/*
* Copyright (C) 2016 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <array>
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "Helpers.h"
#include "Smoke.h"
#include "Meshes.h"
#include "Shell.h"
namespace {
// TODO do not rely on compiler to use std140 layout
// TODO move lower frequency data to another descriptor set
struct ShaderParamBlock {
float light_pos[4];
float light_color[4];
float model[4 * 4];
float view_projection[4 * 4];
};
} // namespace
Smoke::Smoke(const std::vector<std::string> &args)
: Game("Smoke", args),
multithread_(true),
use_push_constants_(false),
sim_paused_(false),
sim_(5000),
camera_(2.5f),
frame_data_(),
render_pass_clear_value_({{{0.0f, 0.1f, 0.2f, 1.0f}}}),
render_pass_begin_info_(),
primary_cmd_begin_info_(),
primary_cmd_submit_info_() {
for (auto it = args.begin(); it != args.end(); ++it) {
if (*it == "-s")
multithread_ = false;
else if (*it == "-p")
use_push_constants_ = true;
}
init_workers();
}
Smoke::~Smoke() {}
void Smoke::init_workers() {
int worker_count = std::thread::hardware_concurrency();
// not enough cores
if (!multithread_ || worker_count < 2) {
multithread_ = false;
worker_count = 1;
}
const int object_per_worker = static_cast<int>(sim_.objects().size()) / worker_count;
int object_begin = 0, object_end = 0;
workers_.reserve(worker_count);
for (int i = 0; i < worker_count; i++) {
object_begin = object_end;
if (i < worker_count - 1)
object_end += object_per_worker;
else
object_end = static_cast<int>(sim_.objects().size());
Worker *worker = new Worker(*this, i, object_begin, object_end);
workers_.emplace_back(std::unique_ptr<Worker>(worker));
}
}
void Smoke::attach_shell(Shell &sh) {
Game::attach_shell(sh);
const Shell::Context &ctx = sh.context();
physical_dev_ = ctx.physical_dev;
dev_ = ctx.dev;
queue_ = ctx.game_queue;
queue_family_ = ctx.game_queue_family;
format_ = ctx.format.format;
vk::GetPhysicalDeviceProperties(physical_dev_, &physical_dev_props_);
if (use_push_constants_ && sizeof(ShaderParamBlock) > physical_dev_props_.limits.maxPushConstantsSize) {
shell_->log(Shell::LOG_WARN, "cannot enable push constants");
use_push_constants_ = false;
}
VkPhysicalDeviceMemoryProperties mem_props;
vk::GetPhysicalDeviceMemoryProperties(physical_dev_, &mem_props);
mem_flags_.reserve(mem_props.memoryTypeCount);
for (uint32_t i = 0; i < mem_props.memoryTypeCount; i++) mem_flags_.push_back(mem_props.memoryTypes[i].propertyFlags);
meshes_ = new Meshes(dev_, mem_flags_);
create_render_pass();
create_shader_modules();
create_descriptor_set_layout();
create_pipeline_layout();
create_pipeline();
create_frame_data(2);
render_pass_begin_info_.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_begin_info_.renderPass = render_pass_;
render_pass_begin_info_.clearValueCount = 1;
render_pass_begin_info_.pClearValues = &render_pass_clear_value_;
primary_cmd_begin_info_.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
primary_cmd_begin_info_.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
// we will render to the swapchain images
primary_cmd_submit_wait_stages_ = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
primary_cmd_submit_info_.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
primary_cmd_submit_info_.waitSemaphoreCount = 1;
primary_cmd_submit_info_.pWaitDstStageMask = &primary_cmd_submit_wait_stages_;
primary_cmd_submit_info_.commandBufferCount = 1;
primary_cmd_submit_info_.signalSemaphoreCount = 1;
if (multithread_) {
for (auto &worker : workers_) worker->start();
}
}
void Smoke::detach_shell() {
if (multithread_) {
for (auto &worker : workers_) worker->stop();
}
destroy_frame_data();
