/*
* WPA Supplicant - WPA state machine and EAPOL-Key processing
* Copyright (c) 2003-2017, Jouni Malinen <j@w1.fi>
* Copyright(c) 2015 Intel Deutschland GmbH
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto/aes.h"
#include "crypto/aes_wrap.h"
#include "crypto/crypto.h"
#include "crypto/random.h"
#include "crypto/aes_siv.h"
#include "crypto/sha256.h"
#include "crypto/sha384.h"
#include "crypto/sha512.h"
#include "common/ieee802_11_defs.h"
#include "common/ieee802_11_common.h"
#include "eap_common/eap_defs.h"
#include "eapol_supp/eapol_supp_sm.h"
#include "wpa.h"
#include "eloop.h"
#include "preauth.h"
#include "pmksa_cache.h"
#include "wpa_i.h"
#include "wpa_ie.h"
static const u8 null_rsc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
/**
* wpa_eapol_key_send - Send WPA/RSN EAPOL-Key message
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ptk: PTK for Key Confirmation/Encryption Key
* @ver: Version field from Key Info
* @dest: Destination address for the frame
* @proto: Ethertype (usually ETH_P_EAPOL)
* @msg: EAPOL-Key message
* @msg_len: Length of message
* @key_mic: Pointer to the buffer to which the EAPOL-Key MIC is written
* Returns: >= 0 on success, < 0 on failure
*/
int wpa_eapol_key_send(struct wpa_sm *sm, struct wpa_ptk *ptk,
int ver, const u8 *dest, u16 proto,
u8 *msg, size_t msg_len, u8 *key_mic)
{
int ret = -1;
size_t mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
wpa_printf(MSG_DEBUG, "WPA: Send EAPOL-Key frame to " MACSTR
" ver=%d mic_len=%d key_mgmt=0x%x",
MAC2STR(dest), ver, (int) mic_len, sm->key_mgmt);
if (is_zero_ether_addr(dest) && is_zero_ether_addr(sm->bssid)) {
/*
* Association event was not yet received; try to fetch
* BSSID from the driver.
*/
if (wpa_sm_get_bssid(sm, sm->bssid) < 0) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Failed to read BSSID for "
"EAPOL-Key destination address");
} else {
dest = sm->bssid;
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Use BSSID (" MACSTR
") as the destination for EAPOL-Key",
MAC2STR(dest));
}
}
if (mic_len) {
if (key_mic && (!ptk || !ptk->kck_len))
goto out;
if (key_mic &&
wpa_eapol_key_mic(ptk->kck, ptk->kck_len, sm->key_mgmt, ver,
msg, msg_len, key_mic)) {
wpa_msg(sm->ctx->msg_ctx, MSG_ERROR,
"WPA: Failed to generate EAPOL-Key version %d key_mgmt 0x%x MIC",
ver, sm->key_mgmt);
goto out;
}
if (ptk)
wpa_hexdump_key(MSG_DEBUG, "WPA: KCK",
ptk->kck, ptk->kck_len);
wpa_hexdump(MSG_DEBUG, "WPA: Derived Key MIC",
key_mic, mic_len);
} else {
#ifdef CONFIG_FILS
/* AEAD cipher - Key MIC field not used */
struct ieee802_1x_hdr *s_hdr, *hdr;
struct wpa_eapol_key *s_key, *key;
u8 *buf, *s_key_data, *key_data;
size_t buf_len = msg_len + AES_BLOCK_SIZE;
size_t key_data_len;
u16 eapol_len;
const u8 *aad[1];
size_t aad_len[1];
if (!ptk || !ptk->kek_len)
goto out;
key_data_len = msg_len - sizeof(struct ieee802_1x_hdr) -
sizeof(struct wpa_eapol_key) - 2;
buf = os_malloc(buf_len);
if (!buf)
goto out;
os_memcpy(buf, msg, msg_len);
hdr = (struct ieee802_1x_hdr *) buf;
key = (struct wpa_eapol_key *) (hdr + 1);
key_data = ((u8 *) (key + 1)) + 2;
/* Update EAPOL header to include AES-SIV overhead */
eapol_len = be_to_host16(hdr->length);
eapol_len += AES_BLOCK_SIZE;
hdr->length = host_to_be16(eapol_len);
/* Update Key Data Length field to include AES-SIV overhead */
WPA_PUT_BE16((u8 *) (key + 1), AES_BLOCK_SIZE + key_data_len);
s_hdr = (struct ieee802_1x_hdr *) msg;
s_key = (struct wpa_eapol_key *) (s_hdr + 1);
s_key_data = ((u8 *) (s_key + 1)) + 2;
wpa_hexdump_key(MSG_DEBUG, "WPA: Plaintext Key Data",
s_key_data, key_data_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: KEK", ptk->kek, ptk->kek_len);
/* AES-SIV AAD from EAPOL protocol version field (inclusive) to
* to Key Data (exclusive). */
aad[0] = buf;
aad_len[0] = key_data - buf;
if (aes_siv_encrypt(ptk->kek, ptk->kek_len,
s_key_data, key_data_len,
1, aad, aad_len, key_data) < 0) {
os_free(buf);
goto out;
}
wpa_hexdump(MSG_DEBUG, "WPA: Encrypted Key Data from SIV",
key_data, AES_BLOCK_SIZE + key_data_len);
os_free(msg);
msg = buf;
msg_len = buf_len;
#else /* CONFIG_FILS */
goto out;
#endif /* CONFIG_FILS */
}
wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key", msg, msg_len);
ret = wpa_sm_ether_send(sm, dest, proto, msg, msg_len);
eapol_sm_notify_tx_eapol_key(sm->eapol);
out:
os_free(msg);
return ret;
}
/**
* wpa_sm_key_request - Send EAPOL-Key Request
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @error: Indicate whether this is an Michael MIC error report
* @pairwise: 1 = error report for pairwise packet, 0 = for group packet
*
* Send an EAPOL-Key Request to the current authenticator. This function is
* used to request rekeying and it is usually called when a local Michael MIC
* failure is detected.
*/
void wpa_sm_key_request(struct wpa_sm *sm, int error, int pairwise)
{
size_t mic_len, hdrlen, rlen;
struct wpa_eapol_key *reply;
int key_info, ver;
u8 bssid[ETH_ALEN], *rbuf, *key_mic, *mic;
if (sm->key_mgmt == WPA_KEY_MGMT_OSEN ||
wpa_key_mgmt_suite_b(sm->key_mgmt))
ver = WPA_KEY_INFO_TYPE_AKM_DEFINED;
else if (wpa_key_mgmt_ft(sm->key_mgmt) ||
wpa_key_mgmt_sha256(sm->key_mgmt))
ver = WPA_KEY_INFO_TYPE_AES_128_CMAC;
else if (sm->pairwise_cipher != WPA_CIPHER_TKIP)
ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
if (wpa_sm_get_bssid(sm, bssid) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"Failed to read BSSID for EAPOL-Key request");
return;
}
mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
hdrlen = sizeof(*reply) + mic_len + 2;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
hdrlen, &rlen, (void *) &reply);
if (rbuf == NULL)
return;
reply->type = (sm->proto == WPA_PROTO_RSN ||
sm->proto == WPA_PROTO_OSEN) ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info = WPA_KEY_INFO_REQUEST | ver;
if (sm->ptk_set)
key_info |= WPA_KEY_INFO_SECURE;
if (sm->ptk_set && mic_len)
key_info |= WPA_KEY_INFO_MIC;
if (error)
key_info |= WPA_KEY_INFO_ERROR;
if (pairwise)
key_info |= WPA_KEY_INFO_KEY_TYPE;
WPA_PUT_BE16(reply->key_info, key_info);
WPA_PUT_BE16(reply->key_length, 0);
os_memcpy(reply->replay_counter, sm->request_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(sm->request_counter, WPA_REPLAY_COUNTER_LEN);
mic = (u8 *) (reply + 1);
WPA_PUT_BE16(mic + mic_len, 0);
if (!(key_info & WPA_KEY_INFO_MIC))
key_mic = NULL;
else
key_mic = mic;
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Sending EAPOL-Key Request (error=%d "
"pairwise=%d ptk_set=%d len=%lu)",
error, pairwise, sm->ptk_set, (unsigned long) rlen);
wpa_eapol_key_send(sm, &sm->ptk, ver, bssid, ETH_P_EAPOL, rbuf, rlen,
key_mic);
}
static void wpa_supplicant_key_mgmt_set_pmk(struct wpa_sm *sm)
{
#ifdef CONFIG_IEEE80211R
if (sm->key_mgmt == WPA_KEY_MGMT_FT_IEEE8021X) {
if (wpa_sm_key_mgmt_set_pmk(sm, sm->xxkey, sm->xxkey_len))
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: Cannot set low order 256 bits of MSK for key management offload");
} else {
#endif /* CONFIG_IEEE80211R */
if (wpa_sm_key_mgmt_set_pmk(sm, sm->pmk, sm->pmk_len))
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: Cannot set PMK for key management offload");
#ifdef CONFIG_IEEE80211R
}
#endif /* CONFIG_IEEE80211R */
}
static int wpa_supplicant_get_pmk(struct wpa_sm *sm,
const unsigned char *src_addr,
const u8 *pmkid)
{
int abort_cached = 0;
if (pmkid && !sm->cur_pmksa) {
/* When using drivers that generate RSN IE, wpa_supplicant may
* not have enough time to get the association information
* event before receiving this 1/4 message, so try to find a
* matching PMKSA cache entry here. */
sm->cur_pmksa = pmksa_cache_get(sm->pmksa, src_addr, pmkid,
NULL);
if (sm->cur_pmksa) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: found matching PMKID from PMKSA cache");
} else {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: no matching PMKID found");
abort_cached = 1;
}
}
if (pmkid && sm->cur_pmksa &&
os_memcmp_const(pmkid, sm->cur_pmksa->pmkid, PMKID_LEN) == 0) {
wpa_hexdump(MSG_DEBUG, "RSN: matched PMKID", pmkid, PMKID_LEN);
wpa_sm_set_pmk_from_pmksa(sm);
wpa_hexdump_key(MSG_DEBUG, "RSN: PMK from PMKSA cache",
sm->pmk, sm->pmk_len);
eapol_sm_notify_cached(sm->eapol);
#ifdef CONFIG_IEEE80211R
sm->xxkey_len = 0;
#endif /* CONFIG_IEEE80211R */
} else if (wpa_key_mgmt_wpa_ieee8021x(sm->key_mgmt) && sm->eapol) {
int res, pmk_len;
if (wpa_key_mgmt_sha384(sm->key_mgmt))
pmk_len = PMK_LEN_SUITE_B_192;
else
pmk_len = PMK_LEN;
res = eapol_sm_get_key(sm->eapol, sm->pmk, pmk_len);
if (res) {
if (pmk_len == PMK_LEN) {
/*
* EAP-LEAP is an exception from other EAP
* methods: it uses only 16-byte PMK.
*/
res = eapol_sm_get_key(sm->eapol, sm->pmk, 16);
pmk_len = 16;
}
} else {
#ifdef CONFIG_IEEE80211R
u8 buf[2 * PMK_LEN];
if (eapol_sm_get_key(sm->eapol, buf, 2 * PMK_LEN) == 0)
{
os_memcpy(sm->xxkey, buf + PMK_LEN, PMK_LEN);
sm->xxkey_len = PMK_LEN;
os_memset(buf, 0, sizeof(buf));
}
#endif /* CONFIG_IEEE80211R */
}
if (res == 0) {
struct rsn_pmksa_cache_entry *sa = NULL;
const u8 *fils_cache_id = NULL;
#ifdef CONFIG_FILS
if (sm->fils_cache_id_set)
fils_cache_id = sm->fils_cache_id;
#endif /* CONFIG_FILS */
wpa_hexdump_key(MSG_DEBUG, "WPA: PMK from EAPOL state "
"machines", sm->pmk, pmk_len);
sm->pmk_len = pmk_len;
wpa_supplicant_key_mgmt_set_pmk(sm);
if (sm->proto == WPA_PROTO_RSN &&
!wpa_key_mgmt_suite_b(sm->key_mgmt) &&
!wpa_key_mgmt_ft(sm->key_mgmt)) {
sa = pmksa_cache_add(sm->pmksa,
sm->pmk, pmk_len, NULL,
NULL, 0,
src_addr, sm->own_addr,
sm->network_ctx,
sm->key_mgmt,
fils_cache_id);
}
if (!sm->cur_pmksa && pmkid &&
pmksa_cache_get(sm->pmksa, src_addr, pmkid, NULL))
{
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: the new PMK matches with the "
"PMKID");
abort_cached = 0;
} else if (sa && !sm->cur_pmksa && pmkid) {
/*
* It looks like the authentication server
* derived mismatching MSK. This should not
* really happen, but bugs happen.. There is not
* much we can do here without knowing what
* exactly caused the server to misbehave.
*/
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"RSN: PMKID mismatch - authentication server may have derived different MSK?!");
return -1;
}
if (!sm->cur_pmksa)
sm->cur_pmksa = sa;
} else {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Failed to get master session key from "
"EAPOL state machines - key handshake "
"aborted");
if (sm->cur_pmksa) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: Cancelled PMKSA caching "
"attempt");
sm->cur_pmksa = NULL;
abort_cached = 1;
} else if (!abort_cached) {
return -1;
}
}
}
if (abort_cached && wpa_key_mgmt_wpa_ieee8021x(sm->key_mgmt) &&
!wpa_key_mgmt_suite_b(sm->key_mgmt) &&
!wpa_key_mgmt_ft(sm->key_mgmt) && sm->key_mgmt != WPA_KEY_MGMT_OSEN)
{
/* Send EAPOL-Start to trigger full EAP authentication. */
u8 *buf;
size_t buflen;
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: no PMKSA entry found - trigger "
"full EAP authentication");
buf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_START,
NULL, 0, &buflen, NULL);
if (buf) {
wpa_sm_ether_send(sm, sm->bssid, ETH_P_EAPOL,
buf, buflen);
os_free(buf);
return -2;
}
return -1;
}
return 0;
}
/**
* wpa_supplicant_send_2_of_4 - Send message 2 of WPA/RSN 4-Way Handshake
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @dst: Destination address for the frame
* @key: Pointer to the EAPOL-Key frame header
* @ver: Version bits from EAPOL-Key Key Info
* @nonce: Nonce value for the EAPOL-Key frame
* @wpa_ie: WPA/RSN IE
* @wpa_ie_len: Length of the WPA/RSN IE
* @ptk: PTK to use for keyed hash and encryption
* Returns: >= 0 on success, < 0 on failure
*/
int wpa_supplicant_send_2_of_4(struct wpa_sm *sm, const unsigned char *dst,
const struct wpa_eapol_key *key,
int ver, const u8 *nonce,
const u8 *wpa_ie, size_t wpa_ie_len,
struct wpa_ptk *ptk)
{
size_t mic_len, hdrlen, rlen;
struct wpa_eapol_key *reply;
u8 *rbuf, *key_mic;
u8 *rsn_ie_buf = NULL;
u16 key_info;
if (wpa_ie == NULL) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: No wpa_ie set - "
"cannot generate msg 2/4");
return -1;
}
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->key_mgmt)) {
int res;
/*
* Add PMKR1Name into RSN IE (PMKID-List) and add MDIE and
* FTIE from (Re)Association Response.
