // A valid id is >= 0.
OptionFlag mOptionFlags; // option flags for the configuration.
double mDurationMs; // duration, must be > 0; default is 1000 ms.
}; // Configuration
/* VolumeShaper::Operation expresses an operation to perform on the
* configuration (either explicitly specified or an id).
*
* This parallels the Java implementation and the enums must match.
* See "frameworks/base/media/java/android/media/VolumeShaper.java" for
* details on the Java implementation.
*/
class Operation : public RefBase, public Parcelable {
public:
// Must match with VolumeShaper.java.
enum Flag : int32_t {
FLAG_NONE = 0,
FLAG_REVERSE = (1 << 0), // the absence of this indicates "play"
FLAG_TERMINATE = (1 << 1),
FLAG_JOIN = (1 << 2),
FLAG_DELAY = (1 << 3),
FLAG_CREATE_IF_NECESSARY = (1 << 4),
FLAG_ALL = (FLAG_REVERSE | FLAG_TERMINATE | FLAG_JOIN | FLAG_DELAY
| FLAG_CREATE_IF_NECESSARY),
};
Operation()
: Operation(FLAG_NONE, -1 /* replaceId */) {
}
Operation(Flag flags, int replaceId)
: Operation(flags, replaceId, std::numeric_limits<S>::quiet_NaN() /* xOffset */) {
}
explicit Operation(const Operation &operation)
: Operation(operation.mFlags, operation.mReplaceId, operation.mXOffset) {
}
explicit Operation(const sp<Operation> &operation)
: Operation(*operation.get()) {
}
Operation(Flag flags, int replaceId, S xOffset)
: mFlags(flags)
, mReplaceId(replaceId)
, mXOffset(xOffset) {
}
int32_t getReplaceId() const {
return mReplaceId;
}
void setReplaceId(int32_t replaceId) {
mReplaceId = replaceId;
}
S getXOffset() const {
return mXOffset;
}
void setXOffset(S xOffset) {
mXOffset = clamp(xOffset, MIN_CURVE_TIME /* lo */, MAX_CURVE_TIME /* hi */);
}
Flag getFlags() const {
return mFlags;
}
/* xOffset is the position on the volume curve and may go backwards
* if you are in reverse mode. This must be in the range from
* [MIN_CURVE_TIME, MAX_CURVE_TIME].
*
* normalizedTime always increases as time or framecount increases.
* normalizedTime is nominally from MIN_CURVE_TIME to MAX_CURVE_TIME when
* running through the curve, but could be outside this range afterwards.
* If you are reversing, this means the position on the curve, or xOffset,
* is computed as MAX_CURVE_TIME - normalizedTime, clamped to
* [MIN_CURVE_TIME, MAX_CURVE_TIME].
*/
void setNormalizedTime(S normalizedTime) {
setXOffset((mFlags & FLAG_REVERSE) != 0
? MAX_CURVE_TIME - normalizedTime : normalizedTime);
}
status_t setFlags(Flag flags) {
if ((flags & ~FLAG_ALL) != 0) {
ALOGE("flags has invalid bits: %#x", flags);
return BAD_VALUE;
}
mFlags = flags;
return NO_ERROR;
}
status_t writeToParcel(Parcel *parcel) const override {
if (parcel == nullptr) return BAD_VALUE;
return parcel->writeInt32((int32_t)mFlags)
?: parcel->writeInt32(mReplaceId)
?: parcel->writeFloat(mXOffset);
}
status_t readFromParcel(const Parcel *parcel) override {
int32_t flags;
return parcel->readInt32(&flags)
?: parcel->readInt32(&mReplaceId)
?: parcel->readFloat(&mXOffset)
?: setFlags((Flag)flags);
}
std::string toString() const {
std::stringstream ss;
ss << "VolumeShaper::Operation{mFlags=" << static_cast<int32_t>(mFlags) ;
ss << ", mReplaceId=" << mReplaceId;
ss << ", mXOffset=" << mXOffset;
ss << "}";
return ss.str();
}
private:
Flag mFlags; // operation to do
int32_t mReplaceId; // if >= 0 the id to remove in a replace operation.