vk::DestroyPipeline(dev_, pipeline_, nullptr);
vk::DestroyPipelineLayout(dev_, pipeline_layout_, nullptr);
if (!use_push_constants_) vk::DestroyDescriptorSetLayout(dev_, desc_set_layout_, nullptr);
vk::DestroyShaderModule(dev_, fs_, nullptr);
vk::DestroyShaderModule(dev_, vs_, nullptr);
vk::DestroyRenderPass(dev_, render_pass_, nullptr);
delete meshes_;
Game::detach_shell();
}
void Smoke::create_render_pass() {
VkAttachmentDescription attachment = {};
attachment.format = format_;
attachment.samples = VK_SAMPLE_COUNT_1_BIT;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference attachment_ref = {};
attachment_ref.attachment = 0;
attachment_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &attachment_ref;
std::array<VkSubpassDependency, 2> subpass_deps;
subpass_deps[0].srcSubpass = VK_SUBPASS_EXTERNAL;
subpass_deps[0].dstSubpass = 0;
subpass_deps[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
subpass_deps[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
subpass_deps[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
subpass_deps[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
subpass_deps[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
subpass_deps[1].srcSubpass = 0;
subpass_deps[1].dstSubpass = VK_SUBPASS_EXTERNAL;
subpass_deps[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
subpass_deps[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
subpass_deps[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
subpass_deps[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
subpass_deps[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = 1;
render_pass_info.pAttachments = &attachment;
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
render_pass_info.dependencyCount = (uint32_t)subpass_deps.size();
render_pass_info.pDependencies = subpass_deps.data();
vk::assert_success(vk::CreateRenderPass(dev_, &render_pass_info, nullptr, &render_pass_));
}
void Smoke::create_shader_modules() {
VkShaderModuleCreateInfo sh_info = {};
sh_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
if (use_push_constants_) {
#include "Smoke.push_constant.vert.h"
sh_info.codeSize = sizeof(Smoke_push_constant_vert);
sh_info.pCode = Smoke_push_constant_vert;
} else {
#include "Smoke.vert.h"
sh_info.codeSize = sizeof(Smoke_vert);
sh_info.pCode = Smoke_vert;
}
vk::assert_success(vk::CreateShaderModule(dev_, &sh_info, nullptr, &vs_));
#include "Smoke.frag.h"
sh_info.codeSize = sizeof(Smoke_frag);
sh_info.pCode = Smoke_frag;
vk::assert_success(vk::CreateShaderModule(dev_, &sh_info, nullptr, &fs_));
}
void Smoke::create_descriptor_set_layout() {
if (use_push_constants_) return;
VkDescriptorSetLayoutBinding layout_binding = {};
layout_binding.binding = 0;
layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
layout_binding.descriptorCount = 1;
layout_binding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkDescriptorSetLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layout_info.bindingCount = 1;
layout_info.pBindings = &layout_binding;
vk::assert_success(vk::CreateDescriptorSetLayout(dev_, &layout_info, nullptr, &desc_set_layout_));
}
void Smoke::create_pipeline_layout() {
VkPushConstantRange push_const_range = {};
VkPipelineLayoutCreateInfo pipeline_layout_info = {};
pipeline_layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
if (use_push_constants_) {
push_const_range.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_const_range.offset = 0;
push_const_range.size = sizeof(ShaderParamBlock);
pipeline_layout_info.pushConstantRangeCount = 1;
pipeline_layout_info.pPushConstantRanges = &push_const_range;
} else {
pipeline_layout_info.setLayoutCount = 1;