*/
rsn_ie_buf = os_malloc(wpa_ie_len + 2 + 2 + PMKID_LEN +
sm->assoc_resp_ies_len);
if (rsn_ie_buf == NULL)
return -1;
os_memcpy(rsn_ie_buf, wpa_ie, wpa_ie_len);
res = wpa_insert_pmkid(rsn_ie_buf, &wpa_ie_len,
sm->pmk_r1_name);
if (res < 0) {
os_free(rsn_ie_buf);
return -1;
}
if (sm->assoc_resp_ies) {
os_memcpy(rsn_ie_buf + wpa_ie_len, sm->assoc_resp_ies,
sm->assoc_resp_ies_len);
wpa_ie_len += sm->assoc_resp_ies_len;
}
wpa_ie = rsn_ie_buf;
}
#endif /* CONFIG_IEEE80211R */
wpa_hexdump(MSG_DEBUG, "WPA: WPA IE for msg 2/4", wpa_ie, wpa_ie_len);
mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
hdrlen = sizeof(*reply) + mic_len + 2;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY,
NULL, hdrlen + wpa_ie_len,
&rlen, (void *) &reply);
if (rbuf == NULL) {
os_free(rsn_ie_buf);
return -1;
}
reply->type = (sm->proto == WPA_PROTO_RSN ||
sm->proto == WPA_PROTO_OSEN) ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info = ver | WPA_KEY_INFO_KEY_TYPE;
if (mic_len)
key_info |= WPA_KEY_INFO_MIC;
else
key_info |= WPA_KEY_INFO_ENCR_KEY_DATA;
WPA_PUT_BE16(reply->key_info, key_info);
if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN)
WPA_PUT_BE16(reply->key_length, 0);
else
os_memcpy(reply->key_length, key->key_length, 2);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
wpa_hexdump(MSG_DEBUG, "WPA: Replay Counter", reply->replay_counter,
WPA_REPLAY_COUNTER_LEN);
key_mic = (u8 *) (reply + 1);
WPA_PUT_BE16(key_mic + mic_len, wpa_ie_len); /* Key Data Length */
os_memcpy(key_mic + mic_len + 2, wpa_ie, wpa_ie_len); /* Key Data */
os_free(rsn_ie_buf);
os_memcpy(reply->key_nonce, nonce, WPA_NONCE_LEN);
wpa_dbg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Sending EAPOL-Key 2/4");
return wpa_eapol_key_send(sm, ptk, ver, dst, ETH_P_EAPOL, rbuf, rlen,
key_mic);
}
static int wpa_derive_ptk(struct wpa_sm *sm, const unsigned char *src_addr,
const struct wpa_eapol_key *key, struct wpa_ptk *ptk)
{
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->key_mgmt))
return wpa_derive_ptk_ft(sm, src_addr, key, ptk);
#endif /* CONFIG_IEEE80211R */
return wpa_pmk_to_ptk(sm->pmk, sm->pmk_len, "Pairwise key expansion",
sm->own_addr, sm->bssid, sm->snonce,
key->key_nonce, ptk, sm->key_mgmt,
sm->pairwise_cipher);
}
static void wpa_supplicant_process_1_of_4(struct wpa_sm *sm,
const unsigned char *src_addr,
const struct wpa_eapol_key *key,
u16 ver, const u8 *key_data,
size_t key_data_len)
{
struct wpa_eapol_ie_parse ie;
struct wpa_ptk *ptk;
int res;
u8 *kde, *kde_buf = NULL;
size_t kde_len;
if (wpa_sm_get_network_ctx(sm) == NULL) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: No SSID info "
"found (msg 1 of 4)");
return;
}
wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE);
wpa_dbg(sm->ctx->msg_ctx, MSG_INFO, "WPA: RX message 1 of 4-Way "
"Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
os_memset(&ie, 0, sizeof(ie));
if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) {
/* RSN: msg 1/4 should contain PMKID for the selected PMK */
wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data",
key_data, key_data_len);
if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0)
goto failed;
if (ie.pmkid) {
wpa_hexdump(MSG_DEBUG, "RSN: PMKID from "
"Authenticator", ie.pmkid, PMKID_LEN);
}
}
res = wpa_supplicant_get_pmk(sm, src_addr, ie.pmkid);
if (res == -2) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: Do not reply to "
"msg 1/4 - requesting full EAP authentication");
return;
}
if (res)
goto failed;
if (sm->renew_snonce) {
if (random_get_bytes(sm->snonce, WPA_NONCE_LEN)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Failed to get random data for SNonce");
goto failed;
}
sm->renew_snonce = 0;
wpa_hexdump(MSG_DEBUG, "WPA: Renewed SNonce",
sm->snonce, WPA_NONCE_LEN);
}
/* Calculate PTK which will be stored as a temporary PTK until it has
* been verified when processing message 3/4. */
ptk = &sm->tptk;
if (wpa_derive_ptk(sm, src_addr, key, ptk) < 0)
goto failed;
if (sm->pairwise_cipher == WPA_CIPHER_TKIP) {
u8 buf[8];
/* Supplicant: swap tx/rx Mic keys */
os_memcpy(buf, &ptk->tk[16], 8);
os_memcpy(&ptk->tk[16], &ptk->tk[24], 8);
os_memcpy(&ptk->tk[24], buf, 8);
os_memset(buf, 0, sizeof(buf));
}
sm->tptk_set = 1;
kde = sm->assoc_wpa_ie;
kde_len = sm->assoc_wpa_ie_len;
#ifdef CONFIG_P2P
if (sm->p2p) {
kde_buf = os_malloc(kde_len + 2 + RSN_SELECTOR_LEN + 1);
if (kde_buf) {
u8 *pos;
wpa_printf(MSG_DEBUG, "P2P: Add IP Address Request KDE "
"into EAPOL-Key 2/4");
os_memcpy(kde_buf, kde, kde_len);
kde = kde_buf;
pos = kde + kde_len;
*pos++ = WLAN_EID_VENDOR_SPECIFIC;
*pos++ = RSN_SELECTOR_LEN + 1;
RSN_SELECTOR_PUT(pos, WFA_KEY_DATA_IP_ADDR_REQ);
pos += RSN_SELECTOR_LEN;
*pos++ = 0x01;
kde_len = pos - kde;
}
}
#endif /* CONFIG_P2P */
if (wpa_supplicant_send_2_of_4(sm, sm->bssid, key, ver, sm->snonce,
kde, kde_len, ptk) < 0)
goto failed;
os_free(kde_buf);
os_memcpy(sm->anonce, key->key_nonce, WPA_NONCE_LEN);
return;
failed:
os_free(kde_buf);
wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED);
}
static void wpa_sm_start_preauth(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_sm *sm = eloop_ctx;
rsn_preauth_candidate_process(sm);
}
static void wpa_supplicant_key_neg_complete(struct wpa_sm *sm,
const u8 *addr, int secure)
{
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Key negotiation completed with "
MACSTR " [PTK=%s GTK=%s]", MAC2STR(addr),
wpa_cipher_txt(sm->pairwise_cipher),
wpa_cipher_txt(sm->group_cipher));
wpa_sm_cancel_auth_timeout(sm);
wpa_sm_set_state(sm, WPA_COMPLETED);
if (secure) {
wpa_sm_mlme_setprotection(
sm, addr, MLME_SETPROTECTION_PROTECT_TYPE_RX_TX,
MLME_SETPROTECTION_KEY_TYPE_PAIRWISE);
eapol_sm_notify_portValid(sm->eapol, TRUE);
if (wpa_key_mgmt_wpa_psk(sm->key_mgmt) ||
sm->key_mgmt == WPA_KEY_MGMT_DPP ||
sm->key_mgmt == WPA_KEY_MGMT_OWE)
eapol_sm_notify_eap_success(sm->eapol, TRUE);
/*
* Start preauthentication after a short wait to avoid a
* possible race condition between the data receive and key
* configuration after the 4-Way Handshake. This increases the
* likelihood of the first preauth EAPOL-Start frame getting to
* the target AP.
*/
eloop_register_timeout(1, 0, wpa_sm_start_preauth, sm, NULL);
}
if (sm->cur_pmksa && sm->cur_pmksa->opportunistic) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: Authenticator accepted "
"opportunistic PMKSA entry - marking it valid");
sm->cur_pmksa->opportunistic = 0;
}
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->key_mgmt)) {
/* Prepare for the next transition */
wpa_ft_prepare_auth_request(sm, NULL);
}
#endif /* CONFIG_IEEE80211R */
}
static void wpa_sm_rekey_ptk(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_sm *sm = eloop_ctx;
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Request PTK rekeying");
wpa_sm_key_request(sm, 0, 1);
}
static int wpa_supplicant_install_ptk(struct wpa_sm *sm,
const struct wpa_eapol_key *key)
{
int keylen, rsclen;
enum wpa_alg alg;
const u8 *key_rsc;
if (sm->ptk.installed) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Do not re-install same PTK to the driver");
return 0;
}
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Installing PTK to the driver");
if (sm->pairwise_cipher == WPA_CIPHER_NONE) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Pairwise Cipher "
"Suite: NONE - do not use pairwise keys");
return 0;
}
if (!wpa_cipher_valid_pairwise(sm->pairwise_cipher)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported pairwise cipher %d",
sm->pairwise_cipher);
return -1;
}
alg = wpa_cipher_to_alg(sm->pairwise_cipher);
keylen = wpa_cipher_key_len(sm->pairwise_cipher);
if (keylen <= 0 || (unsigned int) keylen != sm->ptk.tk_len) {
wpa_printf(MSG_DEBUG, "WPA: TK length mismatch: %d != %lu",
keylen, (long unsigned int) sm->ptk.tk_len);
return -1;
}
rsclen = wpa_cipher_rsc_len(sm->pairwise_cipher);
if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) {
key_rsc = null_rsc;
} else {
key_rsc = key->key_rsc;
wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, rsclen);
}
if (wpa_sm_set_key(sm, alg, sm->bssid, 0, 1, key_rsc, rsclen,
sm->ptk.tk, keylen) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Failed to set PTK to the "
"driver (alg=%d keylen=%d bssid=" MACSTR ")",
alg, keylen, MAC2STR(sm->bssid));
return -1;
}
/* TK is not needed anymore in supplicant */
os_memset(sm->ptk.tk, 0, WPA_TK_MAX_LEN);
sm->ptk.tk_len = 0;
sm->ptk.installed = 1;
if (sm->wpa_ptk_rekey) {
eloop_cancel_timeout(wpa_sm_rekey_ptk, sm, NULL);
eloop_register_timeout(sm->wpa_ptk_rekey, 0, wpa_sm_rekey_ptk,
sm, NULL);
}
return 0;
}
static int wpa_supplicant_check_group_cipher(struct wpa_sm *sm,
int group_cipher,
int keylen, int maxkeylen,
int *key_rsc_len,
enum wpa_alg *alg)
{
int klen;
*alg = wpa_cipher_to_alg(group_cipher);
if (*alg == WPA_ALG_NONE) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported Group Cipher %d",
group_cipher);
return -1;
}
*key_rsc_len = wpa_cipher_rsc_len(group_cipher);
klen = wpa_cipher_key_len(group_cipher);
if (keylen != klen || maxkeylen < klen) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported %s Group Cipher key length %d (%d)",
wpa_cipher_txt(group_cipher), keylen, maxkeylen);
return -1;
}
return 0;
}
struct wpa_gtk_data {
enum wpa_alg alg;
int tx, key_rsc_len, keyidx;
u8 gtk[32];
int gtk_len;
};
static int wpa_supplicant_install_gtk(struct wpa_sm *sm,
const struct wpa_gtk_data *gd,
const u8 *key_rsc, int wnm_sleep)
{
const u8 *_gtk = gd->gtk;
u8 gtk_buf[32];
/* Detect possible key reinstallation */
if ((sm->gtk.gtk_len == (size_t) gd->gtk_len &&
os_memcmp(sm->gtk.gtk, gd->gtk, sm->gtk.gtk_len) == 0) ||
(sm->gtk_wnm_sleep.gtk_len == (size_t) gd->gtk_len &&
os_memcmp(sm->gtk_wnm_sleep.gtk, gd->gtk,
sm->gtk_wnm_sleep.gtk_len) == 0)) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Not reinstalling already in-use GTK to the driver (keyidx=%d tx=%d len=%d)",
gd->keyidx, gd->tx, gd->gtk_len);
return 0;
}
wpa_hexdump_key(MSG_DEBUG, "WPA: Group Key", gd->gtk, gd->gtk_len);
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Installing GTK to the driver (keyidx=%d tx=%d len=%d)",
gd->keyidx, gd->tx, gd->gtk_len);
wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, gd->key_rsc_len);
if (sm->group_cipher == WPA_CIPHER_TKIP) {
/* Swap Tx/Rx keys for Michael MIC */
os_memcpy(gtk_buf, gd->gtk, 16);
os_memcpy(gtk_buf + 16, gd->gtk + 24, 8);
os_memcpy(gtk_buf + 24, gd->gtk + 16, 8);
_gtk = gtk_buf;
}
if (sm->pairwise_cipher == WPA_CIPHER_NONE) {
if (wpa_sm_set_key(sm, gd->alg, NULL,
gd->keyidx, 1, key_rsc, gd->key_rsc_len,
_gtk, gd->gtk_len) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Failed to set GTK to the driver "
"(Group only)");
os_memset(gtk_buf, 0, sizeof(gtk_buf));
return -1;
}
} else if (wpa_sm_set_key(sm, gd->alg, broadcast_ether_addr,
gd->keyidx, gd->tx, key_rsc, gd->key_rsc_len,
_gtk, gd->gtk_len) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Failed to set GTK to "
"the driver (alg=%d keylen=%d keyidx=%d)",
gd->alg, gd->gtk_len, gd->keyidx);
os_memset(gtk_buf, 0, sizeof(gtk_buf));
return -1;
}
os_memset(gtk_buf, 0, sizeof(gtk_buf));
if (wnm_sleep) {
sm->gtk_wnm_sleep.gtk_len = gd->gtk_len;
os_memcpy(sm->gtk_wnm_sleep.gtk, gd->gtk,
sm->gtk_wnm_sleep.gtk_len);
} else {
sm->gtk.gtk_len = gd->gtk_len;
os_memcpy(sm->gtk.gtk, gd->gtk, sm->gtk.gtk_len);
}
return 0;
}
static int wpa_supplicant_gtk_tx_bit_workaround(const struct wpa_sm *sm,
int tx)
{
if (tx && sm->pairwise_cipher != WPA_CIPHER_NONE) {
/* Ignore Tx bit for GTK if a pairwise key is used. One AP
* seemed to set this bit (incorrectly, since Tx is only when
* doing Group Key only APs) and without this workaround, the
* data connection does not work because wpa_supplicant
* configured non-zero keyidx to be used for unicast. */
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Tx bit set for GTK, but pairwise "
"keys are used - ignore Tx bit");
return 0;
}
return tx;
}
static int wpa_supplicant_rsc_relaxation(const struct wpa_sm *sm,
const u8 *rsc)
{
int rsclen;
if (!sm->wpa_rsc_relaxation)
return 0;
rsclen = wpa_cipher_rsc_len(sm->group_cipher);
/*
* Try to detect RSC (endian) corruption issue where the AP sends
* the RSC bytes in EAPOL-Key message in the wrong order, both if
* it's actually a 6-byte field (as it should be) and if it treats
* it as an 8-byte field.
* An AP model known to have this bug is the Sapido RB-1632.
*/
if (rsclen == 6 && ((rsc[5] && !rsc[0]) || rsc[6] || rsc[7])) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"RSC %02x%02x%02x%02x%02x%02x%02x%02x is likely bogus, using 0",
rsc[0], rsc[1], rsc[2], rsc[3],
rsc[4], rsc[5], rsc[6], rsc[7]);
return 1;
}
return 0;
}
static int wpa_supplicant_pairwise_gtk(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
const u8 *gtk, size_t gtk_len,
int key_info)
{
struct wpa_gtk_data gd;
const u8 *key_rsc;
/*
* IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames - Figure 43x
* GTK KDE format:
* KeyID[bits 0-1], Tx [bit 2], Reserved [bits 3-7]
* Reserved [bits 0-7]
* GTK
*/
os_memset(&gd, 0, sizeof(gd));
wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in pairwise handshake",
gtk, gtk_len);
if (gtk_len < 2 || gtk_len - 2 > sizeof(gd.gtk))
return -1;
gd.keyidx = gtk[0] & 0x3;
gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm,
!!(gtk[0] & BIT(2)));
gtk += 2;
gtk_len -= 2;
os_memcpy(gd.gtk, gtk, gtk_len);
gd.gtk_len = gtk_len;
key_rsc = key->key_rsc;
if (wpa_supplicant_rsc_relaxation(sm, key->key_rsc))
key_rsc = null_rsc;
if (sm->group_cipher != WPA_CIPHER_GTK_NOT_USED &&
(wpa_supplicant_check_group_cipher(sm, sm->group_cipher,
gtk_len, gtk_len,
&gd.key_rsc_len, &gd.alg) ||
wpa_supplicant_install_gtk(sm, &gd, key_rsc, 0))) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: Failed to install GTK");
os_memset(&gd, 0, sizeof(gd));
return -1;
}
os_memset(&gd, 0, sizeof(gd));
wpa_supplicant_key_neg_complete(sm, sm->bssid,
key_info & WPA_KEY_INFO_SECURE);
return 0;
}
#ifdef CONFIG_IEEE80211W
static int wpa_supplicant_install_igtk(struct wpa_sm *sm,
const struct wpa_igtk_kde *igtk,
int wnm_sleep)
{
size_t len = wpa_cipher_key_len(sm->mgmt_group_cipher);
u16 keyidx = WPA_GET_LE16(igtk->keyid);
/* Detect possible key reinstallation */
if ((sm->igtk.igtk_len == len &&
os_memcmp(sm->igtk.igtk, igtk->igtk, sm->igtk.igtk_len) == 0) ||
(sm->igtk_wnm_sleep.igtk_len == len &&
os_memcmp(sm->igtk_wnm_sleep.igtk, igtk->igtk,
sm->igtk_wnm_sleep.igtk_len) == 0)) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Not reinstalling already in-use IGTK to the driver (keyidx=%d)",
keyidx);
return 0;
}
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: IGTK keyid %d pn %02x%02x%02x%02x%02x%02x",
keyidx, MAC2STR(igtk->pn));
wpa_hexdump_key(MSG_DEBUG, "WPA: IGTK", igtk->igtk, len);
if (keyidx > 4095) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Invalid IGTK KeyID %d", keyidx);
return -1;
}
if (wpa_sm_set_key(sm, wpa_cipher_to_alg(sm->mgmt_group_cipher),
broadcast_ether_addr,
keyidx, 0, igtk->pn, sizeof(igtk->pn),
igtk->igtk, len) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Failed to configure IGTK to the driver");
return -1;
}
if (wnm_sleep) {
sm->igtk_wnm_sleep.igtk_len = len;
os_memcpy(sm->igtk_wnm_sleep.igtk, igtk->igtk,
sm->igtk_wnm_sleep.igtk_len);
} else {
sm->igtk.igtk_len = len;
os_memcpy(sm->igtk.igtk, igtk->igtk, sm->igtk.igtk_len);
}
return 0;
}
#endif /* CONFIG_IEEE80211W */
static int ieee80211w_set_keys(struct wpa_sm *sm,
struct wpa_eapol_ie_parse *ie)
{
#ifdef CONFIG_IEEE80211W
if (!wpa_cipher_valid_mgmt_group(sm->mgmt_group_cipher))
return 0;
if (ie->igtk) {
size_t len;
const struct wpa_igtk_kde *igtk;
len = wpa_cipher_key_len(sm->mgmt_group_cipher);
if (ie->igtk_len != WPA_IGTK_KDE_PREFIX_LEN + len)
return -1;
igtk = (const struct wpa_igtk_kde *) ie->igtk;
if (wpa_supplicant_install_igtk(sm, igtk, 0) < 0)
return -1;
}
return 0;
#else /* CONFIG_IEEE80211W */
return 0;
#endif /* CONFIG_IEEE80211W */
}
static void wpa_report_ie_mismatch(struct wpa_sm *sm,
const char *reason, const u8 *src_addr,
const u8 *wpa_ie, size_t wpa_ie_len,
const u8 *rsn_ie, size_t rsn_ie_len)
{
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING, "WPA: %s (src=" MACSTR ")",
reason, MAC2STR(src_addr));
if (sm->ap_wpa_ie) {
wpa_hexdump(MSG_INFO, "WPA: WPA IE in Beacon/ProbeResp",
sm->ap_wpa_ie, sm->ap_wpa_ie_len);
}
if (wpa_ie) {
if (!sm->ap_wpa_ie) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: No WPA IE in Beacon/ProbeResp");
}
wpa_hexdump(MSG_INFO, "WPA: WPA IE in 3/4 msg",
wpa_ie, wpa_ie_len);
}
if (sm->ap_rsn_ie) {
wpa_hexdump(MSG_INFO, "WPA: RSN IE in Beacon/ProbeResp",
sm->ap_rsn_ie, sm->ap_rsn_ie_len);
}
if (rsn_ie) {
if (!sm->ap_rsn_ie) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: No RSN IE in Beacon/ProbeResp");
}
wpa_hexdump(MSG_INFO, "WPA: RSN IE in 3/4 msg",
rsn_ie, rsn_ie_len);
}
wpa_sm_deauthenticate(sm, WLAN_REASON_IE_IN_4WAY_DIFFERS);
}
#ifdef CONFIG_IEEE80211R
static int ft_validate_mdie(struct wpa_sm *sm,
const unsigned char *src_addr,
struct wpa_eapol_ie_parse *ie,
const u8 *assoc_resp_mdie)
{
struct rsn_mdie *mdie;
mdie = (struct rsn_mdie *) (ie->mdie + 2);
if (ie->mdie == NULL || ie->mdie_len < 2 + sizeof(*mdie) ||
os_memcmp(mdie->mobility_domain, sm->mobility_domain,
MOBILITY_DOMAIN_ID_LEN) != 0) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: MDIE in msg 3/4 did "
"not match with the current mobility domain");
return -1;
}
if (assoc_resp_mdie &&
(assoc_resp_mdie[1] != ie->mdie[1] ||
os_memcmp(assoc_resp_mdie, ie->mdie, 2 + ie->mdie[1]) != 0)) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: MDIE mismatch");
wpa_hexdump(MSG_DEBUG, "FT: MDIE in EAPOL-Key msg 3/4",
ie->mdie, 2 + ie->mdie[1]);
wpa_hexdump(MSG_DEBUG, "FT: MDIE in (Re)Association Response",
assoc_resp_mdie, 2 + assoc_resp_mdie[1]);
return -1;
}
return 0;
}
static int ft_validate_ftie(struct wpa_sm *sm,
const unsigned char *src_addr,
struct wpa_eapol_ie_parse *ie,
const u8 *assoc_resp_ftie)
{
if (ie->ftie == NULL) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"FT: No FTIE in EAPOL-Key msg 3/4");
return -1;
}
if (assoc_resp_ftie == NULL)
return 0;
if (assoc_resp_ftie[1] != ie->ftie[1] ||
os_memcmp(assoc_resp_ftie, ie->ftie, 2 + ie->ftie[1]) != 0) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: FTIE mismatch");
wpa_hexdump(MSG_DEBUG, "FT: FTIE in EAPOL-Key msg 3/4",
ie->ftie, 2 + ie->ftie[1]);
wpa_hexdump(MSG_DEBUG, "FT: FTIE in (Re)Association Response",
assoc_resp_ftie, 2 + assoc_resp_ftie[1]);
return -1;
}
return 0;
}
static int ft_validate_rsnie(struct wpa_sm *sm,
const unsigned char *src_addr,
struct wpa_eapol_ie_parse *ie)
{
struct wpa_ie_data rsn;
if (!ie->rsn_ie)
return 0;
/*
* Verify that PMKR1Name from EAPOL-Key message 3/4
* matches with the value we derived.