S mXOffset; // position in the curve to set if a valid number (not nan)
}; // Operation
/* VolumeShaper.State is returned when requesting the last
* state of the VolumeShaper.
*
* This parallels the Java implementation.
* See "frameworks/base/media/java/android/media/VolumeShaper.java" for
* details on the Java implementation.
*/
class State : public RefBase, public Parcelable {
public:
State(T volume, S xOffset)
: mVolume(volume)
, mXOffset(xOffset) {
}
State()
: State(NAN, NAN) { }
T getVolume() const {
return mVolume;
}
void setVolume(T volume) {
mVolume = volume;
}
S getXOffset() const {
return mXOffset;
}
void setXOffset(S xOffset) {
mXOffset = xOffset;
}
status_t writeToParcel(Parcel *parcel) const override {
if (parcel == nullptr) return BAD_VALUE;
return parcel->writeFloat(mVolume)
?: parcel->writeFloat(mXOffset);
}
status_t readFromParcel(const Parcel *parcel) override {
return parcel->readFloat(&mVolume)
?: parcel->readFloat(&mXOffset);
}
std::string toString() const {
std::stringstream ss;
ss << "VolumeShaper::State{mVolume=" << mVolume;
ss << ", mXOffset=" << mXOffset;
ss << "}";
return ss.str();
}
private:
T mVolume; // linear volume in the range MIN_LINEAR_VOLUME to MAX_LINEAR_VOLUME
S mXOffset; // position on curve expressed from MIN_CURVE_TIME to MAX_CURVE_TIME
}; // State
// Internal helper class to do an affine transform for time and amplitude scaling.
template <typename R>
class Translate {
public:
Translate()
: mOffset(0)
, mScale(1) {
}
R getOffset() const {
return mOffset;
}
void setOffset(R offset) {
mOffset = offset;
}
R getScale() const {
return mScale;
}
void setScale(R scale) {
mScale = scale;
}
R operator()(R in) const {
return mScale * (in - mOffset);
}
std::string toString() const {
std::stringstream ss;
ss << "VolumeShaper::Translate{mOffset=" << mOffset;
ss << ", mScale=" << mScale;
ss << "}";
return ss.str();
}
private:
R mOffset;
R mScale;
}; // Translate
static int64_t convertTimespecToUs(const struct timespec &tv)
{
return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000;
}
// current monotonic time in microseconds.
static int64_t getNowUs()
{
struct timespec tv;
if (clock_gettime(CLOCK_MONOTONIC, &tv) != 0) {
return 0; // system is really sick, just return 0 for consistency.
}
return convertTimespecToUs(tv);
}
/* Native implementation of VolumeShaper. This is NOT mirrored
* on the Java side, so we don't need to mimic Java side layout
* and data; furthermore, this isn't refcounted as a "RefBase" object.
*
* Since we pass configuration and operation as shared pointers (like
* Java) there is a potential risk that the caller may modify
* these after delivery.
*/
VolumeShaper(
const sp<VolumeShaper::Configuration> &configuration,
const sp<VolumeShaper::Operation> &operation)
: mConfiguration(configuration) // we do not make a copy
, mOperation(operation) // ditto
, mStartFrame(-1)
, mLastVolume(T(1))
, mLastXOffset(MIN_CURVE_TIME)
, mDelayXOffset(MIN_CURVE_TIME) {
if (configuration.get() != nullptr
&& (getFlags() & VolumeShaper::Operation::FLAG_DELAY) == 0) {
mLastVolume = configuration->first().second;
}
}
// We allow a null operation here, though VolumeHandler always provides one.
VolumeShaper::Operation::Flag getFlags() const {
return mOperation == nullptr
? VolumeShaper::Operation::FLAG_NONE : mOperation->getFlags();
}
/* Returns the last volume and xoffset reported to the AudioFlinger.
* If the VolumeShaper has not been started, compute what the volume
* should be based on the initial offset specified.