pipeline_layout_info.pSetLayouts = &desc_set_layout_;
}
vk::assert_success(vk::CreatePipelineLayout(dev_, &pipeline_layout_info, nullptr, &pipeline_layout_));
}
void Smoke::create_pipeline() {
VkPipelineShaderStageCreateInfo stage_info[2] = {};
stage_info[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_info[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stage_info[0].module = vs_;
stage_info[0].pName = "main";
stage_info[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_info[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stage_info[1].module = fs_;
stage_info[1].pName = "main";
VkPipelineViewportStateCreateInfo viewport_info = {};
viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
// both dynamic
viewport_info.viewportCount = 1;
viewport_info.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo rast_info = {};
rast_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rast_info.depthClampEnable = false;
rast_info.rasterizerDiscardEnable = false;
rast_info.polygonMode = VK_POLYGON_MODE_FILL;
rast_info.cullMode = VK_CULL_MODE_NONE;
rast_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rast_info.depthBiasEnable = false;
rast_info.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo multisample_info = {};
multisample_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisample_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisample_info.sampleShadingEnable = false;
multisample_info.pSampleMask = nullptr;
multisample_info.alphaToCoverageEnable = false;
multisample_info.alphaToOneEnable = false;
VkPipelineColorBlendAttachmentState blend_attachment = {};
blend_attachment.blendEnable = true;
blend_attachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blend_attachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blend_attachment.colorBlendOp = VK_BLEND_OP_ADD;
blend_attachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blend_attachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blend_attachment.alphaBlendOp = VK_BLEND_OP_ADD;
blend_attachment.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.logicOpEnable = false;
blend_info.attachmentCount = 1;
blend_info.pAttachments = &blend_attachment;
std::array<VkDynamicState, 2> dynamic_states = {{VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}};
struct VkPipelineDynamicStateCreateInfo dynamic_info = {};
dynamic_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_info.dynamicStateCount = (uint32_t)dynamic_states.size();
dynamic_info.pDynamicStates = dynamic_states.data();
VkGraphicsPipelineCreateInfo pipeline_info = {};
pipeline_info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipeline_info.stageCount = 2;
pipeline_info.pStages = stage_info;
pipeline_info.pVertexInputState = &meshes_->vertex_input_state();
pipeline_info.pInputAssemblyState = &meshes_->input_assembly_state();
pipeline_info.pTessellationState = nullptr;
pipeline_info.pViewportState = &viewport_info;
pipeline_info.pRasterizationState = &rast_info;
pipeline_info.pMultisampleState = &multisample_info;
pipeline_info.pDepthStencilState = nullptr;
pipeline_info.pColorBlendState = &blend_info;
pipeline_info.pDynamicState = &dynamic_info;
pipeline_info.layout = pipeline_layout_;
pipeline_info.renderPass = render_pass_;
pipeline_info.subpass = 0;
vk::assert_success(vk::CreateGraphicsPipelines(dev_, VK_NULL_HANDLE, 1, &pipeline_info, nullptr, &pipeline_));
}
void Smoke::create_frame_data(int count) {
frame_data_.resize(count);
create_fences();
create_command_buffers();
if (!use_push_constants_) {
create_buffers();
create_buffer_memory();
create_descriptor_sets();
}
frame_data_index_ = 0;
}