*/
if (wpa_parse_wpa_ie_rsn(ie->rsn_ie, ie->rsn_ie_len, &rsn) < 0 ||
rsn.num_pmkid != 1 || rsn.pmkid == NULL) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "FT: No PMKR1Name in "
"FT 4-way handshake message 3/4");
return -1;
}
if (os_memcmp_const(rsn.pmkid, sm->pmk_r1_name, WPA_PMK_NAME_LEN) != 0)
{
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"FT: PMKR1Name mismatch in "
"FT 4-way handshake message 3/4");
wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from Authenticator",
rsn.pmkid, WPA_PMK_NAME_LEN);
wpa_hexdump(MSG_DEBUG, "FT: Derived PMKR1Name",
sm->pmk_r1_name, WPA_PMK_NAME_LEN);
return -1;
}
return 0;
}
static int wpa_supplicant_validate_ie_ft(struct wpa_sm *sm,
const unsigned char *src_addr,
struct wpa_eapol_ie_parse *ie)
{
const u8 *pos, *end, *mdie = NULL, *ftie = NULL;
if (sm->assoc_resp_ies) {
pos = sm->assoc_resp_ies;
end = pos + sm->assoc_resp_ies_len;
while (end - pos > 2) {
if (2 + pos[1] > end - pos)
break;
switch (*pos) {
case WLAN_EID_MOBILITY_DOMAIN:
mdie = pos;
break;
case WLAN_EID_FAST_BSS_TRANSITION:
ftie = pos;
break;
}
pos += 2 + pos[1];
}
}
if (ft_validate_mdie(sm, src_addr, ie, mdie) < 0 ||
ft_validate_ftie(sm, src_addr, ie, ftie) < 0 ||
ft_validate_rsnie(sm, src_addr, ie) < 0)
return -1;
return 0;
}
#endif /* CONFIG_IEEE80211R */
static int wpa_supplicant_validate_ie(struct wpa_sm *sm,
const unsigned char *src_addr,
struct wpa_eapol_ie_parse *ie)
{
if (sm->ap_wpa_ie == NULL && sm->ap_rsn_ie == NULL) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: No WPA/RSN IE for this AP known. "
"Trying to get from scan results");
if (wpa_sm_get_beacon_ie(sm) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Could not find AP from "
"the scan results");
} else {
wpa_msg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Found the current AP from "
"updated scan results");
}
}
if (ie->wpa_ie == NULL && ie->rsn_ie == NULL &&
(sm->ap_wpa_ie || sm->ap_rsn_ie)) {
wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match "
"with IE in Beacon/ProbeResp (no IE?)",
src_addr, ie->wpa_ie, ie->wpa_ie_len,
ie->rsn_ie, ie->rsn_ie_len);
return -1;
}
if ((ie->wpa_ie && sm->ap_wpa_ie &&
(ie->wpa_ie_len != sm->ap_wpa_ie_len ||
os_memcmp(ie->wpa_ie, sm->ap_wpa_ie, ie->wpa_ie_len) != 0)) ||
(ie->rsn_ie && sm->ap_rsn_ie &&
wpa_compare_rsn_ie(wpa_key_mgmt_ft(sm->key_mgmt),
sm->ap_rsn_ie, sm->ap_rsn_ie_len,
ie->rsn_ie, ie->rsn_ie_len))) {
wpa_report_ie_mismatch(sm, "IE in 3/4 msg does not match "
"with IE in Beacon/ProbeResp",
src_addr, ie->wpa_ie, ie->wpa_ie_len,
ie->rsn_ie, ie->rsn_ie_len);
return -1;
}
if (sm->proto == WPA_PROTO_WPA &&
ie->rsn_ie && sm->ap_rsn_ie == NULL && sm->rsn_enabled) {
wpa_report_ie_mismatch(sm, "Possible downgrade attack "
"detected - RSN was enabled and RSN IE "
"was in msg 3/4, but not in "
"Beacon/ProbeResp",
src_addr, ie->wpa_ie, ie->wpa_ie_len,
ie->rsn_ie, ie->rsn_ie_len);
return -1;
}
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->key_mgmt) &&
wpa_supplicant_validate_ie_ft(sm, src_addr, ie) < 0)
return -1;
#endif /* CONFIG_IEEE80211R */
return 0;
}
/**
* wpa_supplicant_send_4_of_4 - Send message 4 of WPA/RSN 4-Way Handshake
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @dst: Destination address for the frame
* @key: Pointer to the EAPOL-Key frame header
* @ver: Version bits from EAPOL-Key Key Info
* @key_info: Key Info
* @ptk: PTK to use for keyed hash and encryption
* Returns: >= 0 on success, < 0 on failure
*/
int wpa_supplicant_send_4_of_4(struct wpa_sm *sm, const unsigned char *dst,
const struct wpa_eapol_key *key,
u16 ver, u16 key_info,
struct wpa_ptk *ptk)
{
size_t mic_len, hdrlen, rlen;
struct wpa_eapol_key *reply;
u8 *rbuf, *key_mic;
mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
hdrlen = sizeof(*reply) + mic_len + 2;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
hdrlen, &rlen, (void *) &reply);
if (rbuf == NULL)
return -1;
reply->type = (sm->proto == WPA_PROTO_RSN ||
sm->proto == WPA_PROTO_OSEN) ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info &= WPA_KEY_INFO_SECURE;
key_info |= ver | WPA_KEY_INFO_KEY_TYPE;
if (mic_len)
key_info |= WPA_KEY_INFO_MIC;
else
key_info |= WPA_KEY_INFO_ENCR_KEY_DATA;
WPA_PUT_BE16(reply->key_info, key_info);
if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN)
WPA_PUT_BE16(reply->key_length, 0);
else
os_memcpy(reply->key_length, key->key_length, 2);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
key_mic = (u8 *) (reply + 1);
WPA_PUT_BE16(key_mic + mic_len, 0);
wpa_dbg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Sending EAPOL-Key 4/4");
return wpa_eapol_key_send(sm, ptk, ver, dst, ETH_P_EAPOL, rbuf, rlen,
key_mic);
}
static void wpa_supplicant_process_3_of_4(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
u16 ver, const u8 *key_data,
size_t key_data_len)
{
u16 key_info, keylen;
struct wpa_eapol_ie_parse ie;
wpa_sm_set_state(sm, WPA_4WAY_HANDSHAKE);
wpa_dbg(sm->ctx->msg_ctx, MSG_INFO, "WPA: RX message 3 of 4-Way "
"Handshake from " MACSTR " (ver=%d)", MAC2STR(sm->bssid), ver);
key_info = WPA_GET_BE16(key->key_info);
wpa_hexdump(MSG_DEBUG, "WPA: IE KeyData", key_data, key_data_len);
if (wpa_supplicant_parse_ies(key_data, key_data_len, &ie) < 0)
goto failed;
if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: GTK IE in unencrypted key data");
goto failed;
}
#ifdef CONFIG_IEEE80211W
if (ie.igtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: IGTK KDE in unencrypted key data");
goto failed;
}
if (ie.igtk &&
wpa_cipher_valid_mgmt_group(sm->mgmt_group_cipher) &&
ie.igtk_len != WPA_IGTK_KDE_PREFIX_LEN +
(unsigned int) wpa_cipher_key_len(sm->mgmt_group_cipher)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Invalid IGTK KDE length %lu",
(unsigned long) ie.igtk_len);
goto failed;
}
#endif /* CONFIG_IEEE80211W */
if (wpa_supplicant_validate_ie(sm, sm->bssid, &ie) < 0)
goto failed;
if (os_memcmp(sm->anonce, key->key_nonce, WPA_NONCE_LEN) != 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: ANonce from message 1 of 4-Way Handshake "
"differs from 3 of 4-Way Handshake - drop packet (src="
MACSTR ")", MAC2STR(sm->bssid));
goto failed;
}
keylen = WPA_GET_BE16(key->key_length);
if (keylen != wpa_cipher_key_len(sm->pairwise_cipher)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Invalid %s key length %d (src=" MACSTR
")", wpa_cipher_txt(sm->pairwise_cipher), keylen,
MAC2STR(sm->bssid));
goto failed;
}
#ifdef CONFIG_P2P
if (ie.ip_addr_alloc) {
os_memcpy(sm->p2p_ip_addr, ie.ip_addr_alloc, 3 * 4);
wpa_hexdump(MSG_DEBUG, "P2P: IP address info",
sm->p2p_ip_addr, sizeof(sm->p2p_ip_addr));
}
#endif /* CONFIG_P2P */
if (wpa_supplicant_send_4_of_4(sm, sm->bssid, key, ver, key_info,
&sm->ptk) < 0) {
goto failed;
}
/* SNonce was successfully used in msg 3/4, so mark it to be renewed
* for the next 4-Way Handshake. If msg 3 is received again, the old
* SNonce will still be used to avoid changing PTK. */
sm->renew_snonce = 1;
if (key_info & WPA_KEY_INFO_INSTALL) {
if (wpa_supplicant_install_ptk(sm, key))
goto failed;
}
if (key_info & WPA_KEY_INFO_SECURE) {
wpa_sm_mlme_setprotection(
sm, sm->bssid, MLME_SETPROTECTION_PROTECT_TYPE_RX,
MLME_SETPROTECTION_KEY_TYPE_PAIRWISE);
eapol_sm_notify_portValid(sm->eapol, TRUE);
}
wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE);
if (sm->group_cipher == WPA_CIPHER_GTK_NOT_USED) {
wpa_supplicant_key_neg_complete(sm, sm->bssid,
key_info & WPA_KEY_INFO_SECURE);
} else if (ie.gtk &&
wpa_supplicant_pairwise_gtk(sm, key,
ie.gtk, ie.gtk_len, key_info) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"RSN: Failed to configure GTK");
goto failed;
}
if (ieee80211w_set_keys(sm, &ie) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"RSN: Failed to configure IGTK");
goto failed;
}
if (ie.gtk)
wpa_sm_set_rekey_offload(sm);
if (sm->proto == WPA_PROTO_RSN && wpa_key_mgmt_suite_b(sm->key_mgmt)) {
struct rsn_pmksa_cache_entry *sa;
sa = pmksa_cache_add(sm->pmksa, sm->pmk, sm->pmk_len, NULL,
sm->ptk.kck, sm->ptk.kck_len,
sm->bssid, sm->own_addr,
sm->network_ctx, sm->key_mgmt, NULL);
if (!sm->cur_pmksa)
sm->cur_pmksa = sa;
}
sm->msg_3_of_4_ok = 1;
return;
failed:
wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED);
}
static int wpa_supplicant_process_1_of_2_rsn(struct wpa_sm *sm,
const u8 *keydata,
size_t keydatalen,
u16 key_info,
struct wpa_gtk_data *gd)
{
int maxkeylen;
struct wpa_eapol_ie_parse ie;
wpa_hexdump_key(MSG_DEBUG, "RSN: msg 1/2 key data",
keydata, keydatalen);
if (wpa_supplicant_parse_ies(keydata, keydatalen, &ie) < 0)
return -1;
if (ie.gtk && !(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: GTK IE in unencrypted key data");
return -1;
}
if (ie.gtk == NULL) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: No GTK IE in Group Key msg 1/2");
return -1;
}
maxkeylen = gd->gtk_len = ie.gtk_len - 2;
if (wpa_supplicant_check_group_cipher(sm, sm->group_cipher,
gd->gtk_len, maxkeylen,
&gd->key_rsc_len, &gd->alg))
return -1;
wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in group key handshake",
ie.gtk, ie.gtk_len);
gd->keyidx = ie.gtk[0] & 0x3;
gd->tx = wpa_supplicant_gtk_tx_bit_workaround(sm,
!!(ie.gtk[0] & BIT(2)));
if (ie.gtk_len - 2 > sizeof(gd->gtk)) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"RSN: Too long GTK in GTK IE (len=%lu)",
(unsigned long) ie.gtk_len - 2);
return -1;
}
os_memcpy(gd->gtk, ie.gtk + 2, ie.gtk_len - 2);
if (ieee80211w_set_keys(sm, &ie) < 0)
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"RSN: Failed to configure IGTK");
return 0;
}
static int wpa_supplicant_process_1_of_2_wpa(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
const u8 *key_data,
size_t key_data_len, u16 key_info,
u16 ver, struct wpa_gtk_data *gd)
{
size_t maxkeylen;
u16 gtk_len;
gtk_len = WPA_GET_BE16(key->key_length);
maxkeylen = key_data_len;
if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
if (maxkeylen < 8) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Too short maxkeylen (%lu)",
(unsigned long) maxkeylen);
return -1;
}
maxkeylen -= 8;
}
if (gtk_len > maxkeylen ||
wpa_supplicant_check_group_cipher(sm, sm->group_cipher,
gtk_len, maxkeylen,
&gd->key_rsc_len, &gd->alg))
return -1;
gd->gtk_len = gtk_len;
gd->keyidx = (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >>
WPA_KEY_INFO_KEY_INDEX_SHIFT;
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && sm->ptk.kek_len == 16) {
#ifdef CONFIG_NO_RC4
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: RC4 not supported in the build");
return -1;
#else /* CONFIG_NO_RC4 */
u8 ek[32];
if (key_data_len > sizeof(gd->gtk)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: RC4 key data too long (%lu)",
(unsigned long) key_data_len);
return -1;
}
os_memcpy(ek, key->key_iv, 16);
os_memcpy(ek + 16, sm->ptk.kek, sm->ptk.kek_len);
os_memcpy(gd->gtk, key_data, key_data_len);
if (rc4_skip(ek, 32, 256, gd->gtk, key_data_len)) {
os_memset(ek, 0, sizeof(ek));
wpa_msg(sm->ctx->msg_ctx, MSG_ERROR,
"WPA: RC4 failed");
return -1;
}
os_memset(ek, 0, sizeof(ek));
#endif /* CONFIG_NO_RC4 */
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
if (maxkeylen % 8) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported AES-WRAP len %lu",
(unsigned long) maxkeylen);
return -1;
}
if (maxkeylen > sizeof(gd->gtk)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: AES-WRAP key data "
"too long (keydatalen=%lu maxkeylen=%lu)",
(unsigned long) key_data_len,
(unsigned long) maxkeylen);
return -1;
}
if (aes_unwrap(sm->ptk.kek, sm->ptk.kek_len, maxkeylen / 8,
key_data, gd->gtk)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: AES unwrap failed - could not decrypt "
"GTK");
return -1;
}
} else {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported key_info type %d", ver);
return -1;
}
gd->tx = wpa_supplicant_gtk_tx_bit_workaround(
sm, !!(key_info & WPA_KEY_INFO_TXRX));
return 0;
}
static int wpa_supplicant_send_2_of_2(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
int ver, u16 key_info)
{
size_t mic_len, hdrlen, rlen;
struct wpa_eapol_key *reply;
u8 *rbuf, *key_mic;
mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
hdrlen = sizeof(*reply) + mic_len + 2;
rbuf = wpa_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_KEY, NULL,
hdrlen, &rlen, (void *) &reply);
if (rbuf == NULL)
return -1;
reply->type = (sm->proto == WPA_PROTO_RSN ||
sm->proto == WPA_PROTO_OSEN) ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info &= WPA_KEY_INFO_KEY_INDEX_MASK;
key_info |= ver | WPA_KEY_INFO_SECURE;
if (mic_len)
key_info |= WPA_KEY_INFO_MIC;
else
key_info |= WPA_KEY_INFO_ENCR_KEY_DATA;
WPA_PUT_BE16(reply->key_info, key_info);
if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN)
WPA_PUT_BE16(reply->key_length, 0);
else
os_memcpy(reply->key_length, key->key_length, 2);
os_memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
key_mic = (u8 *) (reply + 1);
WPA_PUT_BE16(key_mic + mic_len, 0);
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Sending EAPOL-Key 2/2");
return wpa_eapol_key_send(sm, &sm->ptk, ver, sm->bssid, ETH_P_EAPOL,
rbuf, rlen, key_mic);
}
static void wpa_supplicant_process_1_of_2(struct wpa_sm *sm,
const unsigned char *src_addr,
const struct wpa_eapol_key *key,
const u8 *key_data,
size_t key_data_len, u16 ver)
{
u16 key_info;
int rekey, ret;
struct wpa_gtk_data gd;
const u8 *key_rsc;
if (!sm->msg_3_of_4_ok && !wpa_fils_is_completed(sm)) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Group Key Handshake started prior to completion of 4-way handshake");
goto failed;
}
os_memset(&gd, 0, sizeof(gd));
rekey = wpa_sm_get_state(sm) == WPA_COMPLETED;
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: RX message 1 of Group Key "
"Handshake from " MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
key_info = WPA_GET_BE16(key->key_info);
if (sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) {
ret = wpa_supplicant_process_1_of_2_rsn(sm, key_data,
key_data_len, key_info,
&gd);
} else {
ret = wpa_supplicant_process_1_of_2_wpa(sm, key, key_data,
key_data_len,
key_info, ver, &gd);
}
wpa_sm_set_state(sm, WPA_GROUP_HANDSHAKE);
if (ret)
goto failed;
key_rsc = key->key_rsc;
if (wpa_supplicant_rsc_relaxation(sm, key->key_rsc))
key_rsc = null_rsc;
if (wpa_supplicant_install_gtk(sm, &gd, key_rsc, 0) ||
wpa_supplicant_send_2_of_2(sm, key, ver, key_info) < 0)
goto failed;
os_memset(&gd, 0, sizeof(gd));
if (rekey) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Group rekeying "
"completed with " MACSTR " [GTK=%s]",
MAC2STR(sm->bssid), wpa_cipher_txt(sm->group_cipher));
wpa_sm_cancel_auth_timeout(sm);
wpa_sm_set_state(sm, WPA_COMPLETED);
} else {
wpa_supplicant_key_neg_complete(sm, sm->bssid,
key_info &
WPA_KEY_INFO_SECURE);
}
wpa_sm_set_rekey_offload(sm);
return;
failed:
os_memset(&gd, 0, sizeof(gd));
wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED);
}
static int wpa_supplicant_verify_eapol_key_mic(struct wpa_sm *sm,
struct wpa_eapol_key *key,
u16 ver,
const u8 *buf, size_t len)
{
u8 mic[WPA_EAPOL_KEY_MIC_MAX_LEN];
int ok = 0;
size_t mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
os_memcpy(mic, key + 1, mic_len);
if (sm->tptk_set) {
os_memset(key + 1, 0, mic_len);
if (wpa_eapol_key_mic(sm->tptk.kck, sm->tptk.kck_len,
sm->key_mgmt,
ver, buf, len, (u8 *) (key + 1)) < 0 ||
os_memcmp_const(mic, key + 1, mic_len) != 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Invalid EAPOL-Key MIC "
"when using TPTK - ignoring TPTK");
} else {
ok = 1;
sm->tptk_set = 0;
sm->ptk_set = 1;
os_memcpy(&sm->ptk, &sm->tptk, sizeof(sm->ptk));
os_memset(&sm->tptk, 0, sizeof(sm->tptk));
/*
* This assures the same TPTK in sm->tptk can never be
* copied twice to sm->pkt as the new PTK. In
* combination with the installed flag in the wpa_ptk
* struct, this assures the same PTK is only installed
* once.