*/
sp<VolumeShaper::State> getState() const {
if (!isStarted()) {
const T volume = computeVolumeFromXOffset(mDelayXOffset);
VS_LOG("delayed VolumeShaper, using cached offset:%f for volume:%f",
mDelayXOffset, volume);
return new VolumeShaper::State(volume, mDelayXOffset);
} else {
return new VolumeShaper::State(mLastVolume, mLastXOffset);
}
}
S getDelayXOffset() const {
return mDelayXOffset;
}
void setDelayXOffset(S xOffset) {
mDelayXOffset = clamp(xOffset, MIN_CURVE_TIME /* lo */, MAX_CURVE_TIME /* hi */);
}
bool isStarted() const {
return mStartFrame >= 0;
}
/* getVolume() updates the last volume/xoffset state so it is not
* const, even though logically it may be viewed as const.
*/
std::pair<T /* volume */, bool /* active */> getVolume(
int64_t trackFrameCount, double trackSampleRate) {
if ((getFlags() & VolumeShaper::Operation::FLAG_DELAY) != 0) {
// We haven't had PLAY called yet, so just return the value
// as if PLAY were called just now.
VS_LOG("delayed VolumeShaper, using cached offset %f", mDelayXOffset);
const T volume = computeVolumeFromXOffset(mDelayXOffset);
return std::make_pair(volume, false);
}
const bool clockTime = (mConfiguration->getOptionFlags()
& VolumeShaper::Configuration::OPTION_FLAG_CLOCK_TIME) != 0;
const int64_t frameCount = clockTime ? getNowUs() : trackFrameCount;
const double sampleRate = clockTime ? 1000000 : trackSampleRate;
if (mStartFrame < 0) {
updatePosition(frameCount, sampleRate, mDelayXOffset);
mStartFrame = frameCount;
}
VS_LOG("frameCount: %lld", (long long)frameCount);
const S x = mXTranslate((T)frameCount);
VS_LOG("translation to normalized time: %f", x);
std::tuple<T /* volume */, S /* position */, bool /* active */> vt =
computeStateFromNormalizedTime(x);
mLastVolume = std::get<0>(vt);
mLastXOffset = std::get<1>(vt);
const bool active = std::get<2>(vt);
VS_LOG("rescaled time:%f volume:%f xOffset:%f active:%s",
x, mLastVolume, mLastXOffset, active ? "true" : "false");
return std::make_pair(mLastVolume, active);
}
std::string toString() const {
std::stringstream ss;
ss << "VolumeShaper{mStartFrame=" << mStartFrame;
ss << ", mXTranslate=" << mXTranslate.toString().c_str();
ss << ", mConfiguration=" <<
(mConfiguration.get() == nullptr
? "nullptr" : mConfiguration->toString().c_str());
ss << ", mOperation=" <<
(mOperation.get() == nullptr
? "nullptr" : mOperation->toString().c_str());
ss << "}";
return ss.str();
}
Translate<S> mXTranslate; // translation from frames (usec for clock time) to normalized time.
sp<VolumeShaper::Configuration> mConfiguration;
sp<VolumeShaper::Operation> mOperation;
private:
int64_t mStartFrame; // starting frame, non-negative when started (in usec for clock time)
T mLastVolume; // last computed interpolated volume (y-axis)
S mLastXOffset; // last computed interpolated xOffset/time (x-axis)
S mDelayXOffset; // xOffset to use for first invocation of VolumeShaper.
// Called internally to adjust mXTranslate for first time start.
void updatePosition(int64_t startFrame, double sampleRate, S xOffset) {
double scale = (mConfiguration->last().first - mConfiguration->first().first)
/ (mConfiguration->getDurationMs() * 0.001 * sampleRate);
const double minScale = 1. / static_cast<double>(INT64_MAX);
scale = std::max(scale, minScale);
VS_LOG("update position: scale %lf frameCount:%lld, sampleRate:%lf, xOffset:%f",
scale, (long long) startFrame, sampleRate, xOffset);
S normalizedTime = (getFlags() & VolumeShaper::Operation::FLAG_REVERSE) != 0 ?