void Smoke::destroy_frame_data() {
if (!use_push_constants_) {
vk::DestroyDescriptorPool(dev_, desc_pool_, nullptr);
vk::UnmapMemory(dev_, frame_data_mem_);
vk::FreeMemory(dev_, frame_data_mem_, nullptr);
for (auto &data : frame_data_) vk::DestroyBuffer(dev_, data.buf, nullptr);
}
for (auto cmd_pool : worker_cmd_pools_) vk::DestroyCommandPool(dev_, cmd_pool, nullptr);
worker_cmd_pools_.clear();
vk::DestroyCommandPool(dev_, primary_cmd_pool_, nullptr);
for (auto &data : frame_data_) vk::DestroyFence(dev_, data.fence, nullptr);
frame_data_.clear();
}
void Smoke::create_fences() {
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (auto &data : frame_data_) vk::assert_success(vk::CreateFence(dev_, &fence_info, nullptr, &data.fence));
}
void Smoke::create_command_buffers() {
VkCommandPoolCreateInfo cmd_pool_info = {};
cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmd_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cmd_pool_info.queueFamilyIndex = queue_family_;
VkCommandBufferAllocateInfo cmd_info = {};
cmd_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_info.commandBufferCount = static_cast<uint32_t>(frame_data_.size());
// create command pools and buffers
std::vector<VkCommandPool> cmd_pools(workers_.size() + 1, VK_NULL_HANDLE);
std::vector<std::vector<VkCommandBuffer>> cmds_vec(workers_.size() + 1,
std::vector<VkCommandBuffer>(frame_data_.size(), VK_NULL_HANDLE));
for (size_t i = 0; i < cmd_pools.size(); i++) {
auto &cmd_pool = cmd_pools[i];
auto &cmds = cmds_vec[i];
vk::assert_success(vk::CreateCommandPool(dev_, &cmd_pool_info, nullptr, &cmd_pool));
cmd_info.commandPool = cmd_pool;
cmd_info.level = (cmd_pool == cmd_pools.back()) ? VK_COMMAND_BUFFER_LEVEL_PRIMARY : VK_COMMAND_BUFFER_LEVEL_SECONDARY;
vk::assert_success(vk::AllocateCommandBuffers(dev_, &cmd_info, cmds.data()));
}
// update frame_data_
for (size_t i = 0; i < frame_data_.size(); i++) {
for (const auto &cmds : cmds_vec) {
if (cmds == cmds_vec.back()) {
frame_data_[i].primary_cmd = cmds[i];
} else {
frame_data_[i].worker_cmds.push_back(cmds[i]);
}
}
}
primary_cmd_pool_ = cmd_pools.back();
cmd_pools.pop_back();
worker_cmd_pools_ = cmd_pools;
}
void Smoke::create_buffers() {
VkDeviceSize object_data_size = sizeof(ShaderParamBlock);
// align object data to device limit
const VkDeviceSize &alignment = physical_dev_props_.limits.minStorageBufferOffsetAlignment;
if (object_data_size % alignment) object_data_size += alignment - (object_data_size % alignment);
// update simulation
sim_.set_frame_data_size(static_cast<uint32_t>(object_data_size));
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.size = object_data_size * sim_.objects().size();
buf_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
for (auto &data : frame_data_) vk::assert_success(vk::CreateBuffer(dev_, &buf_info, nullptr, &data.buf));
}
void Smoke::create_buffer_memory() {
VkMemoryRequirements mem_reqs;
vk::GetBufferMemoryRequirements(dev_, frame_data_[0].buf, &mem_reqs);
frame_data_aligned_size_ = mem_reqs.size;
if (frame_data_aligned_size_ % mem_reqs.alignment)
frame_data_aligned_size_ += mem_reqs.alignment - (frame_data_aligned_size_ % mem_reqs.alignment);
// allocate memory
VkMemoryAllocateInfo mem_info = {};
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_info.allocationSize = frame_data_aligned_size_ * (frame_data_.size() - 1) + mem_reqs.size;
for (uint32_t idx = 0; idx < mem_flags_.size(); idx++) {
if ((mem_reqs.memoryTypeBits & (1 << idx)) && (mem_flags_[idx] & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
(mem_flags_[idx] & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
// TODO is this guaranteed to exist?