*/
sm->renew_snonce = 1;
}
}
if (!ok && sm->ptk_set) {
os_memset(key + 1, 0, mic_len);
if (wpa_eapol_key_mic(sm->ptk.kck, sm->ptk.kck_len,
sm->key_mgmt,
ver, buf, len, (u8 *) (key + 1)) < 0 ||
os_memcmp_const(mic, key + 1, mic_len) != 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Invalid EAPOL-Key MIC - "
"dropping packet");
return -1;
}
ok = 1;
}
if (!ok) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Could not verify EAPOL-Key MIC - "
"dropping packet");
return -1;
}
os_memcpy(sm->rx_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
sm->rx_replay_counter_set = 1;
return 0;
}
/* Decrypt RSN EAPOL-Key key data (RC4 or AES-WRAP) */
static int wpa_supplicant_decrypt_key_data(struct wpa_sm *sm,
struct wpa_eapol_key *key,
size_t mic_len, u16 ver,
u8 *key_data, size_t *key_data_len)
{
wpa_hexdump(MSG_DEBUG, "RSN: encrypted key data",
key_data, *key_data_len);
if (!sm->ptk_set) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: PTK not available, cannot decrypt EAPOL-Key Key "
"Data");
return -1;
}
/* Decrypt key data here so that this operation does not need
* to be implemented separately for each message type. */
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 && sm->ptk.kek_len == 16) {
#ifdef CONFIG_NO_RC4
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: RC4 not supported in the build");
return -1;
#else /* CONFIG_NO_RC4 */
u8 ek[32];
wpa_printf(MSG_DEBUG, "WPA: Decrypt Key Data using RC4");
os_memcpy(ek, key->key_iv, 16);
os_memcpy(ek + 16, sm->ptk.kek, sm->ptk.kek_len);
if (rc4_skip(ek, 32, 256, key_data, *key_data_len)) {
os_memset(ek, 0, sizeof(ek));
wpa_msg(sm->ctx->msg_ctx, MSG_ERROR,
"WPA: RC4 failed");
return -1;
}
os_memset(ek, 0, sizeof(ek));
#endif /* CONFIG_NO_RC4 */
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES ||
ver == WPA_KEY_INFO_TYPE_AES_128_CMAC ||
sm->key_mgmt == WPA_KEY_MGMT_OWE ||
sm->key_mgmt == WPA_KEY_MGMT_DPP ||
sm->key_mgmt == WPA_KEY_MGMT_OSEN ||
wpa_key_mgmt_suite_b(sm->key_mgmt)) {
u8 *buf;
wpa_printf(MSG_DEBUG,
"WPA: Decrypt Key Data using AES-UNWRAP (KEK length %u)",
(unsigned int) sm->ptk.kek_len);
if (*key_data_len < 8 || *key_data_len % 8) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported AES-WRAP len %u",
(unsigned int) *key_data_len);
return -1;
}
*key_data_len -= 8; /* AES-WRAP adds 8 bytes */
buf = os_malloc(*key_data_len);
if (buf == NULL) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: No memory for AES-UNWRAP buffer");
return -1;
}
if (aes_unwrap(sm->ptk.kek, sm->ptk.kek_len, *key_data_len / 8,
key_data, buf)) {
bin_clear_free(buf, *key_data_len);
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: AES unwrap failed - "
"could not decrypt EAPOL-Key key data");
return -1;
}
os_memcpy(key_data, buf, *key_data_len);
bin_clear_free(buf, *key_data_len);
WPA_PUT_BE16(((u8 *) (key + 1)) + mic_len, *key_data_len);
} else {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Unsupported key_info type %d", ver);
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "WPA: decrypted EAPOL-Key key data",
key_data, *key_data_len);
return 0;
}
/**
* wpa_sm_aborted_cached - Notify WPA that PMKSA caching was aborted
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*/
void wpa_sm_aborted_cached(struct wpa_sm *sm)
{
if (sm && sm->cur_pmksa) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: Cancelling PMKSA caching attempt");
sm->cur_pmksa = NULL;
}
}
static void wpa_eapol_key_dump(struct wpa_sm *sm,
const struct wpa_eapol_key *key,
unsigned int key_data_len,
const u8 *mic, unsigned int mic_len)
{
#ifndef CONFIG_NO_STDOUT_DEBUG
u16 key_info = WPA_GET_BE16(key->key_info);
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, " EAPOL-Key type=%d", key->type);
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
" key_info 0x%x (ver=%d keyidx=%d rsvd=%d %s%s%s%s%s%s%s%s)",
key_info, key_info & WPA_KEY_INFO_TYPE_MASK,
(key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >>
WPA_KEY_INFO_KEY_INDEX_SHIFT,
(key_info & (BIT(13) | BIT(14) | BIT(15))) >> 13,
key_info & WPA_KEY_INFO_KEY_TYPE ? "Pairwise" : "Group",
key_info & WPA_KEY_INFO_INSTALL ? " Install" : "",
key_info & WPA_KEY_INFO_ACK ? " Ack" : "",
key_info & WPA_KEY_INFO_MIC ? " MIC" : "",
key_info & WPA_KEY_INFO_SECURE ? " Secure" : "",
key_info & WPA_KEY_INFO_ERROR ? " Error" : "",
key_info & WPA_KEY_INFO_REQUEST ? " Request" : "",
key_info & WPA_KEY_INFO_ENCR_KEY_DATA ? " Encr" : "");
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
" key_length=%u key_data_length=%u",
WPA_GET_BE16(key->key_length), key_data_len);
wpa_hexdump(MSG_DEBUG, " replay_counter",
key->replay_counter, WPA_REPLAY_COUNTER_LEN);
wpa_hexdump(MSG_DEBUG, " key_nonce", key->key_nonce, WPA_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, " key_iv", key->key_iv, 16);
wpa_hexdump(MSG_DEBUG, " key_rsc", key->key_rsc, 8);
wpa_hexdump(MSG_DEBUG, " key_id (reserved)", key->key_id, 8);
wpa_hexdump(MSG_DEBUG, " key_mic", mic, mic_len);
#endif /* CONFIG_NO_STDOUT_DEBUG */
}
#ifdef CONFIG_FILS
static int wpa_supp_aead_decrypt(struct wpa_sm *sm, u8 *buf, size_t buf_len,
size_t *key_data_len)
{
struct wpa_ptk *ptk;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u8 *pos, *tmp;
const u8 *aad[1];
size_t aad_len[1];
if (*key_data_len < AES_BLOCK_SIZE) {
wpa_printf(MSG_INFO, "No room for AES-SIV data in the frame");
return -1;
}
if (sm->tptk_set)
ptk = &sm->tptk;
else if (sm->ptk_set)
ptk = &sm->ptk;
else
return -1;
hdr = (struct ieee802_1x_hdr *) buf;
key = (struct wpa_eapol_key *) (hdr + 1);
pos = (u8 *) (key + 1);
pos += 2; /* Pointing at the Encrypted Key Data field */
tmp = os_malloc(*key_data_len);
if (!tmp)
return -1;
/* AES-SIV AAD from EAPOL protocol version field (inclusive) to
* to Key Data (exclusive). */
aad[0] = buf;
aad_len[0] = pos - buf;
if (aes_siv_decrypt(ptk->kek, ptk->kek_len, pos, *key_data_len,
1, aad, aad_len, tmp) < 0) {
wpa_printf(MSG_INFO, "Invalid AES-SIV data in the frame");
bin_clear_free(tmp, *key_data_len);
return -1;
}
/* AEAD decryption and validation completed successfully */
(*key_data_len) -= AES_BLOCK_SIZE;
wpa_hexdump_key(MSG_DEBUG, "WPA: Decrypted Key Data",
tmp, *key_data_len);
/* Replace Key Data field with the decrypted version */
os_memcpy(pos, tmp, *key_data_len);
pos -= 2; /* Key Data Length field */
WPA_PUT_BE16(pos, *key_data_len);
bin_clear_free(tmp, *key_data_len);
if (sm->tptk_set) {
sm->tptk_set = 0;
sm->ptk_set = 1;
os_memcpy(&sm->ptk, &sm->tptk, sizeof(sm->ptk));
os_memset(&sm->tptk, 0, sizeof(sm->tptk));
}
os_memcpy(sm->rx_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
sm->rx_replay_counter_set = 1;
return 0;
}
#endif /* CONFIG_FILS */
/**
* wpa_sm_rx_eapol - Process received WPA EAPOL frames
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @src_addr: Source MAC address of the EAPOL packet
* @buf: Pointer to the beginning of the EAPOL data (EAPOL header)
* @len: Length of the EAPOL frame
* Returns: 1 = WPA EAPOL-Key processed, 0 = not a WPA EAPOL-Key, -1 failure
*
* This function is called for each received EAPOL frame. Other than EAPOL-Key
* frames can be skipped if filtering is done elsewhere. wpa_sm_rx_eapol() is
* only processing WPA and WPA2 EAPOL-Key frames.
*
* The received EAPOL-Key packets are validated and valid packets are replied
* to. In addition, key material (PTK, GTK) is configured at the end of a
* successful key handshake.
*/
int wpa_sm_rx_eapol(struct wpa_sm *sm, const u8 *src_addr,
const u8 *buf, size_t len)
{
size_t plen, data_len, key_data_len;
const struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
u16 key_info, ver;
u8 *tmp = NULL;
int ret = -1;
u8 *mic, *key_data;
size_t mic_len, keyhdrlen;
#ifdef CONFIG_IEEE80211R
sm->ft_completed = 0;
#endif /* CONFIG_IEEE80211R */
mic_len = wpa_mic_len(sm->key_mgmt, sm->pmk_len);
keyhdrlen = sizeof(*key) + mic_len + 2;
if (len < sizeof(*hdr) + keyhdrlen) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: EAPOL frame too short to be a WPA "
"EAPOL-Key (len %lu, expecting at least %lu)",
(unsigned long) len,
(unsigned long) sizeof(*hdr) + keyhdrlen);
return 0;
}
hdr = (const struct ieee802_1x_hdr *) buf;
plen = be_to_host16(hdr->length);
data_len = plen + sizeof(*hdr);
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"IEEE 802.1X RX: version=%d type=%d length=%lu",
hdr->version, hdr->type, (unsigned long) plen);
if (hdr->version < EAPOL_VERSION) {
/* TODO: backwards compatibility */
}
if (hdr->type != IEEE802_1X_TYPE_EAPOL_KEY) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: EAPOL frame (type %u) discarded, "
"not a Key frame", hdr->type);
ret = 0;
goto out;
}
wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL-Key", buf, len);
if (plen > len - sizeof(*hdr) || plen < keyhdrlen) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: EAPOL frame payload size %lu "
"invalid (frame size %lu)",
(unsigned long) plen, (unsigned long) len);
ret = 0;
goto out;
}
if (data_len < len) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: ignoring %lu bytes after the IEEE 802.1X data",
(unsigned long) len - data_len);
}
/*
* Make a copy of the frame since we need to modify the buffer during
* MAC validation and Key Data decryption.
*/
tmp = os_memdup(buf, data_len);
if (tmp == NULL)
goto out;
key = (struct wpa_eapol_key *) (tmp + sizeof(struct ieee802_1x_hdr));
mic = (u8 *) (key + 1);
key_data = mic + mic_len + 2;
if (key->type != EAPOL_KEY_TYPE_WPA && key->type != EAPOL_KEY_TYPE_RSN)
{
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: EAPOL-Key type (%d) unknown, discarded",
key->type);
ret = 0;
goto out;
}
key_data_len = WPA_GET_BE16(mic + mic_len);
wpa_eapol_key_dump(sm, key, key_data_len, mic, mic_len);
if (key_data_len > plen - keyhdrlen) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO, "WPA: Invalid EAPOL-Key "
"frame - key_data overflow (%u > %u)",
(unsigned int) key_data_len,
(unsigned int) (plen - keyhdrlen));
goto out;
}
eapol_sm_notify_lower_layer_success(sm->eapol, 0);
key_info = WPA_GET_BE16(key->key_info);
ver = key_info & WPA_KEY_INFO_TYPE_MASK;
if (ver != WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 &&
#if defined(CONFIG_IEEE80211R) || defined(CONFIG_IEEE80211W)
ver != WPA_KEY_INFO_TYPE_AES_128_CMAC &&
#endif /* CONFIG_IEEE80211R || CONFIG_IEEE80211W */
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES &&
!wpa_key_mgmt_suite_b(sm->key_mgmt) &&
!wpa_key_mgmt_fils(sm->key_mgmt) &&
sm->key_mgmt != WPA_KEY_MGMT_OWE &&
sm->key_mgmt != WPA_KEY_MGMT_DPP &&
sm->key_mgmt != WPA_KEY_MGMT_OSEN) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Unsupported EAPOL-Key descriptor version %d",
ver);
goto out;
}
if (sm->key_mgmt == WPA_KEY_MGMT_OSEN &&
ver != WPA_KEY_INFO_TYPE_AKM_DEFINED) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"OSEN: Unsupported EAPOL-Key descriptor version %d",
ver);
goto out;
}
if ((wpa_key_mgmt_suite_b(sm->key_mgmt) ||
wpa_key_mgmt_fils(sm->key_mgmt) ||
sm->key_mgmt == WPA_KEY_MGMT_DPP ||
sm->key_mgmt == WPA_KEY_MGMT_OWE) &&
ver != WPA_KEY_INFO_TYPE_AKM_DEFINED) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"RSN: Unsupported EAPOL-Key descriptor version %d (expected AKM defined = 0)",
ver);
goto out;
}
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->key_mgmt)) {
/* IEEE 802.11r uses a new key_info type (AES-128-CMAC). */
if (ver != WPA_KEY_INFO_TYPE_AES_128_CMAC) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"FT: AP did not use AES-128-CMAC");
goto out;
}
} else
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_IEEE80211W
if (wpa_key_mgmt_sha256(sm->key_mgmt)) {
if (ver != WPA_KEY_INFO_TYPE_AES_128_CMAC &&
sm->key_mgmt != WPA_KEY_MGMT_OSEN &&
!wpa_key_mgmt_fils(sm->key_mgmt) &&
!wpa_key_mgmt_suite_b(sm->key_mgmt)) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: AP did not use the "
"negotiated AES-128-CMAC");
goto out;
}
} else
#endif /* CONFIG_IEEE80211W */
if (sm->pairwise_cipher == WPA_CIPHER_CCMP &&
!wpa_key_mgmt_suite_b(sm->key_mgmt) &&
!wpa_key_mgmt_fils(sm->key_mgmt) &&
sm->key_mgmt != WPA_KEY_MGMT_OWE &&
sm->key_mgmt != WPA_KEY_MGMT_DPP &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: CCMP is used, but EAPOL-Key "
"descriptor version (%d) is not 2", ver);
if (sm->group_cipher != WPA_CIPHER_CCMP &&
!(key_info & WPA_KEY_INFO_KEY_TYPE)) {
/* Earlier versions of IEEE 802.11i did not explicitly
* require version 2 descriptor for all EAPOL-Key
* packets, so allow group keys to use version 1 if
* CCMP is not used for them. */
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Backwards compatibility: allow invalid "
"version for non-CCMP group keys");
} else if (ver == WPA_KEY_INFO_TYPE_AES_128_CMAC) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Interoperability workaround: allow incorrect (should have been HMAC-SHA1), but stronger (is AES-128-CMAC), descriptor version to be used");
} else
goto out;
} else if (sm->pairwise_cipher == WPA_CIPHER_GCMP &&
!wpa_key_mgmt_suite_b(sm->key_mgmt) &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: GCMP is used, but EAPOL-Key "
"descriptor version (%d) is not 2", ver);
goto out;
}
if (sm->rx_replay_counter_set &&
os_memcmp(key->replay_counter, sm->rx_replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: EAPOL-Key Replay Counter did not increase - "
"dropping packet");
goto out;
}
if (key_info & WPA_KEY_INFO_SMK_MESSAGE) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: Unsupported SMK bit in key_info");
goto out;
}
if (!(key_info & WPA_KEY_INFO_ACK)) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: No Ack bit in key_info");
goto out;
}
if (key_info & WPA_KEY_INFO_REQUEST) {
wpa_msg(sm->ctx->msg_ctx, MSG_INFO,
"WPA: EAPOL-Key with Request bit - dropped");
goto out;
}
if ((key_info & WPA_KEY_INFO_MIC) &&
wpa_supplicant_verify_eapol_key_mic(sm, key, ver, tmp, data_len))
goto out;
#ifdef CONFIG_FILS
if (!mic_len && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
if (wpa_supp_aead_decrypt(sm, tmp, data_len, &key_data_len))
goto out;
}
#endif /* CONFIG_FILS */
if ((sm->proto == WPA_PROTO_RSN || sm->proto == WPA_PROTO_OSEN) &&
(key_info & WPA_KEY_INFO_ENCR_KEY_DATA) && mic_len) {
if (wpa_supplicant_decrypt_key_data(sm, key, mic_len,
ver, key_data,
&key_data_len))
goto out;
}
if (key_info & WPA_KEY_INFO_KEY_TYPE) {
if (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Ignored EAPOL-Key (Pairwise) with "
"non-zero key index");
goto out;
}
if (key_info & (WPA_KEY_INFO_MIC |
WPA_KEY_INFO_ENCR_KEY_DATA)) {
/* 3/4 4-Way Handshake */
wpa_supplicant_process_3_of_4(sm, key, ver, key_data,
key_data_len);
} else {
/* 1/4 4-Way Handshake */
wpa_supplicant_process_1_of_4(sm, src_addr, key,
ver, key_data,
key_data_len);
}
} else {
if ((mic_len && (key_info & WPA_KEY_INFO_MIC)) ||
(!mic_len && (key_info & WPA_KEY_INFO_ENCR_KEY_DATA))) {
/* 1/2 Group Key Handshake */
wpa_supplicant_process_1_of_2(sm, src_addr, key,
key_data, key_data_len,
ver);
} else {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: EAPOL-Key (Group) without Mic/Encr bit - "
"dropped");
}
}
ret = 1;
out:
bin_clear_free(tmp, data_len);
return ret;
}
#ifdef CONFIG_CTRL_IFACE
static u32 wpa_key_mgmt_suite(struct wpa_sm *sm)
{
switch (sm->key_mgmt) {
case WPA_KEY_MGMT_IEEE8021X:
return ((sm->proto == WPA_PROTO_RSN ||
sm->proto == WPA_PROTO_OSEN) ?