MAX_CURVE_TIME - xOffset : xOffset;
mXTranslate.setOffset(static_cast<float>(static_cast<double>(startFrame)
- static_cast<double>(normalizedTime) / scale));
mXTranslate.setScale(static_cast<float>(scale));
VS_LOG("translate: %s", mXTranslate.toString().c_str());
}
T computeVolumeFromXOffset(S xOffset) const {
const T unscaledVolume = mConfiguration->findY(xOffset);
const T volume = mConfiguration->adjustVolume(unscaledVolume); // handle log scale
VS_LOG("computeVolumeFromXOffset %f -> %f -> %f", xOffset, unscaledVolume, volume);
return volume;
}
std::tuple<T /* volume */, S /* position */, bool /* active */>
computeStateFromNormalizedTime(S x) const {
bool active = true;
// handle reversal of position
if (getFlags() & VolumeShaper::Operation::FLAG_REVERSE) {
x = MAX_CURVE_TIME - x;
VS_LOG("reversing to %f", x);
if (x < MIN_CURVE_TIME) {
x = MIN_CURVE_TIME;
active = false; // at the end
} else if (x > MAX_CURVE_TIME) {
x = MAX_CURVE_TIME; //early
}
} else {
if (x < MIN_CURVE_TIME) {
x = MIN_CURVE_TIME; // early
} else if (x > MAX_CURVE_TIME) {
x = MAX_CURVE_TIME;
active = false; // at end
}
}
const S xOffset = x;
const T volume = computeVolumeFromXOffset(xOffset);
return std::make_tuple(volume, xOffset, active);
}
}; // VolumeShaper
/* VolumeHandler combines the volume factors of multiple VolumeShapers associated
* with a player. It is thread safe by synchronizing all public methods.
*
* This is a native-only implementation.
*
* The server side VolumeHandler is used to maintain a list of volume handlers,
* keep state, and obtain volume.
*
* The client side VolumeHandler is used to maintain a list of volume handlers,
* keep some partial state, and restore if the server dies.
*/
class VolumeHandler : public RefBase {
public:
using S = float;
using T = float;
// A volume handler which just keeps track of active VolumeShapers does not need sampleRate.
VolumeHandler()
: VolumeHandler(0 /* sampleRate */) {
}
explicit VolumeHandler(uint32_t sampleRate)
: mSampleRate((double)sampleRate)
, mLastFrame(0)
, mVolumeShaperIdCounter(VolumeShaper::kSystemVolumeShapersMax)
, mLastVolume(1.f, false) {
}
VolumeShaper::Status applyVolumeShaper(
const sp<VolumeShaper::Configuration> &configuration,
const sp<VolumeShaper::Operation> &operation_in) {
// make a local copy of operation, as we modify it.
sp<VolumeShaper::Operation> operation(new VolumeShaper::Operation(operation_in));
VS_LOG("applyVolumeShaper:configuration: %s", configuration->toString().c_str());
VS_LOG("applyVolumeShaper:operation: %s", operation->toString().c_str());
AutoMutex _l(mLock);
if (configuration == nullptr) {
ALOGE("null configuration");
return VolumeShaper::Status(BAD_VALUE);
}
if (operation == nullptr) {
ALOGE("null operation");
return VolumeShaper::Status(BAD_VALUE);
}
const int32_t id = configuration->getId();
if (id < 0) {
ALOGE("negative id: %d", id);
return VolumeShaper::Status(BAD_VALUE);
}
VS_LOG("applyVolumeShaper id: %d", id);
switch (configuration->getType()) {
case VolumeShaper::Configuration::TYPE_SCALE: {
const int replaceId = operation->getReplaceId();
if (replaceId >= 0) {
VS_LOG("replacing %d", replaceId);
auto replaceIt = findId_l(replaceId);
if (replaceIt == mVolumeShapers.end()) {
ALOGW("cannot find replace id: %d", replaceId);
} else {
if ((operation->getFlags() & VolumeShaper::Operation::FLAG_JOIN) != 0) {
// For join, we scale the start volume of the current configuration
// to match the last-used volume of the replacing VolumeShaper.
auto state = replaceIt->getState();
ALOGD("join: state:%s", state->toString().c_str());
if (state->getXOffset() >= 0) { // valid
const T volume = state->getVolume();
ALOGD("join: scaling start volume to %f", volume);
configuration->scaleToStartVolume(volume);
}
}
(void)mVolumeShapers.erase(replaceIt);
}
operation->setReplaceId(-1);
}
// check if we have another of the same id.
auto oldIt = findId_l(id);
if (oldIt != mVolumeShapers.end()) {
if ((operation->getFlags()
& VolumeShaper::Operation::FLAG_CREATE_IF_NECESSARY) != 0) {
// TODO: move the case to a separate function.
goto HANDLE_TYPE_ID; // no need to create, take over existing id.