mem_info.memoryTypeIndex = idx;
break;
}
}
vk::AllocateMemory(dev_, &mem_info, nullptr, &frame_data_mem_);
void *ptr;
vk::MapMemory(dev_, frame_data_mem_, 0, VK_WHOLE_SIZE, 0, &ptr);
VkDeviceSize offset = 0;
for (auto &data : frame_data_) {
vk::BindBufferMemory(dev_, data.buf, frame_data_mem_, offset);
data.base = reinterpret_cast<uint8_t *>(ptr) + offset;
offset += frame_data_aligned_size_;
}
}
void Smoke::create_descriptor_sets() {
VkDescriptorPoolSize desc_pool_size = {};
desc_pool_size.type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
desc_pool_size.descriptorCount = static_cast<uint32_t>(frame_data_.size());
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.maxSets = static_cast<uint32_t>(frame_data_.size());
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &desc_pool_size;
// create descriptor pool
vk::assert_success(vk::CreateDescriptorPool(dev_, &desc_pool_info, nullptr, &desc_pool_));
std::vector<VkDescriptorSetLayout> set_layouts(frame_data_.size(), desc_set_layout_);
VkDescriptorSetAllocateInfo set_info = {};
set_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
set_info.descriptorPool = desc_pool_;
set_info.descriptorSetCount = static_cast<uint32_t>(set_layouts.size());
set_info.pSetLayouts = set_layouts.data();
// create descriptor sets
std::vector<VkDescriptorSet> desc_sets(frame_data_.size(), VK_NULL_HANDLE);
vk::assert_success(vk::AllocateDescriptorSets(dev_, &set_info, desc_sets.data()));
std::vector<VkDescriptorBufferInfo> desc_bufs(frame_data_.size());
std::vector<VkWriteDescriptorSet> desc_writes(frame_data_.size());
for (size_t i = 0; i < frame_data_.size(); i++) {
auto &data = frame_data_[i];
data.desc_set = desc_sets[i];
VkDescriptorBufferInfo desc_buf = {};
desc_buf.buffer = data.buf;
desc_buf.offset = 0;
desc_buf.range = VK_WHOLE_SIZE;
desc_bufs[i] = desc_buf;
VkWriteDescriptorSet desc_write = {};
desc_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_write.dstSet = data.desc_set;
desc_write.dstBinding = 0;
desc_write.dstArrayElement = 0;
desc_write.descriptorCount = 1;
desc_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
desc_write.pBufferInfo = &desc_bufs[i];
desc_writes[i] = desc_write;
}
vk::UpdateDescriptorSets(dev_, static_cast<uint32_t>(desc_writes.size()), desc_writes.data(), 0, nullptr);
}
void Smoke::attach_swapchain() {
const Shell::Context &ctx = shell_->context();
prepare_viewport(ctx.extent);
prepare_framebuffers(ctx.swapchain);
update_camera();
}
void Smoke::detach_swapchain() {
for (auto fb : framebuffers_) vk::DestroyFramebuffer(dev_, fb, nullptr);
for (auto view : image_views_) vk::DestroyImageView(dev_, view, nullptr);
framebuffers_.clear();
image_views_.clear();
images_.clear();
}
void Smoke::prepare_viewport(const VkExtent2D &extent) {
extent_ = extent;
viewport_.x = 0.0f;
viewport_.y = 0.0f;
viewport_.width = static_cast<float>(extent.width);
viewport_.height = static_cast<float>(extent.height);
viewport_.minDepth = 0.0f;
viewport_.maxDepth = 1.0f;
scissor_.offset = {0, 0};
scissor_.extent = extent_;
}
void Smoke::prepare_framebuffers(VkSwapchainKHR swapchain) {
// get swapchain images
vk::get(dev_, swapchain, images_);
assert(framebuffers_.empty());
image_views_.reserve(images_.size());
framebuffers_.reserve(images_.size());
for (auto img : images_) {
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = img;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = format_;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.layerCount = 1;
VkImageView view;
vk::assert_success(vk::CreateImageView(dev_, &view_info, nullptr, &view));
image_views_.push_back(view);
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.renderPass = render_pass_;
fb_info.attachmentCount = 1;
fb_info.pAttachments = &view;
fb_info.width = extent_.width;
fb_info.height = extent_.height;
fb_info.layers = 1;
VkFramebuffer fb;
vk::assert_success(vk::CreateFramebuffer(dev_, &fb_info, nullptr, &fb));
framebuffers_.push_back(fb);
}
}
void Smoke::update_camera() {
const glm::vec3 center(0.0f);
const glm::vec3 up(0.f, 0.0f, 1.0f);
const glm::mat4 view = glm::lookAt(camera_.eye_pos, center, up);
float aspect = static_cast<float>(extent_.width) / static_cast<float>(extent_.height);
const glm::mat4 projection = glm::perspective(0.4f, aspect, 0.1f, 100.0f);
// Vulkan clip space has inverted Y and half Z.