RSN_AUTH_KEY_MGMT_UNSPEC_802_1X :
WPA_AUTH_KEY_MGMT_UNSPEC_802_1X);
case WPA_KEY_MGMT_PSK:
return (sm->proto == WPA_PROTO_RSN ?
RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X :
WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X);
#ifdef CONFIG_IEEE80211R
case WPA_KEY_MGMT_FT_IEEE8021X:
return RSN_AUTH_KEY_MGMT_FT_802_1X;
case WPA_KEY_MGMT_FT_PSK:
return RSN_AUTH_KEY_MGMT_FT_PSK;
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_IEEE80211W
case WPA_KEY_MGMT_IEEE8021X_SHA256:
return RSN_AUTH_KEY_MGMT_802_1X_SHA256;
case WPA_KEY_MGMT_PSK_SHA256:
return RSN_AUTH_KEY_MGMT_PSK_SHA256;
#endif /* CONFIG_IEEE80211W */
case WPA_KEY_MGMT_CCKM:
return (sm->proto == WPA_PROTO_RSN ?
RSN_AUTH_KEY_MGMT_CCKM:
WPA_AUTH_KEY_MGMT_CCKM);
case WPA_KEY_MGMT_WPA_NONE:
return WPA_AUTH_KEY_MGMT_NONE;
case WPA_KEY_MGMT_IEEE8021X_SUITE_B:
return RSN_AUTH_KEY_MGMT_802_1X_SUITE_B;
case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
return RSN_AUTH_KEY_MGMT_802_1X_SUITE_B_192;
default:
return 0;
}
}
#define RSN_SUITE "%02x-%02x-%02x-%d"
#define RSN_SUITE_ARG(s) \
((s) >> 24) & 0xff, ((s) >> 16) & 0xff, ((s) >> 8) & 0xff, (s) & 0xff
/**
* wpa_sm_get_mib - Dump text list of MIB entries
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @buf: Buffer for the list
* @buflen: Length of the buffer
* Returns: Number of bytes written to buffer
*
* This function is used fetch dot11 MIB variables.
*/
int wpa_sm_get_mib(struct wpa_sm *sm, char *buf, size_t buflen)
{
char pmkid_txt[PMKID_LEN * 2 + 1];
int rsna, ret;
size_t len;
if (sm->cur_pmksa) {
wpa_snprintf_hex(pmkid_txt, sizeof(pmkid_txt),
sm->cur_pmksa->pmkid, PMKID_LEN);
} else
pmkid_txt[0] = '\0';
if ((wpa_key_mgmt_wpa_psk(sm->key_mgmt) ||
wpa_key_mgmt_wpa_ieee8021x(sm->key_mgmt)) &&
sm->proto == WPA_PROTO_RSN)
rsna = 1;
else
rsna = 0;
ret = os_snprintf(buf, buflen,
"dot11RSNAOptionImplemented=TRUE\n"
"dot11RSNAPreauthenticationImplemented=TRUE\n"
"dot11RSNAEnabled=%s\n"
"dot11RSNAPreauthenticationEnabled=%s\n"
"dot11RSNAConfigVersion=%d\n"
"dot11RSNAConfigPairwiseKeysSupported=5\n"
"dot11RSNAConfigGroupCipherSize=%d\n"
"dot11RSNAConfigPMKLifetime=%d\n"
"dot11RSNAConfigPMKReauthThreshold=%d\n"
"dot11RSNAConfigNumberOfPTKSAReplayCounters=1\n"
"dot11RSNAConfigSATimeout=%d\n",
rsna ? "TRUE" : "FALSE",
rsna ? "TRUE" : "FALSE",
RSN_VERSION,
wpa_cipher_key_len(sm->group_cipher) * 8,
sm->dot11RSNAConfigPMKLifetime,
sm->dot11RSNAConfigPMKReauthThreshold,
sm->dot11RSNAConfigSATimeout);
if (os_snprintf_error(buflen, ret))
return 0;
len = ret;
ret = os_snprintf(
buf + len, buflen - len,
"dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n"
"dot11RSNAGroupCipherSelected=" RSN_SUITE "\n"
"dot11RSNAPMKIDUsed=%s\n"
"dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n"
"dot11RSNAGroupCipherRequested=" RSN_SUITE "\n"
"dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n"
"dot11RSNA4WayHandshakeFailures=%u\n",
RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)),
RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto,
sm->pairwise_cipher)),
RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto,
sm->group_cipher)),
pmkid_txt,
RSN_SUITE_ARG(wpa_key_mgmt_suite(sm)),
RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto,
sm->pairwise_cipher)),
RSN_SUITE_ARG(wpa_cipher_to_suite(sm->proto,
sm->group_cipher)),
sm->dot11RSNA4WayHandshakeFailures);
if (!os_snprintf_error(buflen - len, ret))
len += ret;
return (int) len;
}
#endif /* CONFIG_CTRL_IFACE */
static void wpa_sm_pmksa_free_cb(struct rsn_pmksa_cache_entry *entry,
void *ctx, enum pmksa_free_reason reason)
{
struct wpa_sm *sm = ctx;
int deauth = 0;
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "RSN: PMKSA cache entry free_cb: "
MACSTR " reason=%d", MAC2STR(entry->aa), reason);
if (sm->cur_pmksa == entry) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: %s current PMKSA entry",
reason == PMKSA_REPLACE ? "replaced" : "removed");
pmksa_cache_clear_current(sm);
/*
* If an entry is simply being replaced, there's no need to
* deauthenticate because it will be immediately re-added.
* This happens when EAP authentication is completed again
* (reauth or failed PMKSA caching attempt).
*/
if (reason != PMKSA_REPLACE)
deauth = 1;
}
if (reason == PMKSA_EXPIRE &&
(sm->pmk_len == entry->pmk_len &&
os_memcmp(sm->pmk, entry->pmk, sm->pmk_len) == 0)) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"RSN: deauthenticating due to expired PMK");
pmksa_cache_clear_current(sm);
deauth = 1;
}
if (deauth) {
os_memset(sm->pmk, 0, sizeof(sm->pmk));
wpa_sm_deauthenticate(sm, WLAN_REASON_UNSPECIFIED);
}
}
/**
* wpa_sm_init - Initialize WPA state machine
* @ctx: Context pointer for callbacks; this needs to be an allocated buffer
* Returns: Pointer to the allocated WPA state machine data
*
* This function is used to allocate a new WPA state machine and the returned
* value is passed to all WPA state machine calls.
*/
struct wpa_sm * wpa_sm_init(struct wpa_sm_ctx *ctx)
{
struct wpa_sm *sm;
sm = os_zalloc(sizeof(*sm));
if (sm == NULL)
return NULL;
dl_list_init(&sm->pmksa_candidates);
sm->renew_snonce = 1;
sm->ctx = ctx;
sm->dot11RSNAConfigPMKLifetime = 43200;
sm->dot11RSNAConfigPMKReauthThreshold = 70;
sm->dot11RSNAConfigSATimeout = 60;
sm->pmksa = pmksa_cache_init(wpa_sm_pmksa_free_cb, sm, sm);
if (sm->pmksa == NULL) {
wpa_msg(sm->ctx->msg_ctx, MSG_ERROR,
"RSN: PMKSA cache initialization failed");
os_free(sm);
return NULL;
}
return sm;
}
/**
* wpa_sm_deinit - Deinitialize WPA state machine
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*/
void wpa_sm_deinit(struct wpa_sm *sm)
{
if (sm == NULL)
return;
pmksa_cache_deinit(sm->pmksa);
eloop_cancel_timeout(wpa_sm_start_preauth, sm, NULL);
eloop_cancel_timeout(wpa_sm_rekey_ptk, sm, NULL);
os_free(sm->assoc_wpa_ie);
os_free(sm->ap_wpa_ie);
os_free(sm->ap_rsn_ie);
wpa_sm_drop_sa(sm);
os_free(sm->ctx);
#ifdef CONFIG_IEEE80211R
os_free(sm->assoc_resp_ies);
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_TESTING_OPTIONS
wpabuf_free(sm->test_assoc_ie);
#endif /* CONFIG_TESTING_OPTIONS */
#ifdef CONFIG_FILS_SK_PFS
crypto_ecdh_deinit(sm->fils_ecdh);
#endif /* CONFIG_FILS_SK_PFS */
#ifdef CONFIG_FILS
wpabuf_free(sm->fils_ft_ies);
#endif /* CONFIG_FILS */
#ifdef CONFIG_OWE
crypto_ecdh_deinit(sm->owe_ecdh);
#endif /* CONFIG_OWE */
os_free(sm);
}
/**
* wpa_sm_notify_assoc - Notify WPA state machine about association
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @bssid: The BSSID of the new association
*
* This function is called to let WPA state machine know that the connection
* was established.
*/
void wpa_sm_notify_assoc(struct wpa_sm *sm, const u8 *bssid)
{
int clear_keys = 1;
if (sm == NULL)
return;
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: Association event - clear replay counter");
os_memcpy(sm->bssid, bssid, ETH_ALEN);
os_memset(sm->rx_replay_counter, 0, WPA_REPLAY_COUNTER_LEN);
sm->rx_replay_counter_set = 0;
sm->renew_snonce = 1;
if (os_memcmp(sm->preauth_bssid, bssid, ETH_ALEN) == 0)
rsn_preauth_deinit(sm);
#ifdef CONFIG_IEEE80211R
if (wpa_ft_is_completed(sm)) {
/*
* Clear portValid to kick EAPOL state machine to re-enter
* AUTHENTICATED state to get the EAPOL port Authorized.
*/
eapol_sm_notify_portValid(sm->eapol, FALSE);
wpa_supplicant_key_neg_complete(sm, sm->bssid, 1);
/* Prepare for the next transition */
wpa_ft_prepare_auth_request(sm, NULL);
clear_keys = 0;
}
#endif /* CONFIG_IEEE80211R */
#ifdef CONFIG_FILS
if (sm->fils_completed) {
/*
* Clear portValid to kick EAPOL state machine to re-enter
* AUTHENTICATED state to get the EAPOL port Authorized.
*/
wpa_supplicant_key_neg_complete(sm, sm->bssid, 1);
clear_keys = 0;
}
#endif /* CONFIG_FILS */
if (clear_keys) {
/*
* IEEE 802.11, 8.4.10: Delete PTK SA on (re)association if
* this is not part of a Fast BSS Transition.
*/
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Clear old PTK");
sm->ptk_set = 0;
os_memset(&sm->ptk, 0, sizeof(sm->ptk));
sm->tptk_set = 0;
os_memset(&sm->tptk, 0, sizeof(sm->tptk));
os_memset(&sm->gtk, 0, sizeof(sm->gtk));
os_memset(&sm->gtk_wnm_sleep, 0, sizeof(sm->gtk_wnm_sleep));
#ifdef CONFIG_IEEE80211W
os_memset(&sm->igtk, 0, sizeof(sm->igtk));
os_memset(&sm->igtk_wnm_sleep, 0, sizeof(sm->igtk_wnm_sleep));
#endif /* CONFIG_IEEE80211W */
}
#ifdef CONFIG_TDLS
wpa_tdls_assoc(sm);
#endif /* CONFIG_TDLS */
#ifdef CONFIG_P2P
os_memset(sm->p2p_ip_addr, 0, sizeof(sm->p2p_ip_addr));
#endif /* CONFIG_P2P */
}
/**
* wpa_sm_notify_disassoc - Notify WPA state machine about disassociation
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*
* This function is called to let WPA state machine know that the connection
* was lost. This will abort any existing pre-authentication session.
*/
void wpa_sm_notify_disassoc(struct wpa_sm *sm)
{
eloop_cancel_timeout(wpa_sm_start_preauth, sm, NULL);
eloop_cancel_timeout(wpa_sm_rekey_ptk, sm, NULL);
rsn_preauth_deinit(sm);
pmksa_cache_clear_current(sm);
if (wpa_sm_get_state(sm) == WPA_4WAY_HANDSHAKE)
sm->dot11RSNA4WayHandshakeFailures++;
#ifdef CONFIG_TDLS
wpa_tdls_disassoc(sm);
#endif /* CONFIG_TDLS */
#ifdef CONFIG_FILS
sm->fils_completed = 0;
#endif /* CONFIG_FILS */
#ifdef CONFIG_IEEE80211R
sm->ft_reassoc_completed = 0;
#endif /* CONFIG_IEEE80211R */
/* Keys are not needed in the WPA state machine anymore */
wpa_sm_drop_sa(sm);
sm->msg_3_of_4_ok = 0;
os_memset(sm->bssid, 0, ETH_ALEN);
}
/**
* wpa_sm_set_pmk - Set PMK
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @pmk: The new PMK
* @pmk_len: The length of the new PMK in bytes
* @pmkid: Calculated PMKID
* @bssid: AA to add into PMKSA cache or %NULL to not cache the PMK
*
* Configure the PMK for WPA state machine.
*/
void wpa_sm_set_pmk(struct wpa_sm *sm, const u8 *pmk, size_t pmk_len,
const u8 *pmkid, const u8 *bssid)
{
if (sm == NULL)
return;
wpa_hexdump_key(MSG_DEBUG, "WPA: Set PMK based on external data",
pmk, pmk_len);
sm->pmk_len = pmk_len;
os_memcpy(sm->pmk, pmk, pmk_len);
#ifdef CONFIG_IEEE80211R
/* Set XXKey to be PSK for FT key derivation */
sm->xxkey_len = pmk_len;
os_memcpy(sm->xxkey, pmk, pmk_len);
#endif /* CONFIG_IEEE80211R */
if (bssid) {
pmksa_cache_add(sm->pmksa, pmk, pmk_len, pmkid, NULL, 0,
bssid, sm->own_addr,
sm->network_ctx, sm->key_mgmt, NULL);
}
}
/**
* wpa_sm_set_pmk_from_pmksa - Set PMK based on the current PMKSA
* @sm: Pointer to WPA state machine data from wpa_sm_init()
*
* Take the PMK from the current PMKSA into use. If no PMKSA is active, the PMK
* will be cleared.
*/
void wpa_sm_set_pmk_from_pmksa(struct wpa_sm *sm)
{
if (sm == NULL)
return;
if (sm->cur_pmksa) {
wpa_hexdump_key(MSG_DEBUG,
"WPA: Set PMK based on current PMKSA",
sm->cur_pmksa->pmk, sm->cur_pmksa->pmk_len);
sm->pmk_len = sm->cur_pmksa->pmk_len;
os_memcpy(sm->pmk, sm->cur_pmksa->pmk, sm->pmk_len);
} else {
wpa_printf(MSG_DEBUG, "WPA: No current PMKSA - clear PMK");
sm->pmk_len = 0;
os_memset(sm->pmk, 0, PMK_LEN_MAX);
}
}
/**
* wpa_sm_set_fast_reauth - Set fast reauthentication (EAP) enabled/disabled
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @fast_reauth: Whether fast reauthentication (EAP) is allowed
*/
void wpa_sm_set_fast_reauth(struct wpa_sm *sm, int fast_reauth)
{
if (sm)
sm->fast_reauth = fast_reauth;
}
/**
* wpa_sm_set_scard_ctx - Set context pointer for smartcard callbacks
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @scard_ctx: Context pointer for smartcard related callback functions
*/
void wpa_sm_set_scard_ctx(struct wpa_sm *sm, void *scard_ctx)
{
if (sm == NULL)
return;
sm->scard_ctx = scard_ctx;
if (sm->preauth_eapol)
eapol_sm_register_scard_ctx(sm->preauth_eapol, scard_ctx);
}
/**
* wpa_sm_set_config - Notification of current configration change
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @config: Pointer to current network configuration
*
* Notify WPA state machine that configuration has changed. config will be
* stored as a backpointer to network configuration. This can be %NULL to clear
* the stored pointed.
*/
void wpa_sm_set_config(struct wpa_sm *sm, struct rsn_supp_config *config)
{
if (!sm)
return;
if (config) {
sm->network_ctx = config->network_ctx;
sm->allowed_pairwise_cipher = config->allowed_pairwise_cipher;
sm->proactive_key_caching = config->proactive_key_caching;
sm->eap_workaround = config->eap_workaround;
sm->eap_conf_ctx = config->eap_conf_ctx;
if (config->ssid) {
os_memcpy(sm->ssid, config->ssid, config->ssid_len);
sm->ssid_len = config->ssid_len;
} else
sm->ssid_len = 0;
sm->wpa_ptk_rekey = config->wpa_ptk_rekey;
sm->p2p = config->p2p;
sm->wpa_rsc_relaxation = config->wpa_rsc_relaxation;
#ifdef CONFIG_FILS
if (config->fils_cache_id) {
sm->fils_cache_id_set = 1;
os_memcpy(sm->fils_cache_id, config->fils_cache_id,
FILS_CACHE_ID_LEN);
} else {
sm->fils_cache_id_set = 0;
}
#endif /* CONFIG_FILS */
} else {
sm->network_ctx = NULL;
sm->allowed_pairwise_cipher = 0;
sm->proactive_key_caching = 0;
sm->eap_workaround = 0;
sm->eap_conf_ctx = NULL;
sm->ssid_len = 0;
sm->wpa_ptk_rekey = 0;
sm->p2p = 0;
sm->wpa_rsc_relaxation = 0;
}
}
/**
* wpa_sm_set_own_addr - Set own MAC address
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @addr: Own MAC address
*/
void wpa_sm_set_own_addr(struct wpa_sm *sm, const u8 *addr)
{
if (sm)
os_memcpy(sm->own_addr, addr, ETH_ALEN);
}
/**
* wpa_sm_set_ifname - Set network interface name
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ifname: Interface name
* @bridge_ifname: Optional bridge interface name (for pre-auth)
*/
void wpa_sm_set_ifname(struct wpa_sm *sm, const char *ifname,
const char *bridge_ifname)
{
if (sm) {
sm->ifname = ifname;
sm->bridge_ifname = bridge_ifname;
}
}
/**
* wpa_sm_set_eapol - Set EAPOL state machine pointer
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @eapol: Pointer to EAPOL state machine allocated with eapol_sm_init()
*/
void wpa_sm_set_eapol(struct wpa_sm *sm, struct eapol_sm *eapol)
{
if (sm)
sm->eapol = eapol;
}
/**
* wpa_sm_set_param - Set WPA state machine parameters
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @param: Parameter field
* @value: Parameter value
* Returns: 0 on success, -1 on failure
*/
int wpa_sm_set_param(struct wpa_sm *sm, enum wpa_sm_conf_params param,
unsigned int value)
{
int ret = 0;
if (sm == NULL)
return -1;
switch (param) {
case RSNA_PMK_LIFETIME:
if (value > 0)
sm->dot11RSNAConfigPMKLifetime = value;
else
ret = -1;
break;
case RSNA_PMK_REAUTH_THRESHOLD:
if (value > 0 && value <= 100)
sm->dot11RSNAConfigPMKReauthThreshold = value;
else
ret = -1;
break;
case RSNA_SA_TIMEOUT:
if (value > 0)
sm->dot11RSNAConfigSATimeout = value;
else
ret = -1;
break;
case WPA_PARAM_PROTO:
sm->proto = value;
break;
case WPA_PARAM_PAIRWISE:
sm->pairwise_cipher = value;
break;
case WPA_PARAM_GROUP:
sm->group_cipher = value;
break;
case WPA_PARAM_KEY_MGMT:
sm->key_mgmt = value;
break;
#ifdef CONFIG_IEEE80211W
case WPA_PARAM_MGMT_GROUP:
sm->mgmt_group_cipher = value;
break;
#endif /* CONFIG_IEEE80211W */
case WPA_PARAM_RSN_ENABLED:
sm->rsn_enabled = value;
break;
case WPA_PARAM_MFP:
sm->mfp = value;
break;
default:
break;
}
return ret;
}
/**
* wpa_sm_get_status - Get WPA state machine
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @buf: Buffer for status information
* @buflen: Maximum buffer length
* @verbose: Whether to include verbose status information
* Returns: Number of bytes written to buf.