}
ALOGW("duplicate id, removing old %d", id);
(void)mVolumeShapers.erase(oldIt);
}
/* Check if too many application VolumeShapers (with id >= kSystemVolumeShapersMax).
* We check on the server side to ensure synchronization and robustness.
*
* This shouldn't fail on a replace command unless the replaced id is
* already invalid (which *should* be checked in the Java layer).
*/
if (id >= VolumeShaper::kSystemVolumeShapersMax
&& numberOfUserVolumeShapers_l() >= VolumeShaper::kUserVolumeShapersMax) {
ALOGW("Too many app VolumeShapers, cannot add to VolumeHandler");
return VolumeShaper::Status(INVALID_OPERATION);
}
// create new VolumeShaper with default behavior.
mVolumeShapers.emplace_back(configuration, new VolumeShaper::Operation());
VS_LOG("after adding, number of volumeShapers:%zu", mVolumeShapers.size());
}
// fall through to handle the operation
HANDLE_TYPE_ID:
case VolumeShaper::Configuration::TYPE_ID: {
VS_LOG("trying to find id: %d", id);
auto it = findId_l(id);
if (it == mVolumeShapers.end()) {
VS_LOG("couldn't find id: %d", id);
return VolumeShaper::Status(INVALID_OPERATION);
}
if ((operation->getFlags() & VolumeShaper::Operation::FLAG_TERMINATE) != 0) {
VS_LOG("terminate id: %d", id);
mVolumeShapers.erase(it);
break;
}
const bool clockTime = (it->mConfiguration->getOptionFlags()
& VolumeShaper::Configuration::OPTION_FLAG_CLOCK_TIME) != 0;
if ((it->getFlags() & VolumeShaper::Operation::FLAG_REVERSE) !=
(operation->getFlags() & VolumeShaper::Operation::FLAG_REVERSE)) {
if (it->isStarted()) {
const int64_t frameCount = clockTime ? VolumeShaper::getNowUs() : mLastFrame;
const S x = it->mXTranslate((T)frameCount);
VS_LOG("reverse normalizedTime: %f", x);
// reflect position
S target = MAX_CURVE_TIME - x;
if (target < MIN_CURVE_TIME) {
VS_LOG("clamp to start - begin immediately");
target = MIN_CURVE_TIME;
}
VS_LOG("reverse normalizedTime target: %f", target);
it->mXTranslate.setOffset(it->mXTranslate.getOffset()
+ (x - target) / it->mXTranslate.getScale());
}
// if not started, the delay offset doesn't change.
}
const S xOffset = operation->getXOffset();
if (!std::isnan(xOffset)) {
if (it->isStarted()) {
const int64_t frameCount = clockTime ? VolumeShaper::getNowUs() : mLastFrame;
const S x = it->mXTranslate((T)frameCount);
VS_LOG("normalizedTime translation: %f", x);
const S target =
(operation->getFlags() & VolumeShaper::Operation::FLAG_REVERSE) != 0 ?
MAX_CURVE_TIME - xOffset : xOffset;
VS_LOG("normalizedTime target x offset: %f", target);
it->mXTranslate.setOffset(it->mXTranslate.getOffset()
+ (x - target) / it->mXTranslate.getScale());
} else {
it->setDelayXOffset(xOffset);
}
}
it->mOperation = operation; // replace the operation
} break;
}
return VolumeShaper::Status(id);
}
sp<VolumeShaper::State> getVolumeShaperState(int id) {
AutoMutex _l(mLock);
auto it = findId_l(id);
if (it == mVolumeShapers.end()) {
VS_LOG("cannot find state for id: %d", id);
return nullptr;
}
return it->getState();
}
/* getVolume() is not const, as it updates internal state.
* Once called, any VolumeShapers not already started begin running.