const glm::mat4 clip(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 0.5f, 1.0f);
camera_.view_projection = clip * projection * view;
}
void Smoke::draw_object(const Simulation::Object &obj, FrameData &data, VkCommandBuffer cmd) const {
if (use_push_constants_) {
ShaderParamBlock params;
memcpy(params.light_pos, glm::value_ptr(obj.light_pos), sizeof(obj.light_pos));
memcpy(params.light_color, glm::value_ptr(obj.light_color), sizeof(obj.light_color));
memcpy(params.model, glm::value_ptr(obj.model), sizeof(obj.model));
memcpy(params.view_projection, glm::value_ptr(camera_.view_projection), sizeof(camera_.view_projection));
vk::CmdPushConstants(cmd, pipeline_layout_, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(params), ¶ms);
} else {
ShaderParamBlock *params = reinterpret_cast<ShaderParamBlock *>(data.base + obj.frame_data_offset);
memcpy(params->light_pos, glm::value_ptr(obj.light_pos), sizeof(obj.light_pos));
memcpy(params->light_color, glm::value_ptr(obj.light_color), sizeof(obj.light_color));
memcpy(params->model, glm::value_ptr(obj.model), sizeof(obj.model));
memcpy(params->view_projection, glm::value_ptr(camera_.view_projection), sizeof(camera_.view_projection));
vk::CmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout_, 0, 1, &data.desc_set, 1,
&obj.frame_data_offset);
}
meshes_->cmd_draw(cmd, obj.mesh);
}
void Smoke::update_simulation(const Worker &worker) {
sim_.update(worker.tick_interval_, worker.object_begin_, worker.object_end_);
}
void Smoke::draw_objects(Worker &worker) {
auto &data = frame_data_[frame_data_index_];
auto cmd = data.worker_cmds[worker.index_];
VkCommandBufferInheritanceInfo inherit_info = {};
inherit_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
inherit_info.renderPass = render_pass_;
inherit_info.framebuffer = worker.fb_;
VkCommandBufferBeginInfo begin_info = {};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.flags = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
begin_info.pInheritanceInfo = &inherit_info;
vk::BeginCommandBuffer(cmd, &begin_info);
vk::CmdSetViewport(cmd, 0, 1, &viewport_);
vk::CmdSetScissor(cmd, 0, 1, &scissor_);
vk::CmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_);
meshes_->cmd_bind_buffers(cmd);
for (int i = worker.object_begin_; i < worker.object_end_; i++) {
auto &obj = sim_.objects()[i];
draw_object(obj, data, cmd);
}
vk::EndCommandBuffer(cmd);
}
void Smoke::on_key(Key key) {
switch (key) {
case KEY_SHUTDOWN:
case KEY_ESC:
quit();
break;
case KEY_UP:
camera_.eye_pos -= glm::vec3(0.05f);
update_camera();
break;
case KEY_DOWN:
camera_.eye_pos += glm::vec3(0.05f);
update_camera();
break;
case KEY_SPACE:
sim_paused_ = !sim_paused_;
break;
default:
break;
}
}
void Smoke::on_tick() {
if (sim_paused_) return;
for (auto &worker : workers_) worker->update_simulation();
}
void Smoke::on_frame(float frame_pred) {
frame_count++;
// Limit number of frames if argument was specified
if (settings_.max_frame_count != -1 && frame_count == settings_.max_frame_count) {
// Tell the Game we're done after this frame is drawn.