*
* Query WPA state machine for status information. This function fills in
* a text area with current status information. If the buffer (buf) is not
* large enough, status information will be truncated to fit the buffer.
*/
int wpa_sm_get_status(struct wpa_sm *sm, char *buf, size_t buflen,
int verbose)
{
char *pos = buf, *end = buf + buflen;
int ret;
ret = os_snprintf(pos, end - pos,
"pairwise_cipher=%s\n"
"group_cipher=%s\n"
"key_mgmt=%s\n",
wpa_cipher_txt(sm->pairwise_cipher),
wpa_cipher_txt(sm->group_cipher),
wpa_key_mgmt_txt(sm->key_mgmt, sm->proto));
if (os_snprintf_error(end - pos, ret))
return pos - buf;
pos += ret;
if (sm->mfp != NO_MGMT_FRAME_PROTECTION && sm->ap_rsn_ie) {
struct wpa_ie_data rsn;
if (wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &rsn)
>= 0 &&
rsn.capabilities & (WPA_CAPABILITY_MFPR |
WPA_CAPABILITY_MFPC)) {
ret = os_snprintf(pos, end - pos, "pmf=%d\n"
"mgmt_group_cipher=%s\n",
(rsn.capabilities &
WPA_CAPABILITY_MFPR) ? 2 : 1,
wpa_cipher_txt(
sm->mgmt_group_cipher));
if (os_snprintf_error(end - pos, ret))
return pos - buf;
pos += ret;
}
}
return pos - buf;
}
int wpa_sm_pmf_enabled(struct wpa_sm *sm)
{
struct wpa_ie_data rsn;
if (sm->mfp == NO_MGMT_FRAME_PROTECTION || !sm->ap_rsn_ie)
return 0;
if (wpa_parse_wpa_ie_rsn(sm->ap_rsn_ie, sm->ap_rsn_ie_len, &rsn) >= 0 &&
rsn.capabilities & (WPA_CAPABILITY_MFPR | WPA_CAPABILITY_MFPC))
return 1;
return 0;
}
/**
* wpa_sm_set_assoc_wpa_ie_default - Generate own WPA/RSN IE from configuration
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @wpa_ie: Pointer to buffer for WPA/RSN IE
* @wpa_ie_len: Pointer to the length of the wpa_ie buffer
* Returns: 0 on success, -1 on failure
*/
int wpa_sm_set_assoc_wpa_ie_default(struct wpa_sm *sm, u8 *wpa_ie,
size_t *wpa_ie_len)
{
int res;
if (sm == NULL)
return -1;
#ifdef CONFIG_TESTING_OPTIONS
if (sm->test_assoc_ie) {
wpa_printf(MSG_DEBUG,
"TESTING: Replace association WPA/RSN IE");
if (*wpa_ie_len < wpabuf_len(sm->test_assoc_ie))
return -1;
os_memcpy(wpa_ie, wpabuf_head(sm->test_assoc_ie),
wpabuf_len(sm->test_assoc_ie));
res = wpabuf_len(sm->test_assoc_ie);
} else
#endif /* CONFIG_TESTING_OPTIONS */
res = wpa_gen_wpa_ie(sm, wpa_ie, *wpa_ie_len);
if (res < 0)
return -1;
*wpa_ie_len = res;
wpa_hexdump(MSG_DEBUG, "WPA: Set own WPA IE default",
wpa_ie, *wpa_ie_len);
if (sm->assoc_wpa_ie == NULL) {
/*
* Make a copy of the WPA/RSN IE so that 4-Way Handshake gets
* the correct version of the IE even if PMKSA caching is
* aborted (which would remove PMKID from IE generation).
*/
sm->assoc_wpa_ie = os_memdup(wpa_ie, *wpa_ie_len);
if (sm->assoc_wpa_ie == NULL)
return -1;
sm->assoc_wpa_ie_len = *wpa_ie_len;
} else {
wpa_hexdump(MSG_DEBUG,
"WPA: Leave previously set WPA IE default",
sm->assoc_wpa_ie, sm->assoc_wpa_ie_len);
}
return 0;
}
/**
* wpa_sm_set_assoc_wpa_ie - Set own WPA/RSN IE from (Re)AssocReq
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ie: Pointer to IE data (starting from id)
* @len: IE length
* Returns: 0 on success, -1 on failure
*
* Inform WPA state machine about the WPA/RSN IE used in (Re)Association
* Request frame. The IE will be used to override the default value generated
* with wpa_sm_set_assoc_wpa_ie_default().
*/
int wpa_sm_set_assoc_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len)
{
if (sm == NULL)
return -1;
os_free(sm->assoc_wpa_ie);
if (ie == NULL || len == 0) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: clearing own WPA/RSN IE");
sm->assoc_wpa_ie = NULL;
sm->assoc_wpa_ie_len = 0;
} else {
wpa_hexdump(MSG_DEBUG, "WPA: set own WPA/RSN IE", ie, len);
sm->assoc_wpa_ie = os_memdup(ie, len);
if (sm->assoc_wpa_ie == NULL)
return -1;
sm->assoc_wpa_ie_len = len;
}
return 0;
}
/**
* wpa_sm_set_ap_wpa_ie - Set AP WPA IE from Beacon/ProbeResp
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ie: Pointer to IE data (starting from id)
* @len: IE length
* Returns: 0 on success, -1 on failure
*
* Inform WPA state machine about the WPA IE used in Beacon / Probe Response
* frame.
*/
int wpa_sm_set_ap_wpa_ie(struct wpa_sm *sm, const u8 *ie, size_t len)
{
if (sm == NULL)
return -1;
os_free(sm->ap_wpa_ie);
if (ie == NULL || len == 0) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: clearing AP WPA IE");
sm->ap_wpa_ie = NULL;
sm->ap_wpa_ie_len = 0;
} else {
wpa_hexdump(MSG_DEBUG, "WPA: set AP WPA IE", ie, len);
sm->ap_wpa_ie = os_memdup(ie, len);
if (sm->ap_wpa_ie == NULL)
return -1;
sm->ap_wpa_ie_len = len;
}
return 0;
}
/**
* wpa_sm_set_ap_rsn_ie - Set AP RSN IE from Beacon/ProbeResp
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @ie: Pointer to IE data (starting from id)
* @len: IE length
* Returns: 0 on success, -1 on failure
*
* Inform WPA state machine about the RSN IE used in Beacon / Probe Response
* frame.
*/
int wpa_sm_set_ap_rsn_ie(struct wpa_sm *sm, const u8 *ie, size_t len)
{
if (sm == NULL)
return -1;
os_free(sm->ap_rsn_ie);
if (ie == NULL || len == 0) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: clearing AP RSN IE");
sm->ap_rsn_ie = NULL;
sm->ap_rsn_ie_len = 0;
} else {
wpa_hexdump(MSG_DEBUG, "WPA: set AP RSN IE", ie, len);
sm->ap_rsn_ie = os_memdup(ie, len);
if (sm->ap_rsn_ie == NULL)
return -1;
sm->ap_rsn_ie_len = len;
}
return 0;
}
/**
* wpa_sm_parse_own_wpa_ie - Parse own WPA/RSN IE
* @sm: Pointer to WPA state machine data from wpa_sm_init()
* @data: Pointer to data area for parsing results
* Returns: 0 on success, -1 if IE is not known, or -2 on parsing failure
*
* Parse the contents of the own WPA or RSN IE from (Re)AssocReq and write the
* parsed data into data.
*/
int wpa_sm_parse_own_wpa_ie(struct wpa_sm *sm, struct wpa_ie_data *data)
{
if (sm == NULL)
return -1;
if (sm->assoc_wpa_ie == NULL) {
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG,
"WPA: No WPA/RSN IE available from association info");
return -1;
}
if (wpa_parse_wpa_ie(sm->assoc_wpa_ie, sm->assoc_wpa_ie_len, data))
return -2;
return 0;
}
int wpa_sm_pmksa_cache_list(struct wpa_sm *sm, char *buf, size_t len)
{
return pmksa_cache_list(sm->pmksa, buf, len);
}
struct rsn_pmksa_cache_entry * wpa_sm_pmksa_cache_head(struct wpa_sm *sm)
{
return pmksa_cache_head(sm->pmksa);
}
struct rsn_pmksa_cache_entry *
wpa_sm_pmksa_cache_add_entry(struct wpa_sm *sm,
struct rsn_pmksa_cache_entry * entry)
{
return pmksa_cache_add_entry(sm->pmksa, entry);
}
void wpa_sm_pmksa_cache_add(struct wpa_sm *sm, const u8 *pmk, size_t pmk_len,
const u8 *pmkid, const u8 *bssid,
const u8 *fils_cache_id)
{
sm->cur_pmksa = pmksa_cache_add(sm->pmksa, pmk, pmk_len, pmkid, NULL, 0,
bssid, sm->own_addr, sm->network_ctx,
sm->key_mgmt, fils_cache_id);
}
int wpa_sm_pmksa_exists(struct wpa_sm *sm, const u8 *bssid,
const void *network_ctx)
{
return pmksa_cache_get(sm->pmksa, bssid, NULL, network_ctx) != NULL;
}
void wpa_sm_drop_sa(struct wpa_sm *sm)
{
wpa_dbg(sm->ctx->msg_ctx, MSG_DEBUG, "WPA: Clear old PMK and PTK");
sm->ptk_set = 0;
sm->tptk_set = 0;
os_memset(sm->pmk, 0, sizeof(sm->pmk));
os_memset(&sm->ptk, 0, sizeof(sm->ptk));
os_memset(&sm->tptk, 0, sizeof(sm->tptk));
os_memset(&sm->gtk, 0, sizeof(sm->gtk));
os_memset(&sm->gtk_wnm_sleep, 0, sizeof(sm->gtk_wnm_sleep));
#ifdef CONFIG_IEEE80211W
os_memset(&sm->igtk, 0, sizeof(sm->igtk));
os_memset(&sm->igtk_wnm_sleep, 0, sizeof(sm->igtk_wnm_sleep));
#endif /* CONFIG_IEEE80211W */
#ifdef CONFIG_IEEE80211R
os_memset(sm->xxkey, 0, sizeof(sm->xxkey));
os_memset(sm->pmk_r0, 0, sizeof(sm->pmk_r0));
os_memset(sm->pmk_r1, 0, sizeof(sm->pmk_r1));
#endif /* CONFIG_IEEE80211R */
}
int wpa_sm_has_ptk(struct wpa_sm *sm)
{
if (sm == NULL)
return 0;
return sm->ptk_set;
}
void wpa_sm_update_replay_ctr(struct wpa_sm *sm, const u8 *replay_ctr)
{
os_memcpy(sm->rx_replay_counter, replay_ctr, WPA_REPLAY_COUNTER_LEN);
}
void wpa_sm_pmksa_cache_flush(struct wpa_sm *sm, void *network_ctx)
{
pmksa_cache_flush(sm->pmksa, network_ctx, NULL, 0);
}
#ifdef CONFIG_WNM
int wpa_wnmsleep_install_key(struct wpa_sm *sm, u8 subelem_id, u8 *buf)
{
u16 keyinfo;
u8 keylen; /* plaintext key len */
u8 *key_rsc;
if (subelem_id == WNM_SLEEP_SUBELEM_GTK) {
struct wpa_gtk_data gd;
os_memset(&gd, 0, sizeof(gd));
keylen = wpa_cipher_key_len(sm->group_cipher);
gd.key_rsc_len = wpa_cipher_rsc_len(sm->group_cipher);
gd.alg = wpa_cipher_to_alg(sm->group_cipher);
if (gd.alg == WPA_ALG_NONE) {
wpa_printf(MSG_DEBUG, "Unsupported group cipher suite");
return -1;
}
key_rsc = buf + 5;
keyinfo = WPA_GET_LE16(buf + 2);
gd.gtk_len = keylen;
if (gd.gtk_len != buf[4]) {
wpa_printf(MSG_DEBUG, "GTK len mismatch len %d vs %d",
gd.gtk_len, buf[4]);
return -1;
}
gd.keyidx = keyinfo & 0x03; /* B0 - B1 */
gd.tx = wpa_supplicant_gtk_tx_bit_workaround(
sm, !!(keyinfo & WPA_KEY_INFO_TXRX));
os_memcpy(gd.gtk, buf + 13, gd.gtk_len);
wpa_hexdump_key(MSG_DEBUG, "Install GTK (WNM SLEEP)",
gd.gtk, gd.gtk_len);
if (wpa_supplicant_install_gtk(sm, &gd, key_rsc, 1)) {
os_memset(&gd, 0, sizeof(gd));
wpa_printf(MSG_DEBUG, "Failed to install the GTK in "
"WNM mode");
return -1;
}
os_memset(&gd, 0, sizeof(gd));
#ifdef CONFIG_IEEE80211W
} else if (subelem_id == WNM_SLEEP_SUBELEM_IGTK) {
const struct wpa_igtk_kde *igtk;
igtk = (const struct wpa_igtk_kde *) (buf + 2);
if (wpa_supplicant_install_igtk(sm, igtk, 1) < 0)
return -1;
#endif /* CONFIG_IEEE80211W */
} else {
wpa_printf(MSG_DEBUG, "Unknown element id");
return -1;
}
return 0;
}
#endif /* CONFIG_WNM */
#ifdef CONFIG_P2P
int wpa_sm_get_p2p_ip_addr(struct wpa_sm *sm, u8 *buf)
{
if (sm == NULL || WPA_GET_BE32(sm->p2p_ip_addr) == 0)
return -1;
os_memcpy(buf, sm->p2p_ip_addr, 3 * 4);
return 0;
}
#endif /* CONFIG_P2P */
void wpa_sm_set_rx_replay_ctr(struct wpa_sm *sm, const u8 *rx_replay_counter)
{
if (rx_replay_counter == NULL)
return;
os_memcpy(sm->rx_replay_counter, rx_replay_counter,
WPA_REPLAY_COUNTER_LEN);
sm->rx_replay_counter_set = 1;
wpa_printf(MSG_DEBUG, "Updated key replay counter");
}
void wpa_sm_set_ptk_kck_kek(struct wpa_sm *sm,
const u8 *ptk_kck, size_t ptk_kck_len,
const u8 *ptk_kek, size_t ptk_kek_len)
{
if (ptk_kck && ptk_kck_len <= WPA_KCK_MAX_LEN) {
os_memcpy(sm->ptk.kck, ptk_kck, ptk_kck_len);
sm->ptk.kck_len = ptk_kck_len;
wpa_printf(MSG_DEBUG, "Updated PTK KCK");
}
if (ptk_kek && ptk_kek_len <= WPA_KEK_MAX_LEN) {
os_memcpy(sm->ptk.kek, ptk_kek, ptk_kek_len);
sm->ptk.kek_len = ptk_kek_len;
wpa_printf(MSG_DEBUG, "Updated PTK KEK");
}
sm->ptk_set = 1;
}
#ifdef CONFIG_TESTING_OPTIONS
void wpa_sm_set_test_assoc_ie(struct wpa_sm *sm, struct wpabuf *buf)
{
wpabuf_free(sm->test_assoc_ie);
sm->test_assoc_ie = buf;
}
const u8 * wpa_sm_get_anonce(struct wpa_sm *sm)
{
return sm->anonce;
}
#endif /* CONFIG_TESTING_OPTIONS */
#ifdef CONFIG_FILS
struct wpabuf * fils_build_auth(struct wpa_sm *sm, int dh_group, const u8 *md)
{
struct wpabuf *buf = NULL;
struct wpabuf *erp_msg;
struct wpabuf *pub = NULL;
erp_msg = eapol_sm_build_erp_reauth_start(sm->eapol);
if (!erp_msg && !sm->cur_pmksa) {
wpa_printf(MSG_DEBUG,
"FILS: Neither ERP EAP-Initiate/Re-auth nor PMKSA cache entry is available - skip FILS");
goto fail;
}
wpa_printf(MSG_DEBUG, "FILS: Try to use FILS (erp=%d pmksa_cache=%d)",
erp_msg != NULL, sm->cur_pmksa != NULL);
sm->fils_completed = 0;
if (!sm->assoc_wpa_ie) {
wpa_printf(MSG_INFO, "FILS: No own RSN IE set for FILS");
goto fail;
}
if (random_get_bytes(sm->fils_nonce, FILS_NONCE_LEN) < 0 ||
random_get_bytes(sm->fils_session, FILS_SESSION_LEN) < 0)
goto fail;
wpa_hexdump(MSG_DEBUG, "FILS: Generated FILS Nonce",
sm->fils_nonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: Generated FILS Session",
sm->fils_session, FILS_SESSION_LEN);
#ifdef CONFIG_FILS_SK_PFS
sm->fils_dh_group = dh_group;
if (dh_group) {
crypto_ecdh_deinit(sm->fils_ecdh);
sm->fils_ecdh = crypto_ecdh_init(dh_group);
if (!sm->fils_ecdh) {
wpa_printf(MSG_INFO,
"FILS: Could not initialize ECDH with group %d",
dh_group);
goto fail;
}
pub = crypto_ecdh_get_pubkey(sm->fils_ecdh, 1);
if (!pub)
goto fail;
wpa_hexdump_buf(MSG_DEBUG, "FILS: Element (DH public key)",
pub);
sm->fils_dh_elem_len = wpabuf_len(pub);
}
#endif /* CONFIG_FILS_SK_PFS */
buf = wpabuf_alloc(1000 + sm->assoc_wpa_ie_len +
(pub ? wpabuf_len(pub) : 0));
if (!buf)
goto fail;
/* Fields following the Authentication algorithm number field */
/* Authentication Transaction seq# */
wpabuf_put_le16(buf, 1);
/* Status Code */
wpabuf_put_le16(buf, WLAN_STATUS_SUCCESS);
/* TODO: FILS PK */
#ifdef CONFIG_FILS_SK_PFS
if (dh_group) {
/* Finite Cyclic Group */
wpabuf_put_le16(buf, dh_group);
/* Element */
wpabuf_put_buf(buf, pub);
}
#endif /* CONFIG_FILS_SK_PFS */
/* RSNE */
wpa_hexdump(MSG_DEBUG, "FILS: RSNE in FILS Authentication frame",
sm->assoc_wpa_ie, sm->assoc_wpa_ie_len);
wpabuf_put_data(buf, sm->assoc_wpa_ie, sm->assoc_wpa_ie_len);
if (md) {
/* MDE when using FILS for FT initial association */
struct rsn_mdie *mdie;
wpabuf_put_u8(buf, WLAN_EID_MOBILITY_DOMAIN);
wpabuf_put_u8(buf, sizeof(*mdie));
mdie = wpabuf_put(buf, sizeof(*mdie));
os_memcpy(mdie->mobility_domain, md, MOBILITY_DOMAIN_ID_LEN);
mdie->ft_capab = 0;
}
/* FILS Nonce */
wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */
wpabuf_put_u8(buf, 1 + FILS_NONCE_LEN); /* Length */
/* Element ID Extension */
wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_NONCE);
wpabuf_put_data(buf, sm->fils_nonce, FILS_NONCE_LEN);
/* FILS Session */
wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */
wpabuf_put_u8(buf, 1 + FILS_SESSION_LEN); /* Length */
/* Element ID Extension */
wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_SESSION);
wpabuf_put_data(buf, sm->fils_session, FILS_SESSION_LEN);
/* FILS Wrapped Data */
sm->fils_erp_pmkid_set = 0;
if (erp_msg) {
wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */
wpabuf_put_u8(buf, 1 + wpabuf_len(erp_msg)); /* Length */
/* Element ID Extension */
wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_WRAPPED_DATA);
wpabuf_put_buf(buf, erp_msg);
/* Calculate pending PMKID here so that we do not need to
* maintain a copy of the EAP-Initiate/Reauth message. */
if (fils_pmkid_erp(sm->key_mgmt, wpabuf_head(erp_msg),
wpabuf_len(erp_msg),
sm->fils_erp_pmkid) == 0)
sm->fils_erp_pmkid_set = 1;
}
wpa_hexdump_buf(MSG_DEBUG, "RSN: FILS fields for Authentication frame",
buf);
fail:
wpabuf_free(erp_msg);
wpabuf_free(pub);
return buf;
}
int fils_process_auth(struct wpa_sm *sm, const u8 *bssid, const u8 *data,
size_t len)
{
const u8 *pos, *end;
struct ieee802_11_elems elems;
struct wpa_ie_data rsn;
int pmkid_match = 0;
u8 ick[FILS_ICK_MAX_LEN];
size_t ick_len;
int res;
struct wpabuf *dh_ss = NULL;
const u8 *g_sta = NULL;
size_t g_sta_len = 0;
const u8 *g_ap = NULL;
size_t g_ap_len = 0;
struct wpabuf *pub = NULL;
os_memcpy(sm->bssid, bssid, ETH_ALEN);
wpa_hexdump(MSG_DEBUG, "FILS: Authentication frame fields",
data, len);
pos = data;
end = data + len;
/* TODO: FILS PK */
#ifdef CONFIG_FILS_SK_PFS
if (sm->fils_dh_group) {
u16 group;
/* Using FILS PFS */
/* Finite Cyclic Group */
if (end - pos < 2) {
wpa_printf(MSG_DEBUG,
"FILS: No room for Finite Cyclic Group");
goto fail;
}
group = WPA_GET_LE16(pos);
pos += 2;
if (group != sm->fils_dh_group) {
wpa_printf(MSG_DEBUG,
"FILS: Unexpected change in Finite Cyclic Group: %u (expected %u)",
group, sm->fils_dh_group);
goto fail;
}
/* Element */
if ((size_t) (end - pos) < sm->fils_dh_elem_len) {
wpa_printf(MSG_DEBUG, "FILS: No room for Element");
goto fail;
}
if (!sm->fils_ecdh) {
wpa_printf(MSG_DEBUG, "FILS: No ECDH state available");
goto fail;
}
dh_ss = crypto_ecdh_set_peerkey(sm->fils_ecdh, 1, pos,
sm->fils_dh_elem_len);
if (!dh_ss) {
wpa_printf(MSG_DEBUG, "FILS: ECDH operation failed");
goto fail;
}
wpa_hexdump_buf_key(MSG_DEBUG, "FILS: DH_SS", dh_ss);
g_ap = pos;
g_ap_len = sm->fils_dh_elem_len;
pos += sm->fils_dh_elem_len;
}
#endif /* CONFIG_FILS_SK_PFS */
wpa_hexdump(MSG_DEBUG, "FILS: Remaining IEs", pos, end - pos);
if (ieee802_11_parse_elems(pos, end - pos, &elems, 1) == ParseFailed) {
wpa_printf(MSG_DEBUG, "FILS: Could not parse elements");
goto fail;
}
/* RSNE */
wpa_hexdump(MSG_DEBUG, "FILS: RSN element", elems.rsn_ie,
elems.rsn_ie_len);
if (!elems.rsn_ie ||
wpa_parse_wpa_ie_rsn(elems.rsn_ie - 2, elems.rsn_ie_len + 2,
&rsn) < 0) {
wpa_printf(MSG_DEBUG, "FILS: No RSN element");
goto fail;
}
if (!elems.fils_nonce) {
wpa_printf(MSG_DEBUG, "FILS: No FILS Nonce field");
goto fail;
}
os_memcpy(sm->fils_anonce, elems.fils_nonce, FILS_NONCE_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: ANonce", sm->fils_anonce, FILS_NONCE_LEN);
if (wpa_key_mgmt_ft(sm->key_mgmt)) {
struct wpa_ft_ies parse;
if (!elems.mdie || !elems.ftie) {
wpa_printf(MSG_DEBUG, "FILS+FT: No MDE or FTE");
goto fail;
}
if (wpa_ft_parse_ies(pos, end - pos, &parse) < 0) {
wpa_printf(MSG_DEBUG, "FILS+FT: Failed to parse IEs");
goto fail;
}
if (!parse.r0kh_id) {
wpa_printf(MSG_DEBUG,
"FILS+FT: No R0KH-ID subelem in FTE");
goto fail;
}
os_memcpy(sm->r0kh_id, parse.r0kh_id, parse.r0kh_id_len);
sm->r0kh_id_len = parse.r0kh_id_len;
wpa_hexdump_ascii(MSG_DEBUG, "FILS+FT: R0KH-ID",
sm->r0kh_id, sm->r0kh_id_len);
if (!parse.r1kh_id) {
wpa_printf(MSG_DEBUG,
"FILS+FT: No R1KH-ID subelem in FTE");
goto fail;
}
os_memcpy(sm->r1kh_id, parse.r1kh_id, FT_R1KH_ID_LEN);
wpa_hexdump(MSG_DEBUG, "FILS+FT: R1KH-ID",
sm->r1kh_id, FT_R1KH_ID_LEN);
/* TODO: Check MDE and FTE payload */
wpabuf_free(sm->fils_ft_ies);
sm->fils_ft_ies = wpabuf_alloc(2 + elems.mdie_len +
2 + elems.ftie_len);
if (!sm->fils_ft_ies)
goto fail;
wpabuf_put_data(sm->fils_ft_ies, elems.mdie - 2,
2 + elems.mdie_len);
wpabuf_put_data(sm->fils_ft_ies, elems.ftie - 2,
2 + elems.ftie_len);
} else {
wpabuf_free(sm->fils_ft_ies);
sm->fils_ft_ies = NULL;
}
/* PMKID List */
if (rsn.pmkid && rsn.num_pmkid > 0) {
wpa_hexdump(MSG_DEBUG, "FILS: PMKID List",
rsn.pmkid, rsn.num_pmkid * PMKID_LEN);
if (rsn.num_pmkid != 1) {
wpa_printf(MSG_DEBUG, "FILS: Invalid PMKID selection");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "FILS: PMKID", rsn.pmkid, PMKID_LEN);
if (os_memcmp(sm->cur_pmksa->pmkid, rsn.pmkid, PMKID_LEN) != 0)
{
wpa_printf(MSG_DEBUG, "FILS: PMKID mismatch");
wpa_hexdump(MSG_DEBUG, "FILS: Expected PMKID",
sm->cur_pmksa->pmkid, PMKID_LEN);
goto fail;
}
wpa_printf(MSG_DEBUG,
"FILS: Matching PMKID - continue using PMKSA caching");
pmkid_match = 1;
}
if (!pmkid_match && sm->cur_pmksa) {
wpa_printf(MSG_DEBUG,
"FILS: No PMKID match - cannot use cached PMKSA entry");
sm->cur_pmksa = NULL;
}
/* FILS Session */
if (!elems.fils_session) {
wpa_printf(MSG_DEBUG, "FILS: No FILS Session element");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "FILS: FILS Session", elems.fils_session,
FILS_SESSION_LEN);
if (os_memcmp(sm->fils_session, elems.fils_session, FILS_SESSION_LEN)
!= 0) {
wpa_printf(MSG_DEBUG, "FILS: Session mismatch");
wpa_hexdump(MSG_DEBUG, "FILS: Expected FILS Session",
sm->fils_session, FILS_SESSION_LEN);
goto fail;
}
/* FILS Wrapped Data */
if (!sm->cur_pmksa && elems.fils_wrapped_data) {
u8 rmsk[ERP_MAX_KEY_LEN];
size_t rmsk_len;
wpa_hexdump(MSG_DEBUG, "FILS: Wrapped Data",
elems.fils_wrapped_data,
elems.fils_wrapped_data_len);
eapol_sm_process_erp_finish(sm->eapol, elems.fils_wrapped_data,
elems.fils_wrapped_data_len);
if (eapol_sm_failed(sm->eapol))
goto fail;
rmsk_len = ERP_MAX_KEY_LEN;
res = eapol_sm_get_key(sm->eapol, rmsk, rmsk_len);
if (res == PMK_LEN) {
rmsk_len = PMK_LEN;
res = eapol_sm_get_key(sm->eapol, rmsk, rmsk_len);
}
if (res)
goto fail;
res = fils_rmsk_to_pmk(sm->key_mgmt, rmsk, rmsk_len,
sm->fils_nonce, sm->fils_anonce,
dh_ss ? wpabuf_head(dh_ss) : NULL,
dh_ss ? wpabuf_len(dh_ss) : 0,
sm->pmk, &sm->pmk_len);
os_memset(rmsk, 0, sizeof(rmsk));
/* Don't use DHss in PTK derivation if PMKSA caching is not
* used. */
wpabuf_clear_free(dh_ss);
dh_ss = NULL;
if (res)
goto fail;
if (!sm->fils_erp_pmkid_set) {
wpa_printf(MSG_DEBUG, "FILS: PMKID not available");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "FILS: PMKID", sm->fils_erp_pmkid,
PMKID_LEN);
wpa_printf(MSG_DEBUG, "FILS: ERP processing succeeded - add PMKSA cache entry for the result");
sm->cur_pmksa = pmksa_cache_add(sm->pmksa, sm->pmk, sm->pmk_len,
sm->fils_erp_pmkid, NULL, 0,
sm->bssid, sm->own_addr,
sm->network_ctx, sm->key_mgmt,
NULL);
}
if (!sm->cur_pmksa) {
wpa_printf(MSG_DEBUG,
"FILS: No remaining options to continue FILS authentication");
goto fail;
}
if (fils_pmk_to_ptk(sm->pmk, sm->pmk_len, sm->own_addr, sm->bssid,
sm->fils_nonce, sm->fils_anonce,
dh_ss ? wpabuf_head(dh_ss) : NULL,
dh_ss ? wpabuf_len(dh_ss) : 0,
&sm->ptk, ick, &ick_len,
sm->key_mgmt, sm->pairwise_cipher,
sm->fils_ft, &sm->fils_ft_len) < 0) {
wpa_printf(MSG_DEBUG, "FILS: Failed to derive PTK");
goto fail;
}
wpabuf_clear_free(dh_ss);
dh_ss = NULL;
sm->ptk_set = 1;
sm->tptk_set = 0;
os_memset(&sm->tptk, 0, sizeof(sm->tptk));
#ifdef CONFIG_FILS_SK_PFS
if (sm->fils_dh_group) {
if (!sm->fils_ecdh) {
wpa_printf(MSG_INFO, "FILS: ECDH not initialized");
goto fail;
}
pub = crypto_ecdh_get_pubkey(sm->fils_ecdh, 1);
if (!pub)
goto fail;
wpa_hexdump_buf(MSG_DEBUG, "FILS: gSTA", pub);
g_sta = wpabuf_head(pub);
g_sta_len = wpabuf_len(pub);
if (!g_ap) {
wpa_printf(MSG_INFO, "FILS: gAP not available");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "FILS: gAP", g_ap, g_ap_len);
}
#endif /* CONFIG_FILS_SK_PFS */
res = fils_key_auth_sk(ick, ick_len, sm->fils_nonce,
sm->fils_anonce, sm->own_addr, sm->bssid,
g_sta, g_sta_len, g_ap, g_ap_len,
sm->key_mgmt, sm->fils_key_auth_sta,
sm->fils_key_auth_ap,
&sm->fils_key_auth_len);
wpabuf_free(pub);
os_memset(ick, 0, sizeof(ick));
return res;
fail:
wpabuf_free(pub);
wpabuf_clear_free(dh_ss);
return -1;
}
#ifdef CONFIG_IEEE80211R
static int fils_ft_build_assoc_req_rsne(struct wpa_sm *sm, struct wpabuf *buf)
{
struct rsn_ie_hdr *rsnie;
u16 capab;
u8 *pos;
/* RSNIE[PMKR0Name/PMKR1Name] */
rsnie = wpabuf_put(buf, sizeof(*rsnie));
rsnie->elem_id = WLAN_EID_RSN;
WPA_PUT_LE16(rsnie->version, RSN_VERSION);
/* Group Suite Selector */
if (!wpa_cipher_valid_group(sm->group_cipher)) {
wpa_printf(MSG_WARNING, "FT: Invalid group cipher (%d)",
sm->group_cipher);
return -1;
}
pos = wpabuf_put(buf, RSN_SELECTOR_LEN);
RSN_SELECTOR_PUT(pos, wpa_cipher_to_suite(WPA_PROTO_RSN,
sm->group_cipher));
/* Pairwise Suite Count */
wpabuf_put_le16(buf, 1);
/* Pairwise Suite List */
if (!wpa_cipher_valid_pairwise(sm->pairwise_cipher)) {
wpa_printf(MSG_WARNING, "FT: Invalid pairwise cipher (%d)",
sm->pairwise_cipher);
return -1;
}
pos = wpabuf_put(buf, RSN_SELECTOR_LEN);
RSN_SELECTOR_PUT(pos, wpa_cipher_to_suite(WPA_PROTO_RSN,
sm->pairwise_cipher));
/* Authenticated Key Management Suite Count */
wpabuf_put_le16(buf, 1);
/* Authenticated Key Management Suite List */
pos = wpabuf_put(buf, RSN_SELECTOR_LEN);
if (sm->key_mgmt == WPA_KEY_MGMT_FT_FILS_SHA256)
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_FILS_SHA256);
else if (sm->key_mgmt == WPA_KEY_MGMT_FT_FILS_SHA384)
RSN_SELECTOR_PUT(pos, RSN_AUTH_KEY_MGMT_FT_FILS_SHA384);
else {
wpa_printf(MSG_WARNING,
"FILS+FT: Invalid key management type (%d)",
sm->key_mgmt);
return -1;
}
/* RSN Capabilities */
capab = 0;
#ifdef CONFIG_IEEE80211W
if (sm->mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC)
capab |= WPA_CAPABILITY_MFPC;
#endif /* CONFIG_IEEE80211W */
wpabuf_put_le16(buf, capab);
/* PMKID Count */
wpabuf_put_le16(buf, 1);
/* PMKID List [PMKR1Name] */
wpa_hexdump_key(MSG_DEBUG, "FILS+FT: XXKey (FILS-FT)",
sm->fils_ft, sm->fils_ft_len);
wpa_hexdump_ascii(MSG_DEBUG, "FILS+FT: SSID", sm->ssid, sm->ssid_len);
wpa_hexdump(MSG_DEBUG, "FILS+FT: MDID",
sm->mobility_domain, MOBILITY_DOMAIN_ID_LEN);
wpa_hexdump_ascii(MSG_DEBUG, "FILS+FT: R0KH-ID",
sm->r0kh_id, sm->r0kh_id_len);
if (wpa_derive_pmk_r0(sm->fils_ft, sm->fils_ft_len, sm->ssid,
sm->ssid_len, sm->mobility_domain,
sm->r0kh_id, sm->r0kh_id_len, sm->own_addr,
sm->pmk_r0, sm->pmk_r0_name) < 0) {
wpa_printf(MSG_WARNING, "FILS+FT: Could not derive PMK-R0");
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "FILS+FT: PMK-R0", sm->pmk_r0, PMK_LEN);
wpa_hexdump(MSG_DEBUG, "FILS+FT: PMKR0Name",
sm->pmk_r0_name, WPA_PMK_NAME_LEN);
wpa_printf(MSG_DEBUG, "FILS+FT: R1KH-ID: " MACSTR,
MAC2STR(sm->r1kh_id));
pos = wpabuf_put(buf, WPA_PMK_NAME_LEN);
if (wpa_derive_pmk_r1_name(sm->pmk_r0_name, sm->r1kh_id, sm->own_addr,
pos) < 0) {
wpa_printf(MSG_WARNING, "FILS+FT: Could not derive PMKR1Name");
return -1;
}
wpa_hexdump(MSG_DEBUG, "FILS+FT: PMKR1Name", pos, WPA_PMK_NAME_LEN);
#ifdef CONFIG_IEEE80211W
if (sm->mgmt_group_cipher == WPA_CIPHER_AES_128_CMAC) {
/* Management Group Cipher Suite */
pos = wpabuf_put(buf, RSN_SELECTOR_LEN);
RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_AES_128_CMAC);
}
#endif /* CONFIG_IEEE80211W */
rsnie->len = ((u8 *) wpabuf_put(buf, 0) - (u8 *) rsnie) - 2;
return 0;
}
#endif /* CONFIG_IEEE80211R */
struct wpabuf * fils_build_assoc_req(struct wpa_sm *sm, const u8 **kek,
size_t *kek_len, const u8 **snonce,
const u8 **anonce,
const struct wpabuf **hlp,
unsigned int num_hlp)
{
struct wpabuf *buf;
size_t len;
unsigned int i;
len = 1000;
#ifdef CONFIG_IEEE80211R
if (sm->fils_ft_ies)
len += wpabuf_len(sm->fils_ft_ies);
if (wpa_key_mgmt_ft(sm->key_mgmt))
len += 256;
#endif /* CONFIG_IEEE80211R */
for (i = 0; hlp && i < num_hlp; i++)
len += 10 + wpabuf_len(hlp[i]);
buf = wpabuf_alloc(len);
if (!buf)
return NULL;
#ifdef CONFIG_IEEE80211R
if (wpa_key_mgmt_ft(sm->key_mgmt) && sm->fils_ft_ies) {
/* MDE and FTE when using FILS+FT */
wpabuf_put_buf(buf, sm->fils_ft_ies);
/* RSNE with PMKR1Name in PMKID field */
if (fils_ft_build_assoc_req_rsne(sm, buf) < 0) {
wpabuf_free(buf);
return NULL;
}
}
#endif /* CONFIG_IEEE80211R */
/* FILS Session */
wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */
wpabuf_put_u8(buf, 1 + FILS_SESSION_LEN); /* Length */
/* Element ID Extension */
wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_SESSION);
wpabuf_put_data(buf, sm->fils_session, FILS_SESSION_LEN);
/* Everything after FILS Session element gets encrypted in the driver
* with KEK. The buffer returned from here is the plaintext version. */
/* TODO: FILS Public Key */
/* FILS Key Confirm */
wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */
wpabuf_put_u8(buf, 1 + sm->fils_key_auth_len); /* Length */
/* Element ID Extension */
wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_KEY_CONFIRM);
wpabuf_put_data(buf, sm->fils_key_auth_sta, sm->fils_key_auth_len);
/* FILS HLP Container */
for (i = 0; hlp && i < num_hlp; i++) {
const u8 *pos = wpabuf_head(hlp[i]);
size_t left = wpabuf_len(hlp[i]);
wpabuf_put_u8(buf, WLAN_EID_EXTENSION); /* Element ID */
if (left <= 254)
len = 1 + left;
else
len = 255;
wpabuf_put_u8(buf, len); /* Length */
/* Element ID Extension */
wpabuf_put_u8(buf, WLAN_EID_EXT_FILS_HLP_CONTAINER);
/* Destination MAC Address, Source MAC Address, HLP Packet.