*/
std::pair<T /* volume */, bool /* active */> getVolume(int64_t trackFrameCount) {
AutoMutex _l(mLock);
mLastFrame = trackFrameCount;
T volume(1);
size_t activeCount = 0;
for (auto it = mVolumeShapers.begin(); it != mVolumeShapers.end();) {
const std::pair<T, bool> shaperVolume =
it->getVolume(trackFrameCount, mSampleRate);
volume *= shaperVolume.first;
activeCount += shaperVolume.second;
++it;
}
mLastVolume = std::make_pair(volume, activeCount != 0);
VS_LOG("getVolume: <%f, %s>", mLastVolume.first, mLastVolume.second ? "true" : "false");
return mLastVolume;
}
/* Used by a client side VolumeHandler to ensure all the VolumeShapers
* indicate that they have been started. Upon a change in audioserver
* output sink, this information is used for restoration of the server side
* VolumeHandler.
*/
void setStarted() {
(void)getVolume(mLastFrame); // getVolume() will start the individual VolumeShapers.
}
std::pair<T /* volume */, bool /* active */> getLastVolume() const {
AutoMutex _l(mLock);
return mLastVolume;
}
std::string toString() const {
AutoMutex _l(mLock);
std::stringstream ss;
ss << "VolumeHandler{mSampleRate=" << mSampleRate;
ss << ", mLastFrame=" << mLastFrame;
ss << ", mVolumeShapers={";
bool first = true;
for (const auto &shaper : mVolumeShapers) {
if (first) {
first = false;
} else {
ss << ", ";
}
ss << shaper.toString().c_str();
}
ss << "}}";
return ss.str();
}
void forall(const std::function<VolumeShaper::Status (const VolumeShaper &)> &lambda) {
AutoMutex _l(mLock);
VS_LOG("forall: mVolumeShapers.size() %zu", mVolumeShapers.size());
for (const auto &shaper : mVolumeShapers) {
VolumeShaper::Status status = lambda(shaper);
VS_LOG("forall applying lambda on shaper (%p): %d", &shaper, (int)status);
}
}
void reset() {
AutoMutex _l(mLock);
mVolumeShapers.clear();
mLastFrame = 0;
// keep mVolumeShaperIdCounter as is.
}
/* Sets the configuration id if necessary - This is based on the counter
* internal to the VolumeHandler.
*/
void setIdIfNecessary(const sp<VolumeShaper::Configuration> &configuration) {
if (configuration->getType() == VolumeShaper::Configuration::TYPE_SCALE) {
const int id = configuration->getId();
if (id == -1) {
// Reassign to a unique id, skipping system ids.
AutoMutex _l(mLock);
while (true) {
if (mVolumeShaperIdCounter == INT32_MAX) {
mVolumeShaperIdCounter = VolumeShaper::kSystemVolumeShapersMax;
} else {
++mVolumeShaperIdCounter;
}
if (findId_l(mVolumeShaperIdCounter) != mVolumeShapers.end()) {
continue; // collision with an existing id.
}
configuration->setId(mVolumeShaperIdCounter);
ALOGD("setting id to %d", mVolumeShaperIdCounter);
break;
}
}
}
}
private:
std::list<VolumeShaper>::iterator findId_l(int32_t id) {
std::list<VolumeShaper>::iterator it = mVolumeShapers.begin();
for (; it != mVolumeShapers.end(); ++it) {
if (it->mConfiguration->getId() == id) {
break;
}
}
return it;
}
size_t numberOfUserVolumeShapers_l() const {
size_t count = 0;
for (const auto &shaper : mVolumeShapers) {
count += (shaper.mConfiguration->getId() >= VolumeShaper::kSystemVolumeShapersMax);
}
return count;
}
mutable Mutex mLock;
double mSampleRate; // in samples (frames) per second
int64_t mLastFrame; // logging purpose only, 0 on start
int32_t mVolumeShaperIdCounter; // a counter to return a unique volume shaper id.
std::pair<T /* volume */, bool /* active */> mLastVolume;
std::list<VolumeShaper> mVolumeShapers; // list provides stable iterators on erase
}; // VolumeHandler
} // namespace media
} // namespace android
#pragma pop_macro("LOG_TAG")
#endif // ANDROID_VOLUME_SHAPER_H