Game::quit();
}
auto &data = frame_data_[frame_data_index_];
// wait for the last submission since we reuse frame data
vk::assert_success(vk::WaitForFences(dev_, 1, &data.fence, true, UINT64_MAX));
vk::assert_success(vk::ResetFences(dev_, 1, &data.fence));
const Shell::BackBuffer &back = shell_->context().acquired_back_buffer;
// ignore frame_pred
for (auto &worker : workers_) worker->draw_objects(framebuffers_[back.image_index]);
VkResult res = vk::BeginCommandBuffer(data.primary_cmd, &primary_cmd_begin_info_);
if (!use_push_constants_) {
VkBufferMemoryBarrier buf_barrier = {};
buf_barrier.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
buf_barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
buf_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
buf_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
buf_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
buf_barrier.buffer = data.buf;
buf_barrier.offset = 0;
buf_barrier.size = VK_WHOLE_SIZE;
vk::CmdPipelineBarrier(data.primary_cmd, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, 0, 0, nullptr, 1,
&buf_barrier, 0, nullptr);
}
render_pass_begin_info_.framebuffer = framebuffers_[back.image_index];
render_pass_begin_info_.renderArea.extent = extent_;
vk::CmdBeginRenderPass(data.primary_cmd, &render_pass_begin_info_, VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS);
// record render pass commands
for (auto &worker : workers_) worker->wait_idle();
// Flush buffers if enabled
if (settings_.flush_buffers) {
VkMappedMemoryRange range = {};
range.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range.pNext = nullptr;
range.memory = frame_data_mem_;
range.offset = frame_data_index_ * frame_data_aligned_size_;
range.size = frame_data_aligned_size_;
vk::FlushMappedMemoryRanges(dev_, 1, &range);
}
vk::CmdExecuteCommands(data.primary_cmd, static_cast<uint32_t>(data.worker_cmds.size()), data.worker_cmds.data());
vk::CmdEndRenderPass(data.primary_cmd);
vk::EndCommandBuffer(data.primary_cmd);
// wait for the image to be owned and signal for render completion
primary_cmd_submit_info_.pWaitSemaphores = &back.acquire_semaphore;
primary_cmd_submit_info_.pCommandBuffers = &data.primary_cmd;
primary_cmd_submit_info_.pSignalSemaphores = &back.render_semaphore;
res = vk::QueueSubmit(queue_, 1, &primary_cmd_submit_info_, data.fence);
frame_data_index_ = (frame_data_index_ + 1) % frame_data_.size();
(void)res;
}
Smoke::Worker::Worker(Smoke &smoke, int index, int object_begin, int object_end)
: smoke_(smoke),
index_(index),
object_begin_(object_begin),
object_end_(object_end),
tick_interval_(1.0f / smoke.settings_.ticks_per_second),
state_(INIT) {}
void Smoke::Worker::start() {
state_ = IDLE;
thread_ = std::thread(Smoke::Worker::thread_loop, this);
}
void Smoke::Worker::stop() {
{
std::lock_guard<std::mutex> lock(mutex_);
state_ = INIT;
}
state_cv_.notify_one();
thread_.join();
}
void Smoke::Worker::update_simulation() {
{
std::lock_guard<std::mutex> lock(mutex_);
bool started = (state_ != INIT);
state_ = STEP;
// step directly
if (!started) {
smoke_.update_simulation(*this);
state_ = INIT;
}
}
state_cv_.notify_one();
}
void Smoke::Worker::draw_objects(VkFramebuffer fb) {
// wait for step_objects first
wait_idle();
{
std::lock_guard<std::mutex> lock(mutex_);
bool started = (state_ != INIT);
fb_ = fb;
state_ = DRAW;
// render directly
if (!started) {
smoke_.draw_objects(*this);
state_ = INIT;
}
}
state_cv_.notify_one();
}
void Smoke::Worker::wait_idle() {
std::unique_lock<std::mutex> lock(mutex_);
bool started = (state_ != INIT);
if (started) state_cv_.wait(lock, [this] { return (state_ == IDLE); });
}
void Smoke::Worker::update_loop() {
while (true) {
std::unique_lock<std::mutex> lock(mutex_);
state_cv_.wait(lock, [this] { return (state_ != IDLE); });
if (state_ == INIT) break;
assert(state_ == STEP || state_ == DRAW);
if (state_ == STEP)
smoke_.update_simulation(*this);
else
smoke_.draw_objects(*this);
state_ = IDLE;
lock.unlock();
state_cv_.notify_one();
}
}