* HLP Packet is in MSDU format (i.e., included the LLC/SNAP
* header when LPD is used). */
wpabuf_put_data(buf, pos, len - 1);
pos += len - 1;
left -= len - 1;
while (left) {
wpabuf_put_u8(buf, WLAN_EID_FRAGMENT);
len = left > 255 ? 255 : left;
wpabuf_put_u8(buf, len);
wpabuf_put_data(buf, pos, len);
pos += len;
left -= len;
}
}
/* TODO: FILS IP Address Assignment */
wpa_hexdump_buf(MSG_DEBUG, "FILS: Association Request plaintext", buf);
*kek = sm->ptk.kek;
*kek_len = sm->ptk.kek_len;
wpa_hexdump_key(MSG_DEBUG, "FILS: KEK for AEAD", *kek, *kek_len);
*snonce = sm->fils_nonce;
wpa_hexdump(MSG_DEBUG, "FILS: SNonce for AEAD AAD",
*snonce, FILS_NONCE_LEN);
*anonce = sm->fils_anonce;
wpa_hexdump(MSG_DEBUG, "FILS: ANonce for AEAD AAD",
*anonce, FILS_NONCE_LEN);
return buf;
}
static void fils_process_hlp_resp(struct wpa_sm *sm, const u8 *resp, size_t len)
{
const u8 *pos, *end;
wpa_hexdump(MSG_MSGDUMP, "FILS: HLP response", resp, len);
if (len < 2 * ETH_ALEN)
return;
pos = resp + 2 * ETH_ALEN;
end = resp + len;
if (end - pos >= 6 &&
os_memcmp(pos, "\xaa\xaa\x03\x00\x00\x00", 6) == 0)
pos += 6; /* Remove SNAP/LLC header */
wpa_sm_fils_hlp_rx(sm, resp, resp + ETH_ALEN, pos, end - pos);
}
static void fils_process_hlp_container(struct wpa_sm *sm, const u8 *pos,
size_t len)
{
const u8 *end = pos + len;
u8 *tmp, *tmp_pos;
/* Check if there are any FILS HLP Container elements */
while (end - pos >= 2) {
if (2 + pos[1] > end - pos)
return;
if (pos[0] == WLAN_EID_EXTENSION &&
pos[1] >= 1 + 2 * ETH_ALEN &&
pos[2] == WLAN_EID_EXT_FILS_HLP_CONTAINER)
break;
pos += 2 + pos[1];
}
if (end - pos < 2)
return; /* No FILS HLP Container elements */
tmp = os_malloc(end - pos);
if (!tmp)
return;
while (end - pos >= 2) {
if (2 + pos[1] > end - pos ||
pos[0] != WLAN_EID_EXTENSION ||
pos[1] < 1 + 2 * ETH_ALEN ||
pos[2] != WLAN_EID_EXT_FILS_HLP_CONTAINER)
break;
tmp_pos = tmp;
os_memcpy(tmp_pos, pos + 3, pos[1] - 1);
tmp_pos += pos[1] - 1;
pos += 2 + pos[1];
/* Add possible fragments */
while (end - pos >= 2 && pos[0] == WLAN_EID_FRAGMENT &&
2 + pos[1] <= end - pos) {
os_memcpy(tmp_pos, pos + 2, pos[1]);
tmp_pos += pos[1];
pos += 2 + pos[1];
}
fils_process_hlp_resp(sm, tmp, tmp_pos - tmp);
}
os_free(tmp);
}
int fils_process_assoc_resp(struct wpa_sm *sm, const u8 *resp, size_t len)
{
const struct ieee80211_mgmt *mgmt;
const u8 *end, *ie_start;
struct ieee802_11_elems elems;
int keylen, rsclen;
enum wpa_alg alg;
struct wpa_gtk_data gd;
int maxkeylen;
struct wpa_eapol_ie_parse kde;
if (!sm || !sm->ptk_set) {
wpa_printf(MSG_DEBUG, "FILS: No KEK available");
return -1;
}
if (!wpa_key_mgmt_fils(sm->key_mgmt)) {
wpa_printf(MSG_DEBUG, "FILS: Not a FILS AKM");
return -1;
}
if (sm->fils_completed) {
wpa_printf(MSG_DEBUG,
"FILS: Association has already been completed for this FILS authentication - ignore unexpected retransmission");
return -1;
}
wpa_hexdump(MSG_DEBUG, "FILS: (Re)Association Response frame",
resp, len);
mgmt = (const struct ieee80211_mgmt *) resp;
if (len < IEEE80211_HDRLEN + sizeof(mgmt->u.assoc_resp))
return -1;
end = resp + len;
/* Same offset for Association Response and Reassociation Response */
ie_start = mgmt->u.assoc_resp.variable;
if (ieee802_11_parse_elems(ie_start, end - ie_start, &elems, 1) ==
ParseFailed) {
wpa_printf(MSG_DEBUG,
"FILS: Failed to parse decrypted elements");
goto fail;
}
if (!elems.fils_session) {
wpa_printf(MSG_DEBUG, "FILS: No FILS Session element");
return -1;
}
if (os_memcmp(elems.fils_session, sm->fils_session,
FILS_SESSION_LEN) != 0) {
wpa_printf(MSG_DEBUG, "FILS: FILS Session mismatch");
wpa_hexdump(MSG_DEBUG, "FILS: Received FILS Session",
elems.fils_session, FILS_SESSION_LEN);
wpa_hexdump(MSG_DEBUG, "FILS: Expected FILS Session",
sm->fils_session, FILS_SESSION_LEN);
}
/* TODO: FILS Public Key */
if (!elems.fils_key_confirm) {
wpa_printf(MSG_DEBUG, "FILS: No FILS Key Confirm element");
goto fail;
}
if (elems.fils_key_confirm_len != sm->fils_key_auth_len) {
wpa_printf(MSG_DEBUG,
"FILS: Unexpected Key-Auth length %d (expected %d)",
elems.fils_key_confirm_len,
(int) sm->fils_key_auth_len);
goto fail;
}
if (os_memcmp(elems.fils_key_confirm, sm->fils_key_auth_ap,
sm->fils_key_auth_len) != 0) {
wpa_printf(MSG_DEBUG, "FILS: Key-Auth mismatch");
wpa_hexdump(MSG_DEBUG, "FILS: Received Key-Auth",
elems.fils_key_confirm,
elems.fils_key_confirm_len);
wpa_hexdump(MSG_DEBUG, "FILS: Expected Key-Auth",
sm->fils_key_auth_ap, sm->fils_key_auth_len);
goto fail;
}
/* Key Delivery */
if (!elems.key_delivery) {
wpa_printf(MSG_DEBUG, "FILS: No Key Delivery element");
goto fail;
}
/* Parse GTK and set the key to the driver */
os_memset(&gd, 0, sizeof(gd));
if (wpa_supplicant_parse_ies(elems.key_delivery + WPA_KEY_RSC_LEN,
elems.key_delivery_len - WPA_KEY_RSC_LEN,
&kde) < 0) {
wpa_printf(MSG_DEBUG, "FILS: Failed to parse KDEs");
goto fail;
}
if (!kde.gtk) {
wpa_printf(MSG_DEBUG, "FILS: No GTK KDE");
goto fail;
}
maxkeylen = gd.gtk_len = kde.gtk_len - 2;
if (wpa_supplicant_check_group_cipher(sm, sm->group_cipher,
gd.gtk_len, maxkeylen,
&gd.key_rsc_len, &gd.alg))
goto fail;
wpa_hexdump_key(MSG_DEBUG, "FILS: Received GTK", kde.gtk, kde.gtk_len);
gd.keyidx = kde.gtk[0] & 0x3;
gd.tx = wpa_supplicant_gtk_tx_bit_workaround(sm,
!!(kde.gtk[0] & BIT(2)));
if (kde.gtk_len - 2 > sizeof(gd.gtk)) {
wpa_printf(MSG_DEBUG, "FILS: Too long GTK in GTK KDE (len=%lu)",
(unsigned long) kde.gtk_len - 2);
goto fail;
}
os_memcpy(gd.gtk, kde.gtk + 2, kde.gtk_len - 2);
wpa_printf(MSG_DEBUG, "FILS: Set GTK to driver");
if (wpa_supplicant_install_gtk(sm, &gd, elems.key_delivery, 0) < 0) {
wpa_printf(MSG_DEBUG, "FILS: Failed to set GTK");
goto fail;
}
if (ieee80211w_set_keys(sm, &kde) < 0) {
wpa_printf(MSG_DEBUG, "FILS: Failed to set IGTK");
goto fail;
}
alg = wpa_cipher_to_alg(sm->pairwise_cipher);
keylen = wpa_cipher_key_len(sm->pairwise_cipher);
if (keylen <= 0 || (unsigned int) keylen != sm->ptk.tk_len) {
wpa_printf(MSG_DEBUG, "FILS: TK length mismatch: %u != %lu",
keylen, (long unsigned int) sm->ptk.tk_len);
goto fail;
}
rsclen = wpa_cipher_rsc_len(sm->pairwise_cipher);
wpa_hexdump_key(MSG_DEBUG, "FILS: Set TK to driver",
sm->ptk.tk, keylen);
if (wpa_sm_set_key(sm, alg, sm->bssid, 0, 1, null_rsc, rsclen,
sm->ptk.tk, keylen) < 0) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"FILS: Failed to set PTK to the driver (alg=%d keylen=%d bssid="
MACSTR ")",
alg, keylen, MAC2STR(sm->bssid));
goto fail;
}
/* TODO: TK could be cleared after auth frame exchange now that driver
* takes care of association frame encryption/decryption. */
/* TK is not needed anymore in supplicant */
os_memset(sm->ptk.tk, 0, WPA_TK_MAX_LEN);
sm->ptk.tk_len = 0;
sm->ptk.installed = 1;
/* FILS HLP Container */
fils_process_hlp_container(sm, ie_start, end - ie_start);
/* TODO: FILS IP Address Assignment */
wpa_printf(MSG_DEBUG, "FILS: Auth+Assoc completed successfully");
sm->fils_completed = 1;
return 0;
fail:
return -1;
}
void wpa_sm_set_reset_fils_completed(struct wpa_sm *sm, int set)
{
if (sm)
sm->fils_completed = !!set;
}
#endif /* CONFIG_FILS */
int wpa_fils_is_completed(struct wpa_sm *sm)
{
#ifdef CONFIG_FILS
return sm && sm->fils_completed;
#else /* CONFIG_FILS */
return 0;
#endif /* CONFIG_FILS */
}
#ifdef CONFIG_OWE
struct wpabuf * owe_build_assoc_req(struct wpa_sm *sm, u16 group)
{
struct wpabuf *ie = NULL, *pub = NULL;
size_t prime_len;
if (group == 19)
prime_len = 32;
else if (group == 20)
prime_len = 48;
else if (group == 21)
prime_len = 66;
else
return NULL;
crypto_ecdh_deinit(sm->owe_ecdh);
sm->owe_ecdh = crypto_ecdh_init(group);
if (!sm->owe_ecdh)
goto fail;
sm->owe_group = group;
pub = crypto_ecdh_get_pubkey(sm->owe_ecdh, 0);
pub = wpabuf_zeropad(pub, prime_len);
if (!pub)
goto fail;
ie = wpabuf_alloc(5 + wpabuf_len(pub));
if (!ie)
goto fail;
wpabuf_put_u8(ie, WLAN_EID_EXTENSION);
wpabuf_put_u8(ie, 1 + 2 + wpabuf_len(pub));
wpabuf_put_u8(ie, WLAN_EID_EXT_OWE_DH_PARAM);
wpabuf_put_le16(ie, group);
wpabuf_put_buf(ie, pub);
wpabuf_free(pub);
wpa_hexdump_buf(MSG_DEBUG, "OWE: Diffie-Hellman Parameter element",
ie);
return ie;
fail:
wpabuf_free(pub);
crypto_ecdh_deinit(sm->owe_ecdh);
sm->owe_ecdh = NULL;
return NULL;
}
int owe_process_assoc_resp(struct wpa_sm *sm, const u8 *bssid,
const u8 *resp_ies, size_t resp_ies_len)
{
struct ieee802_11_elems elems;
u16 group;
struct wpabuf *secret, *pub, *hkey;
int res;
u8 prk[SHA512_MAC_LEN], pmkid[SHA512_MAC_LEN];
const char *info = "OWE Key Generation";
const u8 *addr[2];
size_t len[2];
size_t hash_len, prime_len;
struct wpa_ie_data data;
if (!resp_ies ||
ieee802_11_parse_elems(resp_ies, resp_ies_len, &elems, 1) ==
ParseFailed) {
wpa_printf(MSG_INFO,
"OWE: Could not parse Association Response frame elements");
return -1;
}
if (sm->cur_pmksa && elems.rsn_ie &&
wpa_parse_wpa_ie_rsn(elems.rsn_ie - 2, 2 + elems.rsn_ie_len,
&data) == 0 &&
data.num_pmkid == 1 && data.pmkid &&
os_memcmp(sm->cur_pmksa->pmkid, data.pmkid, PMKID_LEN) == 0) {
wpa_printf(MSG_DEBUG, "OWE: Use PMKSA caching");
wpa_sm_set_pmk_from_pmksa(sm);
return 0;
}
if (!elems.owe_dh) {
wpa_printf(MSG_INFO,
"OWE: No Diffie-Hellman Parameter element found in Association Response frame");
return -1;
}
group = WPA_GET_LE16(elems.owe_dh);
if (group != sm->owe_group) {
wpa_printf(MSG_INFO,
"OWE: Unexpected Diffie-Hellman group in response: %u",
group);
return -1;
}
if (!sm->owe_ecdh) {
wpa_printf(MSG_INFO, "OWE: No ECDH state available");
return -1;
}
if (group == 19)
prime_len = 32;
else if (group == 20)
prime_len = 48;
else if (group == 21)
prime_len = 66;
else
return -1;
secret = crypto_ecdh_set_peerkey(sm->owe_ecdh, 0,
elems.owe_dh + 2,
elems.owe_dh_len - 2);
secret = wpabuf_zeropad(secret, prime_len);
if (!secret) {
wpa_printf(MSG_DEBUG, "OWE: Invalid peer DH public key");
return -1;
}
wpa_hexdump_buf_key(MSG_DEBUG, "OWE: DH shared secret", secret);
/* prk = HKDF-extract(C | A | group, z) */
pub = crypto_ecdh_get_pubkey(sm->owe_ecdh, 0);
if (!pub) {
wpabuf_clear_free(secret);
return -1;
}
/* PMKID = Truncate-128(Hash(C | A)) */
addr[0] = wpabuf_head(pub);
len[0] = wpabuf_len(pub);
addr[1] = elems.owe_dh + 2;
len[1] = elems.owe_dh_len - 2;
if (group == 19) {
res = sha256_vector(2, addr, len, pmkid);
hash_len = SHA256_MAC_LEN;
} else if (group == 20) {
res = sha384_vector(2, addr, len, pmkid);
hash_len = SHA384_MAC_LEN;
} else if (group == 21) {
res = sha512_vector(2, addr, len, pmkid);
hash_len = SHA512_MAC_LEN;
} else {
res = -1;
hash_len = 0;
}
pub = wpabuf_zeropad(pub, prime_len);
if (res < 0 || !pub) {
wpabuf_free(pub);
wpabuf_clear_free(secret);
return -1;
}
hkey = wpabuf_alloc(wpabuf_len(pub) + elems.owe_dh_len - 2 + 2);
if (!hkey) {
wpabuf_free(pub);
wpabuf_clear_free(secret);
return -1;
}
wpabuf_put_buf(hkey, pub); /* C */
wpabuf_free(pub);
wpabuf_put_data(hkey, elems.owe_dh + 2, elems.owe_dh_len - 2); /* A */
wpabuf_put_le16(hkey, sm->owe_group); /* group */
if (group == 19)
res = hmac_sha256(wpabuf_head(hkey), wpabuf_len(hkey),
wpabuf_head(secret), wpabuf_len(secret), prk);
else if (group == 20)
res = hmac_sha384(wpabuf_head(hkey), wpabuf_len(hkey),
wpabuf_head(secret), wpabuf_len(secret), prk);
else if (group == 21)
res = hmac_sha512(wpabuf_head(hkey), wpabuf_len(hkey),
wpabuf_head(secret), wpabuf_len(secret), prk);
wpabuf_clear_free(hkey);
wpabuf_clear_free(secret);
if (res < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "OWE: prk", prk, hash_len);
/* PMK = HKDF-expand(prk, "OWE Key Generation", n) */
if (group == 19)
res = hmac_sha256_kdf(prk, hash_len, NULL, (const u8 *) info,
os_strlen(info), sm->pmk, hash_len);
else if (group == 20)
res = hmac_sha384_kdf(prk, hash_len, NULL, (const u8 *) info,
os_strlen(info), sm->pmk, hash_len);
else if (group == 21)
res = hmac_sha512_kdf(prk, hash_len, NULL, (const u8 *) info,
os_strlen(info), sm->pmk, hash_len);
os_memset(prk, 0, SHA512_MAC_LEN);
if (res < 0)
return -1;
sm->pmk_len = hash_len;
wpa_hexdump_key(MSG_DEBUG, "OWE: PMK", sm->pmk, sm->pmk_len);
wpa_hexdump(MSG_DEBUG, "OWE: PMKID", pmkid, PMKID_LEN);
pmksa_cache_add(sm->pmksa, sm->pmk, sm->pmk_len, pmkid, NULL, 0,
bssid, sm->own_addr, sm->network_ctx, sm->key_mgmt,
NULL);
return 0;
}
#endif /* CONFIG_OWE */
void wpa_sm_set_fils_cache_id(struct wpa_sm *sm, const u8 *fils_cache_id)
{
#ifdef CONFIG_FILS
if (sm && fils_cache_id) {
sm->fils_cache_id_set = 1;
os_memcpy(sm->fils_cache_id, fils_cache_id, FILS_CACHE_ID_LEN);
}
#endif /* CONFIG_FILS */
}